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a b s t r a c t

We propose a novel classification according to aggregation functions of mixed behaviour by variability
in ordinal sums of conjunctive and disjunctive functions. Consequently, domain experts are empowered
to assign only the most important observations regarding the considered attributes. This has the
advantage that the variability of the functions provides opportunities for machine learning to learn
the best possible option from the data. Moreover, such a solution is comprehensible, reproducible
and explainable-per-design to domain experts. In this paper, we discuss the proposed approach with
examples and outline the research steps in interactive machine learning with a human-in-the-loop over
aggregation functions. Although human experts are not always able to explain anything either, they
are sometimes able to bring in experience, contextual understanding and implicit knowledge, which
is desirable in certain machine learning tasks and can contribute to the robustness of algorithms. The
obtained theoretical results in ordinal sums are discussed and illustrated on examples.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

We have plenty of evidence, that when people are reasoning,
hey do not always follow formal inference rules [1], e.g., modus
onens as it was used in traditional decision support systems [2].
ather, they construct mental models [3] of the problem and
nterrogate these models to determine the best possible solution
ollowing simple expectation maximizing strategies [4]. However,
hen they do not find similar tasks or are under time pressure,
umans often fail, biased by semantic explanations. It places
he importance of semantic meaning ahead instead of logical
easoning (semantically independent). In many application ar-
as this is a beneficial advantage against a formal system, such
s understanding a sentence never heard before. Contrary, the
llustrative examples are queries about the probability of the
onjunction, where people tend to give higher probability to a
onjunction of two predicates, rather than to one predicate [1,5–
]. Interestingly, this is fostering algorithms robustness and this is
urrently the hottest topic in the machine learning community [8,
], emphasized in the Posner-Lecture of Yoshua Bengio at NeurIPS
n Vancouver in December 2019.

∗ Corresponding author at: Medical University Graz, Austria.
E-mail address: andreas.holzinger@medunigraz.at (A. Holzinger).
ttps://doi.org/10.1016/j.knosys.2021.106916
950-7051/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
In many tasks ranging from everyday activities to medical di-
agnoses laypersons and domain experts classify entities into two
classes, which we can mark as yes–no, have illness–do not have
illness, malign–benign, and the like. However, for many entities
this decision is not straightforward, so we need a class marked
as maybe. In the three-valued logic maybe is expressed by 0.5.
However, an entity might slightly or significantly incline to yes or
no. Consequently, we need a many-valued logic. Classification by
fuzzy sets and fuzzy logic supported by computing with words
has shown its benefits in technical systems, and later in many
other fields [10].

Neural networks have shown their efficiency in classification
for some time, even beyond human-level performance [11–13].
For supervised learning, it holds true when well-designed (and
of sufficient size) sets of input–output data are prepared for
learning and validating. By well-designed sets we mean a suf-
ficient amount of data of adequate quality, which covers the
whole domain of input data. A neural network having an error
equal to 0 might indicate that it works perfectly on a specific
subset of input data, but when new data from other sub-domains
are obtained, a neural network usually fails (catastrophic forget-
ting, [14]). The main problem is the lack of explainability: We
do not know how the neural network has reached the solution
and therefore we cannot explain the reasons why an entity is in,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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et say, class maybe and moreover, whether it inclines to classes
es or no and why. Contrary, rule-based systems are explainable,
ut have problems with human interpretability due to the often
igh complexity [15]. Diverse indicators have been developed to
easure interpretability as well as quality; these indicators are
entioned later on when an illustrative rule-based system has
een introduced.
A possible solution is classification by aggregation functions of

ixed behaviour, where parameters of functions and the key input
arameters can be learnt from data. In this way, the domain
xperts can bring in their contextual implicit knowledge, which is
escribed by the interactive machine learning approach [16] and
as been proven as being useful within several scenarios [17–19].
Nevertheless, for domain experts one of the problems is the

ata distribution of the input attributes. Statistical interpretation
s often used, but it is understandable only for people having a
ertain level of statistical literacy. Here, linguistic explanations
y quantified summaries and summaries by modes of behaviour
an be extremely useful [20]. Such summaries are also a valuable
upport for explaining solutions. On the entity level it is challeng-
ng to find the best explanation. However, on the global level,
omain experts gets explanations about the distribution among
lasses for the whole data set, or for a particular time frame,
r subset of considered attributes. This will be very important
or future human-AI interfaces, supporting Question-Answering
ialogues [21], which were proposed very early (e.g. the Advice
aker, [22]) and already in use in early medical decision support
ystems [23]. Nowadays, they are becoming important for future
uman-AI interfaces [24], in the context of explainable AI [25].
In this paper we describe the design and development of a

ramework for classification by ordinal sums of conjunctive and
isjunctive functions and its perspective for so-called glass-box
achine learning to support explainable AI [26].
In this framework we consider diverse conjunctive, disjunctive

s well as averaging functions in order to propose a novel way for
lexible classification. The remainder of this article is organized
s follows. Section 2 introduces classical and fuzzy rule-based
ystems. Section 3 explains classification by aggregation func-
ions. Section 4 is dedicated to ordinal sums in classification and
llustrative examples, whereas Section 5 speculates applicability
f aggregation functions in machine learning. Finally, Section 7
oncludes the article.

. Classification by the rule-based systems

The main goal of classification (usually by rule-based systems)
s dividing entities into several classes. The binary classification
ivides entities into two distinct classes, usually yes and no. In the
edical field, an illness exists or not, e.g. a melanoma is malign
r not [13]. The obvious limitations have been reported in many
elated works, e.g., [27–29]. The extension is a classification into
hree classes yes, maybe and no. An example from business is: a
romising customer — full discount (Y), a more or less promising
ne — medium (or average) discount (M), and a non-perspective
ne — no discount (N). A medical example is: patient has a
iagnosis, presumably has (further evaluation is advisable), and
oes not have.
A rule base illustration of this classification is graphically

hown in Fig. 1. Formally, this rule base is as follows:

IF Atr1 < a1 AND Atr2 < a2 , THEN N;
IF Atr1 ≥ a1 AND Atr2 < a2 , THEN M;
IF Atr1 < a1 AND Atr2 ≥ a2 , THEN M;
IF Atr1 ≥ a AND Atr ≥ a , THEN Y .
1 2 2

2

Fig. 1. Classical classification into three classes: no, maybe, yes expressed as,
e.g., no discount, average and yes (or full) discount (bonus, belief, etc.).

where a1 ∈ X1 and a2 ∈ X2, (X1 and X2 are domains of attributes
Atr1 and Atr2, respectively).

For illustrative purposes we have two input attributes. Gener-
ally, any rule base can be straightforwardly extended to n (n > 2)
attributes.

Two clearly visible drawbacks are the following:

• The user should define crisp values to formalize crisp rules,
which is not a usual human way of reasoning. If these
parameters were learnt by machine learning approaches, the
rationale for computing particular values and therefore the
result of classification remain unexplained.

• Discontinuity, i.e., a small change in attributes’ values might
cause significant change in output (entities E1 and E2 in
Fig. 1, for instance), which is also not an observable human
evaluation.

Flexible (or fuzzy) classification is a way to mitigate the men-
tioned drawbacks. The modification to fuzzy classification space
is formalized as (see Fig. 2)

IF Atr1 i s low AND Atr2 i s low , THEN N;
IF Atr1 i s high AND Atr2 i s low , THEN M;
IF Atr1 i s low AND Atr2 i s high , THEN M;
IF Atr1 i s high AND Atr2 i s high , THEN Y .

Entities E1 and E2 in Fig. 2 partially activate all rules and
therefore belong to all classes, with

∑4
i=1 µCi (e) = 1, where µCi

is a membership degree to class Ci of entity e. Let in a business
case, belonging to Y brings discount of 10, belonging to M brings
5 and belonging to N means no discount, then E1 gets discount
slightly above 5, whereas E2 slightly below 5. In the classical
case (Fig. 1), E1 gets 10, whereas E2 gets 0. Consequently, the
resources assigned to motivation remains similar (not always the
case, but the motivation is fairer). In a medical case, µY (e) = 1
means absolutely sure, µM (e) = 0.5 means more or less sure and
µN (e) = 0 stands for no alarm. In fuzzy classification, we have
medium belief that E1 and E2 incline to the illness, but E1 slightly
more than E2.

Obviously, the problem of discontinuity is solved, but the task
is more tedious for users, because they should assign a higher
number of parameters to formalize terms such as low and high.

When interpretability and explainability are crucial factors,
fuzzy-rule based systems are preferred. The reasons are [15]:
integration, interaction, validation and trust. However, real-world
inference systems consist of a higher number of input attributes
and their granules and therefore a higher number of rules is
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Fig. 2. Fuzzy classification into three classes: no, maybe, yes expressed as no
iscount, average and full discount (bonus, belief and the like).

onstructed. It needs a set of quality indicators to manage con-
istency of a rule-based system. Some of criteria are widely
ccepted, whereas some other remain controversial. A deeper
nsight into interpretability of fuzzy rule-based systems is in,
.g., [30–32]. In order to manage interpretability of rule-based
ystems the suitable classification is due to [15]. On the fuzzy
et level quality indicators include: normality, continuity and
onvexity. On the level of linguistic variables and fuzzy parti-
ions indicators are: justifiable number of elements, coverage
nd relation preservation among others. On the fuzzy rules level
ndicators are description length and granular outputs. Finally, on
he fuzzy rule bases level indicators are: compactness, average
iring rules, completeness. The further indicators like dominance
onsistency [33] should not be neglected. When a rule-based
ystem is growing, these indicators become more relevant. A
ule-based classification system is a glass-box approach [34], but
anaging its quality might be very demanding. A complex rule-
ase can be simplified, e.g., by a graph theory approach suggested
n [31], but the initial rule base should be of an acceptable quality.
n a neuro-fuzzy system, we have a high demand for input–output
ata to learn higher number of parameters.
These observations motivated us to explore the possibilities

or applying aggregation functions in classification, more pre-
isely ordinal sums which belongs to the category of the mixed
ggregation functions.

. Prerequisites for applying aggregation functions in classifi-
ation

Aggregation functions aggregate several input values into the
ost representative one, usually from the closed interval [0, 1]

to produce a real value in [0, 1], i.e., A : [0, 1]n → [0, 1]
where A is an aggregation function which satisfies the following
properties [35]:

A(1, 1, . . . , 1) = 1 boundary condition (1a)

A(0, 0, . . . , 0) = 0 boundary condition (1b)

i ≤ yi, i = 1, . . . , n

H⇒ A(x1, . . . , xn) ≤ A(y1, . . . , yn) monotonicity (1c)

The main classification of aggregation functions is due to [36]:

onjunctive 0 ≤ A(x) ≤ min(x), i.e., all atomic conditions

3

should be at least partially met, or the property of simultaneity;
averaging min(x) ≤ A(x) ≤ max(x); disjunctive max(x) ≤ A(x) ≤

1, i.e., at least one condition should be satisfied, or the property
of substitutability; and mixed ones, where x is a vector of degrees
of satisfied predicates, x = (x1, . . . , xn).

Remark. More generally, we can express conjunctive functions
as A(x) ≤ xi for each i ∈ {1, . . . , n}, averaging functions as
xi ≤ A(x) ≤ xj for some i, j ∈ {1, . . . , n}, disjunctive functions
as xi ≤ A(x) for each i ∈ {1, . . . , n} and mixed as remaining
aggregation functions.

Instead of constructing families of fuzzy sets (Fig. 2), the values
of the input attributes in our proposal are transformed into the
unit interval by the following rule: all values which are clear
low values, or cause clear no assign value 0, whereas clear high
values assign value 1. The other values should be transformed by a
suitable function. This transformation is depicted in Fig. 3. In this
way, we get the well-known structure of aggregation. Next, class
N can be expressed by a conjunctive function, Y by a disjunctive
function and M by an averaging function.

We denote by C the class of all conjunctive aggregation func-
tions, analogously by AV the class of all averaging aggregation
functions, by D the class of all disjunctive aggregation functions,
and finally by M the class of all mixed aggregation functions.

Clearly, the class C is not suitable for the whole space. Observe
the case C(0, 1) = C(1, 0) = 0, where C ∈ C. In this way, rules
IF Atr1 is low AND Atr2 is high, THEN M, and IF Atr1 is high AND
Atr2 is low, THEN M are violated for some values in domains X1
and X2 (see, Figs. 2 and 3), even though the class C is suitable
for the output class N. The dual observation holds for the class
D. Analogously, the class AV is not suitable due to compensation
effect, which is not suitable for classes N and Y, but acceptable
for class M.

Therefore, we need an aggregation function which emphasizes
high values, attenuate low values and behave as an averaging
function for the mixture of high and low values of input at-
tributes. Thus, the possible solutions are gamma operators and
ordinal sums of aggregation functions.

Gamma operators are an attempt to create aggregators com-
patible with human reasoning [37,38]. The conjunctive aggre-
gation is performed by product t-norm (a strict t-norm having
downward reinforcement property, i.e., T (x, x) < x, x ∈ ]0, 1[).
For the notation of real intervals, we use [a, b] for closed inter-
vals, ]a, b[ for open intervals, and [a, b[ and ]a, b] for half-open
intervals. The disjunctive aggregation is performed by the dual
t-conorm, that is, the probabilistic sum having an upward rein-
forcement property (S(x, x) > x, x ∈ ]0, 1[). Then, the gamma
operator is a multiplicative combination (or weighted geometric
mean) of product t-norm and its dual t-conorm [38]

γA(x, γ ) =

(
n∏

i=1

xi

)(1−γ )

·

(
1 −

n∏
i=1

(1 − xi)

)γ

(2)

where γ ∈ [0, 1] and n is the length of vector x, or the following
additive combination (or weighted arithmetic mean) of product
t-norm and its dual t-conorm

γA(x, γ ) = (1 − γ )
n∏

i=1

xi + γ (1 −

n∏
i=1

(1 − xi)) (3)

The parameter γ plays a role of a in Fig. 3. This operator is
idempotent only for γ = 0.5 and n = 2. In our classification
task, the multiplicative combination (2) is not suitable, because
γA((0, 1), γ ) = 0 for γ ̸= 1. Next, for γ = 0, we get conjunction
expressed by product t-norm, whereas for γ = 1 we get a

disjunction expressed by the probabilistic sum t-conorm. On the
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ther hand, the additive combination (3) gives the right solution
A((0, 1), γ ) = 0.5. However, γA((0, x2), γ ) ̸= 0, when x2 < 0.5

and γ ∈ ]0, 1].
In tasks of fitting functions to input–output data or in in-

teractive machine learning, we adjust only the parameter γ .
Conjunctive and disjunctive functions remain unchanged (prod-
uct t-norm and probabilistic sum t-conorm, respectively). The
possible problem is also the general non-idempotency of (2), (3).
The question is, whether idempotency is a required property. The
answer depends on the considered task. Several smaller values
can cause a solution almost equal to 0, for some γ , which is not
always desirable. Further, the solution for a vector of several 0.5
should be 0.5. Next, if we expect that value a (Fig. 3) is 0.5 for each
attribute (if data distribution is normal, or value means a border
between low and high influence), then it should be reflected in γ
and therefore we lose the flexibility for adjusting.

4. Ordinal sums of conjunctive and disjunctive functions in
classification

Ordinal sums in their origin were considered as extension
methods for posets [39] or for semigroups [40]. Later, in the
framework of fuzzy sets theory, they were considered to build
new t-norms/t-conorms from the scaled versions of existing
ones [41]. Let Ti, i = 1, . . . , k be a family of t-norms and
]ai, bi[, i = 1, . . . , k be a family of non-empty pairwise disjoint
open subintervals of the unit interval. Then function T : [0, 1]2 →

[0, 1] given by

T (x, y) =

{
ai + (bi − ai) · Ti(

x−ai
bi−ai

,
y−ai
bi−ai

) (x, y) ∈ ]ai − bi[2

min(x, y) otherwise

(4)

is a t-norm known as the ordinal sum of the summands ⟨ai, bi, Ti⟩,
i = 1, . . . , k. Analogously, we can create a t-conorm as the ordinal
sum of the summands ⟨ai, bi, Si⟩, i = 1, . . . , k where Si is a
disjunctive function expressed by t-conorm (then min in (4) is
replaced by max).

The ordinal sum of conjunctive and disjunctive functions has
been proposed by De Baets and Mesiar [42] as follows

For an n-ary aggregation function B : [0, 1]n → [0, 1] and
[a, b] ⊂ R, denote B[a,b](x) = a + (b − a) · B( x−a

b−a ) Note that then
[a,b] is an n-ary aggregation function on [a, b]. Coming back to

(4), we see that (Ti)[ai,bi](x, y) = ai + (bi − ai) · Ti(
x−ai
bi−ai

,
y−ai
bi−ai

).
For B1, . . . , Bk : [0, 1]n → [0, 1], k ≥ 2, and 0 ≤ a0 <

1 < · · · < ak = 1 let Ai : [ai−1, ai]n → [ai−1, ai] be given by
i = (Bi)[ai−1,ai]. Then the ordinal sum A : [0, 1]n → [0, 1], A =

⟨ai−1, ai, Ai⟩)|i = 1, . . . , k is given by

(x) =

k∑
(Ai(ai ∧ (ai−1 ∨ x)) − ai−1) (5)
i=1

4

s an aggregation function on [0, 1]. If all B1, . . . , Bk are t-norms
t-conorms) then also A is a t-norm (t-conorm).

Note that, equivalently, A(x) =
∑k

i=1(ai − ai−1) · Bi(1 ∧ (0 ∨
x−ai−1
ai−ai−1

)). For our purposes n = k = 2 is considered. Denoting
a1 = a(a0 = 0, a2 = 1), we have two next forms of ordinal sums

(i) B1, B2 : [0, 1]2 → [0, 1],

A(x, y) = a ·B1(1∧
x
a
, 1∧

y
a
)+ (1−a) ·B2(0∨

x − a
1 − a

, 0∨
y − a
1 − a

) (6)

(ii) A1 : [0, a]2 → [0, a], A2 : [a, 1]2 → [a, 1],

(x, y) = A1(a ∧ x, a ∧ y) + A2(a ∨ x, a ∨ y) − a (7)

Then:

• if (x, y) ∈ [0, a]2, A(x, y) = a · B1( xa ,
y
a ) = A1(x, y),

• if (x, y) ∈ [a, 1]2, A(x, y) = a+(1−a)·B2( x−a
1−a ,

y−a
1−a ) = A2(x, y),

• if (x, y) ∈ [0, a] × [a, 1], A(x, y) = a · B1( xa , 1) + (1 − a) ·

B2(0, y−a
1−a ) = A1(x, a) + A2(a, y) − a,

• if (x, y) ∈ [a, 1] × [0, a], A(x, y) = a · B1(1, y
a ) + (1 − a) ·

B2( x−a
1−a , 0) = A1(0, y) + A2(x, a) − a.

Obviously, if B1 is conjunctive and B2 is a disjunctive aggrega-
tion function, then A is conjunctive on [0, a]2 and disjunctive on
[a, 1]2. Moreover, if B1 has a neutral element e = 1, i.e., B1 is a
semicopula [43], and B2 has a neutral element e = 0, i.e., B2 is a
dual semicopula, then, for (x, y) ∈ [0, 1]2\([0, a]2∪[a, 1]2) it holds
A(x, y) = x + y − a ∈ [min(x, y),max(x, y)], i.e., A is averaging on
this domain.

Note that if B1 is continuous but not a semicopula, i.e., B1(x0, 1)
< x0 or B1(1, x0) < x0 for some x0 ∈ ]0, 1[, then A is not averaging
on [0, a] × [a, 1] ∪ [a, 1] × [0, a]. A similar clam holds for B2.
Hence, supporting the continuity of B1 and B2, A is continuous and
reflects our demands depicted in Figs. 2 and 3. Thus, B1 should be
a semicopula and B2 a dual semicopula.

4.1. Variations of conjunctive and disjunctive functions in ordinal
sums

For simplicity, when n = 2, we denote the elements of vector
x as x and y. To keep the requirement from Fig. 3, we need a
conjunction for class N, a disjunction for class Y as well as an
averaging function for class M.

4.1.1. Product t-norm and its dual probabilistic sum t-conorm
These functions (as representative of strict functions) are suit-

able to keep the solution equal to 0 for cases indicated by dashed
line in class N, and an solution equal to 1 for cases indicated by
dashed line in class Y (Fig. 3). The question is how to manage av-
eraging behaviour. Just a reminder, product t-norm is expressed
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Fig. 4. The graphical interpretation of (8) for product t-norm, probabilistic sum
t-conorm and arithmetic mean.

as CP (x, y) = x · y, whereas its dual t-conorm as DP (x, y) =

+ y − x · y.
In order to keep the expected value on edges of subintervals

0, a]2 and [a, 1]2, when a = 0.5, the product t-norm is expressed
as CP (x, y) = A1(x, y) = 2x · y (note that 2 · 0.5 · 0.5 = 0.5).
he dual observation holds for t-conorm: DP (x, y) = A2(x, y) =

1 + 2x + 2y − 2x · y.
Next, the averaging function expressed by the arithmetic mean

s as follows

M(x, y) = A1(x,
1
2
) + A2(

1
2
, y) −

1
2

= x + y −
1
2

(8)

The graphical interpretation can be seen in Fig. 4. The solution is
shown in Table 1, column: solution for AM .

For simplicity, let values of both attributes be lower than or
equal to 10 to indicate clear non-concern, and values higher or
equal to 100 to indicate full concern. The transformation rule for
the other values is linear, i.e.,

x =

⎧⎪⎨⎪⎩
0 for Atr1 ≤ 10
Atr1 − DL

DH − DL
for Atr1 ∈ (DL,DH )

1 for Atr1 ≥ 100

Entities E1, E2, E3 and E4 are distinguishable (strict t-norm
or E3 and E4 and averaging behaviour for E1 and E2). Because,
for E2 both attributes have low values, therefore the intensity
of the concern is decreased. For high value of one attribute and
value 1, solution is 1. Clearly, low values have strict conjunctive
behaviour, whereas high values have strict disjunctive behaviour
and a mix of low and high has averaging behaviour, indicating
that it is belonging to class M. In this case the averaging behaviour
is managed by the arithmetic mean (one of its properties is the
full compensation, an increased value of the first attribute by δ is
compensated with a decreased value of the second attribute by
δ).

Ordinal sum (5) introduced in [42] is based on the arithmetic
mean AM as a solution of the equation

AM(A1(a1 ∧ x), A2(a2 ∧ (a1 ∨ x)), . . . , Ak(ak−1 ∨ x))

= AM(a1, . . . , ak−1, b) (9)

for the variable b. Alternative ordinal sums (still covering both
the ordinal sums of t-norms and ordinal sums of t-conorms)
proposed in [42] are based on the quasi-arithmetic means. Recall
that each quasi-arithmetic mean on [0, 1] is generated by an
additive generator g : [0, 1] → [−∞, ∞] (g is continuous and
strictly monotone), and then QAMg (x) = g−1( 1n

∑n
i=1 g(xi)).

These ordinal sums can be seen as solutions of the equa-
tion QAMg (A1(a1 ∧ x), A2(a2 ∧ (a1 ∨ x)), . . . , Ak(ak−1 ∨ x)) =

AM (a , . . . , a , b ) in the variable b . Thus, in our case when
g 1 k−1 g g

5

able 1
he classification solution when a = 0.5, A1 is product, A2 probabilistic sum and
veraging behaviour is covered by arithmetic and geometric means.
Entity Atr1 Atr2 x y Solution for AM (8) Solution for G (11)

E1 28 77.5 0.2 0.75 0.45 0.3
E2 28 73 0.2 0.7 0.4 0.28
E3 28 28 0.2 0.2 0.08 0.08
E4 28 50.5 0.2 0.45 0.18 0.18
E5 82 91 0.8 0.9 0.96 0.96
E6 59.5 91 0.55 0.9 0.91 0.91
E7 132 73 1 0.7 1 1
E8 6 37 0 0.3 0 0
E9 146 4 1 0 0.5 0
E10 55 55 0.5 0.5 0.5 0.5
E11 55 28 0.5 0.2 0.2 0.2
E12 28 86.5 0.2 0.85 0.55 0.34
E13 37 73 0.3 0.7 0.5 0.42
E14 3 9 0 0 0 0
E15 102 117 1 1 1 1

n = k = 2 and a = a1 =
1
2 we have for AvgP = A! = |[0,a]×[a,1]

the next formula

AvgP (x, y) = g−1(g(A1(x,
1
2
)) + g(A2(

1
2
, y)) − g(

1
2
)) (10)

When g(t) = − log t we get the geometric mean, and then GP is
iven by (supporting the symmetry of A1 and A2)

P (x, y) =

A1(x,
1
2
) · A2(

1
2
, y)

1
2

= 2x · y (11)

whereas for g(t) = t−1 we get the harmonic mean, and then HP
is given by (again supporting the symmetry of A1 and A2)

HP (x, y) =
1

1

A1(x,
1
2
)

+
1

A2(
1
2
, y)

−
1
1
2

=
x · y

x + y − 2x · y
(12)

The graphical interpretation for (11) is shown in Fig. 5. At first
lance, averaging and conjunctive parts are managed by the same
unction. But, 2x ·y behaves in [0, 0.5]×[0, 0.5] like a conjunctive
function, whereas in [0, 0.5] × [0.5, 1] and [0.5, 1] × [0, 0.5] like
an averaging function. The solution is shown in Table 1, column:
solution for G. Now, we have covered the averaging behaviour by
the geometric mean. We can now observe that the solution for
E9 is 0, although we expected an averaging behaviour. In fact it is
an averaging behaviour, because the value 0 is an annihilator for
the geometric mean. By this case, we covered the behaviour of the
gamma operator (2). In the case of a dual geometric mean, we get
the annihilator equal to 1, which leads to the solution (0, 1) = 1.
If the full influence of the extreme values is required in averaging
part of the classification space, we are able to cover it. The andness
measure of the geometric mean is higher than 0.5 [37] (namely
it is 1

3 ), i.e., the solution is lower than or equal to the arithmetic
mean, for which the andness measure is 0.5. The opposite holds
or the dual geometric mean.

In this way, we are able to cover diverse requirements for
veraging behaviour when a conjunctive (resp. disjunctive) be-
aviour is managed by strict t-norm (resp. strict t-conorm).

.1.2. Łukasiewicz t-norm and t-conorm
Let us now consider the Łukasiewicz t-norm (CL(x, y) =

max(0, x+y−1)) and its dual t-conorm (DL(x, y) = min(1, x+y)).
In this case (nilpotent t-norm and t-conorm), significantly low
values of both attributes cause solution equal to 0, whereas two
significantly high values cause a solution equal to 1. Thus, we are
able to model the case when lower values indicate no concern and
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Fig. 5. The graphical interpretation of (11) for product t-norm, probabilistic sum
t-conorm and geometric mean.

Fig. 6. The graphical interpretation of (8) for Łukasiewicz t-norm and t-conorm.

Fig. 7. The simplified graphical interpretation of (8) for Łukasiewicz t-norm and
-conorm.

igher values indicate full concern. Applying (8) and adjusting
alue 0.5 to edges of subintervals, we get functions shown in
ig. 6. The solution is shown in Table 2. We can observe that for
wo attributes (n = 2) this aggregation behaves as AML(x, y) =

ed(0, 1, x + y − a).

emark. Observe that the same aggregation (classification) space
an be expressed by one function shown in Fig. 7.
6

Fig. 8. The graphical interpretation of (8) for MIN and MAX functions.

able 2
he classification solution when a = 0.5, A1 is Łukasiewicz t-norm and A2 is

Łukasiewicz t-conorm.
Entity x y Solution for AM

E1 0.2 0.75 0.45
E2 0.2 0.7 0.4
E3 0.2 0.2 0
E4 0.2 0.45 0.15
E5 0.8 0.9 1
E6 0.55 0.9 0.95
E7 1 0.7 1
E8 0 0.3 0
E9 1 0 0.5
E10 0.5 0.5 0.5
E11 0.5 0.2 0.2
E12 0.2 0.85 0.55
E13 0.3 0.7 0.5
E14 0 0 0
E15 1 1 1

Analogously as in Section 4.1.1, we can extent for other aver-
aging functions.

4.1.3. Minimum t-norm and maximum t-conorm
Next, for idempotent conjunction (MIN function) and idem-

potent disjunction (MAX function) the graphical interpretation
for arithmetic mean (8) in avg intervals is shown in Fig. 8,
whereas the solution is in Table 3. Due to idempotency and a non-
compensative effect, entities E3 and E4 are not distinguishable,
ut E1 and E2 are, because in this part of classification space we
ave averaging behaviour. This is the expected outcome as these
wo functions are limiting cases of conjunctive and averaging,
nd averaging and disjunctive functions. All subspaces in the
lassification space (Fig. 3) are idempotent.
Similarly as in Section 4.1.1, we can extent calculations for

ther averaging functions.

.2. Further observations and variations of averaging functions

To summarize, with ordinal sums the classification is ad-
ustable by assigning logic functions and an adjusting parameter
(when required) and therefore explainable. Strict, nilpotent

r idempotent t-norms (resp. t-conorms) explain diverse clas-
ification requirements for class N (resp. Y). In addition, strict
nd nilpotent t-norms and t-conorms can be created by additive
enerators. It means, that we can further adjust functions to data
y learning from data. In Section 5 we discuss this in more detail.
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able 3
he classification solution when a = 0.5, A1 is MIN function and A2 is MAX
unction.
Entity x y Solution for AM

E1 0.2 0.75 0.45
E2 0.2 0.7 0.4
E3 0.2 0.2 0.2
E4 0.2 0.45 0.2
E5 0.8 0.9 0.9
E6 0.55 0.9 0.9
E7 1 0.7 1
E8 0 0.3 0
E9 1 0 0.5
E10 0.5 0.5 0.5
E11 0.5 0.2 0.2
E12 0.2 0.85 0.55
E13 0.3 0.7 0.5
E14 0 0 0
E15 1 1 1

The logical perspective of aggregation functions [37] considers
lobal andness and orness where the arithmetic mean W is a
ogically neutral function, due to a full compensation effect (as
rithmetic mean of conjunction and disjunction, where andness
nd orness values are equal to 0.5). The other averaging functions
re either conjunctively or disjunctively polarized.
This implies that we are able to formalize diverse behaviours

n class M (Fig. 3) and can logically explain it. We can observe
hat the same results are obtained when we apply the arithmetic
ean regardless of different C and D in A1 and A2, respectively

Tables 1–3).
When using the geometric mean, we get an average behaviour

ith an absorbing element 0 (Table 1, column: solution for G).
Let us check the geometric mean for the Łukasiewicz t-norm and
t-conorm. Applying (11) for A1 and A2 shown in Fig. 6 we get

GL(x, y) =

max(0, x +
1
2

−
1
2
) · min(1, y +

1
2

−
1
2
)

1
2

and therefore GL(x, y) = 2x · y which is an averaging function in
the respective subintervals (see discussion in Section 4.1.1) and
moreover value 0 is annihilator.

By this approach, the flexible classes yes, no and maybe are for-
alized by diverse conjunctive, disjunctive and averaging func-

ions, respectively, and therefore can be explained by the logic
roperties of the chosen or learned functions.

.3. A note to the internal and external validity (trustworthy) of the
roposed aggregation

The internal validity shows that the results are less sensitive
y the factors like a small imprecision in data. The similar entities
re similarly treated, i.e., indicated by the intensities of belonging
o the classes. For class M we see that small changes in data
auses slight change in inclination towards Y or N. Next, the
oundary conditions, a key requirement in aggregation is satis-
ied (see entities E14 and E15 in all tables). The monotonicity
if matching degree of one atomic predicate increases, whereas
he other remains the same, the solution remains the same or
ncreases) is a matter of direct verification.

The external validity generalizes to the other situations and
ata sets. It is a matter of various experiments on diverse larger
ata sets, but the initial observations reveal, whether we should
o these experiments. When someone choose a large number of
ttributes, the limitation is the computational capacity. Mathe-
atically, aggregation is not limited for n ≫ 2 (we might create
7

hierarchy of attributes). A higher number of entities is always
good for achieving better learning results.

Furthermore, data incompleteness appears in the data sets.
A topic for future research is adjusting the missingness-tolerant
evaluation suggested for the logic scores of preferences [37]. Gen-
erally, we can assign values from 0 (full penalty for missingness)
to 1 (full tolerance). This penalty presumably cannot be learnt
from the known observations because it appears infrequently.
Consequently, the human-in-the-loop (see next Section) is here
very desirable. Considering other data types (e.g., images and
short texts) the main problem is in the transformation into the
unit interval to express relevance or severeness of findings in the
attribute (e.g., intensity of colour in images or intensity of warn-
ings in texts). These theoretical observations reveal as serious
issues which should be in the focus of further research. In future
work we will carry out extensive experiments on real-world data,
see Section 6.

5. Aggregation functions in classification via interactive ma-
chine learning

AI became amazingly successful due to the huge success of
statistical machine learning, particularly deep learning [44]. Cur-
rent limitations are mainly due to lack of explainability [45] and
the fact that these algorithms are extremely data hungry and
the labelling of data is extremely costly in the medical domain.
Consequently, the grand challenge of the future is in learning
from little data. For example, with the best performing meth-
ods to date the classification of less-frequent illnesses (e.g. rare
diseases), where we have a small amount of data sets cannot
be properly learnt. One possibility to solve these problems is
to follow a human-in-the-loop approach [16]. The human do-
main expert may be beneficial here in order to provide valuable
information regarding the aggregation or classification into the
learning process pipeline [46].

For example Convolutional Neural Networks (CNN) can be
used as very effective classifiers, however, the classification layer
is hidden and therefore the reasons for activating particular nodes
and obtained solutions remain hidden to a human. The explain-
able AI community contributes with a variety of methods [47],
one recent approach, Layer-wise Relevance Propagation [48] is
applicable to various machine learning tasks providing a general
framework for explaining predictions [49]. Classification by fuzzy
IF–THEN rules is explainable by design, but users should provide a
set of rules and assign parameters to each fuzzy set, which might
be a tedious task. Hybrid systems also exist, but they require
domain experts to intervene and a significant size of the input–
output data make this also very cumbersome. In our work, we
examine explainability by the properties of aggregation functions.

In the classification by aggregation functions, the classification
space is visible to the user, who should assign values from the
domain of considered attributes to values of 0 and 1 (see, Fig. 3).
Domain experts are usually well aware of these values. In Busi-
ness, for instance, this is often easy because even the workers
recognize that the number of sold items lower or equal to DL
is without any doubt a weak performance, whereas the number
of sold items above or equal to DH is an excellent performance.
The same might hold for the other attributes. In a medical case,
for instance, the first attribute can be blood pressure, the second
attribute the level of bad cholesterol, and so on. Having all at-
tributes in the ‘‘red area’’ means full concern, whereas all values
in a ‘‘green area’’ means no worry. Similarly, if one attribute is
in the ‘‘red area’’ and the other is very close to this area, there is
full concern. If all attributes are in the middle of the classification
space, the concern is around 0.5, and so on.

When the set of input–output data is available, the learning is
focused on adjusting data to the most suitable functions. In this
section we consider functions from Section 4 covering all classes.
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.1. Adjusting functions

In the case of ordinal sums of conjunctive and disjunctive
unctions (6), we need to adjust the most suitable functions from
and D. In this challenging task the most suitable value for

arameter a, and the most suitable function can be learnt from
he input–output data. Observe that the smallest t-norm is a
rastic product and the largest is the min t-norm, i.e., TD(x) ≤

(x) ≤ TM (x). For the dual case (class Y) holds SM (x) ≤ S(x) ≤

D(x). Next, for the averaging part it holds TM (x) = min(x) ≤

v(x) ≤ max(x) = SM (x).
The theory offers several parametrized families of t-norms and

-conorms. More about these families can be found in e.g., [35,41].
hese families usually cover basic t-norms as limiting cases. Sev-
ral families do not cover both strict and nilpotent behaviour, or
ne of these behaviours is only for particular value of parameter.
suitable family for our purpose is from Schweizer & Sklar

1961) [50]. The family of t-norms is given as

S
λ (x, y) =

⎧⎪⎪⎨⎪⎪⎩
min(x, y) for λ = −∞

TP (x, y) for λ = 0
TD(x, y) for λ = ∞

(max(xλ
+ yλ

− 1, 0))
1
λ otherwise

(13)

The limiting cases are: minimum t-norm for λ = −∞, product
-norm for λ = 0, Łukasiewicz t-norm for λ = 1, Hamacher
product ( xy

x+y−xy ) for λ = −1 and drastic product for λ = ∞.
his family covers class N (see Fig. 3).
When we want to adapt (13) to the [0, 0.5] interval we get

in(x, y) for λ = −∞, 2xy for λ = 0, min(x, y) if max(x, y) = 0.5
and 0 otherwise for λ = ∞ and (max(xλ

+ yλ
− 2λ, 0))

1
λ for the

emaining values of λ.
Analogously, the family of t-conorms is given as

S
λ(x, y)

=

⎧⎪⎪⎨⎪⎪⎩
max(x, y) for λ = −∞

SP (x, y) for λ = 0
SD(x, y) for λ = ∞

1 − (max((1 − x)λ + (1 − y)λ − 1, 0))
1
λ otherwise

(14)

imilarly, we can adapt this family to the [0.5, 1] interval.
Thus, by learning λ from the input–output data sets, we are

ble to recall the nature of the classification (strict, nilpotent,
IN, non-continuous). Next, an ordinal sum A1 and A2 do not
eed necessarily to be dual. If for t-norm we get λ > 0, low
alues lead to the clear non-concern, whereas when we get λ ≤

for t-conorm, it means that high values do not lead to clear
ull-concern. Hence, this parameter reflects the behaviour and
oreover explains it.
Following this approach we are able to reveal whether a limit-

ng case of λ interprets the classification (as shown in Tables 1–3)
r the best behaviour is between these limiting cases.
Functions belonging to the classAV can be expressed as power

ean [35,37]:

(x, y) = (0.5xr + 0.5yr )
1
r , −∞ ≤ r ≤ ∞ (15)

n [0, 0.5]× [0.5, 1]∪ [0.5, 1]× [0, 0.5] which leads to (xr + yr −

.5r )
1
r , r ∈ ] − ∞, 0[ ∪ ]0, ∞[.

For r = −∞ we get MIN, whereas for r = 0 we get geometric
ean, for r = 1 we get arithmetic mean. Finally, for r = ∞ we
etMAX. The most suitable value of this parameter could be learnt
rom the input–output data sets.

This leads to the transparent and explainable classification into
hree classes marked as yes, no, maybe with flexible belonging,
.e., indicating the inclination to yes or no. For each new entity
e can explain where it belongs, as well as how far it is from the
lear yes or no.
8

5.2. Explainability by summarized sentences

Apart from the explainability discussed above, we can use
linguistic summaries to explain the behaviour of the classified
data and data distribution. Examples include, most of the patients
having higher values of Atr1 and Atr2 and Atr3 have a high possi-
bility of illness I and most of the patients having very high values of
Atr1 and Atr2 have for sure illness I. These summaries can be an
enormously useful feedback for medical doctors, or manager in
business tasks, to learn from the solution or adjust values DL and
H and continue with examinations and/or experiments.
The next task should lead to learning the most suitable trans-

ormation f : [DL,DF ] → [0, 1] for significantly non-uniform data
istributions of input attributes, for other data types (e.g., im-
ges – where for instance intensity of a hue or colour indicates
oncern; text – where the number of worrying terms and their
ntensities (adjectives and adverbs) indicate concern; and impre-
ise data-values cannot be measured, but it is most likely m, not
ower than a and not higher than b), and for the cases when
ow and high values indicate concern, but medium values do not.
onsequently, a linear transformation has been examined in our
ork, and data distribution explained by linguistic summaries
ight be an input for the learning process. In any case this is
aluable information for domain experts, but such summaries can
lso be learnt, as indicated in [51].
Sentences such as the most of entities belong to class N or

ew entities belong to class N might also express non-expected
ituations which should be examined to reveal, whether training
ata sets are not of a sufficient quality (e.g., do not cover the
hole range of possible values) or problem is in transformation
o [0, 1] (Fig. 3).

.3. Human perspectives

It is important to discriminate between explainability and
ausability. Explainability in a technical sense indicates decision-
elevant parts of the used representations of an algorithm and
f active parts in an algorithmic model, which contribute to the
odels accuracy on the training set, or to a specific prediction

or one particular observation, and it does not refer to an ex-
licit human model. On the other hand — Causability (the word
omes from usability, because usability is an already well-known
oncept in software engineering [52]), is the extent to which an
xplanation of a statement to a human expert achieves a specified
evel of causal understanding [46]. This can be measured (simi-
arly as usability can be measured) with effectiveness, efficiency
nd satisfaction in a specified context of use with the Systems
ausability Scale [53]. In an ideal world human explanations
nd machine ‘‘explanations’’ are identical, and congruent with
he ground truth, which is defined equally for both humans and
achines. One important aspect for future human-AI interfaces

s to map explainability with causability and to allow domain
xperts to interactively ask questions in order to get a deeper un-
erstanding why an AI came up with a result to gain insight into
he underlying independent explanatory factors of a result [54].
n many domains, e.g. in the medical domain, various modal-
ties contribute to a single result, which calls for multi-modal
ausability [55].
However, in the real world we face two problems: (1) ground

ruth, particularly in the medical domain is not well defined,
specially when making a medical diagnosis; and (2) although hu-
an (scientific) models are often based on understanding causal
echanisms, today’s successful machine learning is either model-

ree or the models or algorithms are typically based on correlation
and correlation is not causality in the sense of Judea Pearl [56],
r related concepts of similarity and distance [46]). That means
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c

iven the data and specific requirements we can model a func-
ion that explains the output. Hence, the aspects of aggregation
unctions consisting of conjunctive and disjunctive ones can help
ith such problems. Consequently, our approach both expands
nd empowers the scope of classification into three overlapping
lasses by aggregation functions and discuss its applicability in
achine learning for business and for the health domain.
We emphasize that this work is a theoretical one, therefore

n our future work we plan to extent this work on experiments
ith real-world use-cases and data sets, refer to Section 6 Future
ork for details.
The previously discussed classification tasks can be extended

nto various directions. The simplest one is adding input at-
ributes. This approach works for any number of input attributes
ue to its associativity. However, it might become less human
egible and manageable. Elementary attributes often belong to a
roup of similar ones. It leads to hierarchical aggregation of input
ttributes of the classification space. For instance, in the medical
omain we have motor abilities and sensory feelings [37]. For
he aggregation of elementary attributes into the category we
ave plenty of aggregation functions, which can be adjusted to
he needs of the respective problem. Domain experts might pose
andatory, optional and sufficient requirements as well as pre-

erred coalitions among the subsets of requirements, symptoms
r observed values including:
IF P̄1 is low and (P2 or else P3 is high) and (most of {P4... P10}

s highly satisfied) THEN concern is high
here P1 is the first attribute, (P2 or else P3) is the second and the
hird one is a quantified aggregation, i.e., the classification space
Fig. 3) is three dimensional.

Furthermore, relative importance among predicates (or coali-
ions) might be considered, i.e., highly satisfied Pa and Pb is
ore serious than highly satisfied Pc and Pd (i.e., aggregation
f elementary predicates by the Choquet integral, [57]) in P̄1.
ext, in OR ELSE connective we are able to formalize the in-
ensity of importance of optional requirement by aggregation
unctions [58].

As already mentioned, machine learning methods generally
nd deep learning methods particularly, are very data hungry [59,
0] and the domain experts are usually not familiar with the
athematical formalization of their tasks. However, they are
ble to explain the expected aggregation linguistically [51]. Such
omain expert linguistic explanations are required to recognize
he most suitable subclass of aggregation functions, and most
mportant, via machine learning the most suitable function and its
arameters can be learnt. The answer could be provided by fitting
mpirical data to the recognizing subset of possible functions
rom user’s linguistic explanations. This is formalized as [35]:

min∥r∥
subject to

f satisfying Gi, i = 1, . . . , n
(16)

here r is the norm of the vector of residuals (difference between
he value calculated by function and expected output) and Gi is
th property of function f . Thus, a smaller amount of training
nput–output data for learning the most suitable functions and
heir respective parameters might suffice. This is a topic for our
uture research activities in augmenting the suggested classifica-
ion space. In this way, we can also trace backward from output
lass to the elementary attributes and this would be a great
ontribution to the explainable AI community.

. Future work

In this paper, we provide theoretical foundations in classifi-
ation by ordinal sums of conjunctive and disjunctive functions
9

for the future benefit of explainable AI. These results contribute
to the ongoing debate between AI, ML, fuzzy rule-based systems,
and aggregation functions communities to assess these concepts.
This is highly relevant, because such systems should be optimized
not only for pure accuracy [61] but also for other important
– often ignored – criteria [62] including explainability which
supports robustness, fairness, unbiasedness, trust, privacy and
reliability.

Our future work will be focused on experiments on real-
world data. Parameter learning in fuzzy systems can be achieved
with evolutionary methods, as presented in [62]. Several works
that are described need the computation of a multi-objective
fitness function that strives to improve both performance and
interpretability (by lowering the number and complexity of the
fuzzy rules) at the same time. As stated in [62], to compute such
a fitness function from data, is not a straightforward task. We
will use a Reinforcement Learning solution with an informative
reward strategy, so that this problem can be tackled — provided
that the state and action space remain tractable. Deep Reinforce-
ment Learning [63,64] can also be a viable technical solution,
under the assumption that similar states are assumed to have
the same expected reward (in the long term), so they do not
need to be explicitly visited. Thereby, data can support the search
of the most suitable parameters of t-norms and t-conorms and
we can also interpret it whether it is strict or nilpotent. Further-
more, since Eq. (16) expresses the optimization of the proposed
aggregation functions, it can be learned theoretically with the use
of Reinforcement Learning. The rules of a learned fuzzy system
are a list of interpretable IF-THEN rules. Current state-of-the-art
explainable AI methods [65] focus on explanations that answer
the question ‘‘Why not?’’ and could be expressed by statements
‘‘IF not, THEN ...’’. Here we envision counterfactuals of fuzzy rules
as a promising approach when we apply a suitable negation
(between the Gödel negation and its dual negation).

Some very remarkable approaches for the training of fuzzy
rule based-systems and overcoming their weak points have been
proposed in very recent work, demonstrating that this is a hot
topic, [66–70]. They empower explainability and the ability to
handle vagueness with accuracy and reliability, especially wel-
comed for the regulated applications (e.g. for our applications
in the medical or life sciences domain). Here, type-2 fuzzy sets
provide more freedom in creating rules [66], min–max probability
Takagi–Sugeno–Kang fuzzy system determines reliability [70]. A
next viable approach is the construction of the concise fuzzy sys-
tems of the reduced number of rules by the Lasso algorithm [68]
and the integration of the various data and expert views (human-
in-the-loop) on the problem [67] which improves legibility and
explainability of a rule base.

On the other hand, it is not always suitable (or even possi-
ble) to simulate human inference mechanisms directly by rule
base when a domain expert explains aggregations among input
attributes linguistically and by conjunctive, disjunctive and mixed
behaviour. Therefore, in our work we formalized the inference by
the aggregation functions to match input data with three output
classes (yes, no, maybe).

For more future work we envision to focus on extracting rules
from the inference modelled by aggregation functions (i.e., rele-
vant subareas could be converted into the fuzzy rules [69] of the
Takagi–Sugeno–Kang fuzzy system due its intrinsic interpretabil-
ity of the rule base and learning ability [68] and consequently
learnt by the above discussed approaches. Next, the linguistic in-
terpretation can be provided by several experts (or expert groups,
a crowd of humans-in-the-loop), which leads to the multiple
views where linguistic interpretation of aggregation and/or dif-
ferent input attributes are assigned by the human experts. Recent
work [67] discusses the fusion of single views by a rule-based



M. Hudec, E. Mináriková, R. Mesiar et al. Knowledge-Based Systems 220 (2021) 106916

s
b
s
v
e
a
c
w

7

y

ystem. The analogous work of fusion of multiple views computed
y aggregation functions, which addresses an assumption of dis-
imilarity of views and may exploit consistency among different
iews, is also a topic for future work. Generally, the mutual ben-
fit of classification by rule-based systems and by ordinal sums is
promising topic for future work. In this work, we formalized
lassification by ordinal sums as a novel approach. In future
orks, the synergy between them will be further evaluated.

. Conclusion

In our work we have proposed classification into three classes
es, no, maybe by ordinal sums of conjunctive and disjunctive

functions. Classification by machine learning is effective, but gen-
erally non-explainable. On the other hand, classification by rule-
based systems is explainable in principle, but practically often
lack human interpretability due to the high complexity. Conse-
quently, our research proposes a framework for explainability of
machine learning by ordinal sums.

In our work, we firstly converted classification into three
classes from a rule-based system into the classification space
managed by the ordinal sums of conjunctive and disjunctive
functions. Secondly, we formalized diverse requirements for be-
longing to the respective classes by conjunctive, disjunctive and
averaging functions. Finally, due to mixed behaviour of the or-
dinal sums we are able to classify into three classes yes, no and
maybe when the averaging behaviour is activated.

Our research direction merges benefits of machine learning
and explainability by aggregation functions, which will allow to
make classification tasks more explainable for domain experts
and at the same time less demanding for machine learning al-
gorithms. Firstly, domain experts assign information for clear 0
and 1 (Fig. 3). Secondly, the learning process recognizes the most
suitable disjunctive and conjunctive functions, which reveal the
nature of classification into classes yes and no. Finally, we have
considered the logical behaviour of averaging functions to reveal
the nature of classification into the class maybe.

The next direction should lead to learning the most suitable
transformation f : [DL,DF ] → [0, 1] especially for significant
non-uniform data distribution of input attributes and for other
data types. In this direction, data distribution explained by lin-
guistic summaries might be an enormously valuable input for
learning and, at the same time, also very valuable information
for the domain experts. Another direction is experimenting on
real-world data. We have raised cases in business and health. A
support for this direction is also observation of internal and exter-
nal validity (trustworthy), which opens a lot of further research
avenues.

Article summary

What is already known on the topic to the international re-
search community?

(1) The commonalities and differences between fuzzy logic sys-
tems and neural networks in classification;

(2) The explainability and interpretability possibilities of fuzzy
logic systems and neural networks in general, as well as
their effects in the decision-making process of the domain
experts;

(3) The need for combination of different methodologies that
support and extend the functionality of neural networks
towards more explainability;

(4) Ordinal sums are able to cover different behaviour of the
input variables and reflect it in the output space.

What this paper contributes to the international research com-

munity?
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(1) A novel approach how fuzzy logic and ordinal sums are
coupled with the (usually) separable target classes useful in
machine learning classification problems;

(2) The theoretical basis for practical applications of the pro-
posed method that clarifies the difference in explainability
between the invented rule-based system and neural net-
works;

(3) What are the advantages/disadvantages in explainability
and interpretability for domain experts.

(4) Formalization of ordinal sums of conjunctive, disjunctive
and averaging functions for the classification purposes.
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