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 A B S T R A C T

The correctness of predictions rendered by an AI/ML model is key to its acceptability. To foster 
researchers’ and practitioners’ confidence in the model, it is necessary to render an intuitive 
understanding of the workings of a model. In this work, we attempt to explain a model’s working 
by providing some insights into the quality of data. While doing this, it is essential to consider 
that revealing the training data to the users is not feasible for logistical and security reasons. 
However, sharing some interpretable parameters of the training data and correlating them with 
the model’s performance can be helpful in this regard. To this end, we propose a new measure 
based on Euclidean Minimum Spanning Tree (EMST) for quantifying the intrinsic separation 
(or overlaps) between the data classes. For experiments, we use datasets from diverse domains 
such as finance, medical, and marketing. We use state-of-the-art measure known as Davies 
Bouldin Index (DBI) to validate our approach on four different datasets from aforementioned 
domains. The experimental results of this study establish the viability of the proposed approach 
in explaining the working and efficiency of a classifier. Firstly, the proposed measure of class-
overlap quantification has shown a better correlation with the classification performance as 
compared to DBI scores. Secondly, the results on multi-class datasets demonstrate that the 
proposed measure can be used to determine the feature importance so as to learn a better 
classification model.

. Introduction

The ever-lasting human urge to render their decision-making capabilities to a machine has resulted in significant advances in 
rtificial intelligence and machine learning [1,2]. Automated decision making – a natural extension of this development has emerged 
s an important area of research and practice. The hardware and software competencies associated with the operation of a model 
re improving with each passing day. This has enabled the models to handle data dimensions beyond normal human perception. 
owever, this phenomenon often creates an opacity in the model’s operation for the users receiving the service [3]. Additionally, 
t has been observed that in some cases, semantically incorrect or irrelevant reasoning drove the decisions of a computationally 
fficient model [4]. It is found that the useful revelations from a given data are often camouflaged with the irrelevant ones [5]. 
his calls for an increasing need for an understanding of the quality of data and the working of the automated decision-making 
odels [6,7].
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An automated decision-making model is built or crafted on the training data (training phase) wherein the model’s task is to 
predict an unseen test data from the learning of the training phase. We may note that we can understand, explain, or interpret a model 
through the data on which it is trained. Following this line of thought, we argue that we can evaluate the efficiency of a model by 
interpreting the intrinsic class separations (or class overlaps) of the data on which it is trained.

To this end, we pose the following research questions:
RQ1: Can we understand the outcomes of a model by assessing the quality of the data on which it is trained? 
In this research, we work on intuiting the modus operandi of a model by exploring the training data. The key element of our 

exploration is the recognition and quantification of the overlaps of the categories (or classes) in the data and correlating them with 
the predictive power of the model. There are usually two or more classes in a dataset, and we work on perceiving (quantitatively) 
the separations (or overlaps) between the classes that exist in the dataset. An efficient model can be built from data that has well-
separated classes as compared to the one with overlapping classes [8]. For example, we can succeed in building a model to distinguish 
between fraudulent and authentic bank transactions, if the sets of fraudulent and authentic transactions differ from each other in 
several characteristics (well separated from each other). In this work, we determine the overlap (or separation) in the training data 
so as to help the developers build better models and users in explaining the working and performance of a model. In doing so, we 
propose a Euclidean Minimum Spanning Tree (EMST) based novel measure to quantify the class-overlap intrinsic to a dataset. We 
have formulated the design of this measure on the basis of two key aspects. First, we convert the set of points in a dataset into a 
connected graph by constructing their EMST. Subsequently, the proportion of homogeneous edges and heterogeneous edges in the 
transformed graph, and the weights of the homogeneous and the heterogeneous edges. We also use the Davies Bouldin Index (DBI), 
a popular and existing measure used in the field of data clustering for the purpose of benchmarking [9].

A model trained on the dataset having overlapping classes (has regions where points from two or more distinct classes co-exist), 
will have difficulty in classifying points which lie in the overlapped regions. In this work, the EMST Overlap Index (EMSTOI) and 
DBI of a set of datapoints are used to estimate the separations of the intrinsic classes present in it. Usually, a dataset with well-
separated classes will possess lower EMSTOI and lower DBI than the one with overlapping classes. This information on intrinsic 
class separations in the training data can be shared with the practitioners, developers, and users of the model (trained on this data). 
A lower EMSTOI or DBI (indicating lesser class overlap) can foster the users’ confidence in the outcomes and predictions of the 
model. It can also help them in distinguishing instrumental features from the less expressive ones. Further, it can help the users, 
practitioners, and developers in handling critical data types like imbalanced data [10,11]. Sharing this information is a better option 
(as compared to sharing the raw and original data with the users) in terms of logistics as well as privacy and integrity.

We conduct experimental studies to explore class overlap in datasets originating from diverse domains:
In the first study, we used the overlap information obtained from EMSTOI and DBI to ascertain the quality of balanced datasets. 

We conduct experimental studies on datasets from finance domain. The first dataset in this category known as PaySim is a dataset 
related to credit card transactions, while the second dataset referred as BankSim is related to the authenticity of bank transactions. 
These are heavily class-imbalanced synthetic datasets consisting of fraudulent and authentic transactions. We undersample the 
majority class (set of authentic transactions) to get balanced datasets. We repeat this process several times. We estimate the class 
separations in the balanced sets and show that in both cases, classifiers render superior performance when the EMSTOI or DBI in the 
balanced set is low, wherein the proposed EMSTOI is superior to DBI. This establishes the utility of the proposed EMSTOI in assessing 
the quality of data and subsequently in explaining the model. As a part of this study, we conducted two more experiments to study 
the relationship between the average amount saved by detecting the fraudulent transactions and class overlap indices (EMSTOI and 
DBI) and the average amount lost by missing the detection of fraudulent transactions and class overlap indices (EMSTOI and DBI). 
We observed a negative correlation between the average amount saved by fraudulent transaction detection with EMSTOI and DBI. 
More amount was saved when the classifier was trained on data with well-separated classes (low EMSTOI and DBI). It was further 
seen that more amount was lost (by missing the detection of fraudulent transactions) when the model was trained on data with 
overlapping classes (high EMSTOI and DBI).

In the second study, we determine feature importance using the EMSTOI and DBI, followed by the incorporation of computed 
weights into the classifier modeling, wherein this augmentation improved the learning of the classifier. First, we consider a multi-
class dataset from medical domain which pertains to maternal health. In this dataset each data point contains information on the age 
and five clinical parameters of pregnant women. Second, we consider multi-class dataset originating from marketing domain. This 
dataset reports the advertising expenditure on different media such as television, radio, and newspaper. We explore the importance of 
each of the features of these datasets through their EMSTOI and DBI. We trained several classifiers, each modeled and dedicated to 
a single feature. The performance of the dedicated classifiers is correlated with the EMSTOI and DBI of the individual features. 
The lower the EMSTOI and DBI for a feature, the better the classification accuracy. This motivated us to conduct another set 
of experiments where we build an enhanced model incorporating the feature importance. The classification performance of the 
enhanced model was superior to that of the base model.

The two aforementioned studies demonstrate that the developers, practitioners, and users of a model can use the EMSTOI and 
DBI of training data to understand and explain the workings of a model. These scores are one-dimensional information which can be 
shared without logistic or privacy concerns. Another advantage of the proposed approach is its model agnostic understanding based 
on the training data. The proposed EMSTOI can find utility in data marketplaces where the similarity among datasets needs to be 
derived for enabling functionalities such as data valuation and revenue allocation [12,13]. EMSTOI can contribute to quantifying 
the intrinsic characteristics of datasets to derive their value for machine learning tasks. A data set that has low overlap (in terms of 
EMSTOI) has a potential to train a better model and can be more valuable for a buyer in the prediction of business outcomes. Class 
overlap which is an intrinsic characteristic of a dataset (and can be measured through EMSTOI) can be combined with its extrinsic 
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characteristics such as environmental sustainability and perceived uniqueness to recommend its price to the seller while publishing 
the dataset on a data marketplace.

The contributions of this work are as follows:

• We propose an approach to understand the working of a model by exploring data quality. This investigation is performed in 
the pre-modeling phase and the learning does not depend on the type of classifier model. Such an approach offers an advantage 
over other feature-explainability approaches [14–16] which generate the explanation after the prediction phase only.

• We design a novel measure based on the Euclidean Minimum Spanning Tree (EMST) to recognize and quantify the degree of 
class overlap in a dataset. We benchmark the proposed measure with DBI, a popular existing measure in the domain of data 
clustering. The proposed measure named as EMSTOI outperforms state-of-the-art DBI.

• The proposed approach can be utilized to learn the feature importance as well as the overall quality of the training data. The 
working efficiency of a model can be explained through this information.

• Experimental studies demonstrate that the proposed EMSTOI can uncover many industry-oriented aspects, such as the amount 
of money saved by detecting fraudulent transactions, the amount of money lost by missing the detection of fraudulent 
transactions, and developing an enhanced classifier by incorporating the learned feature importance.

The rest of this article is organized as follows. In the next section, we discuss the extant work on model explainability and data 
quality. The proposed approach is presented in the following section. The subsequent section outlines the experimental setup of 
this study. The results of the experimental analysis are presented next. Following this, we discuss the theoretical and managerial 
implications as well as the limitations of this study. Finally, we conclude this work.

2. Background and related work

2.1. Explainability of data-driven models

In the past decade, AI-based data-driven models have been increasingly used in industries such as finance and banking [17,18], 
recruitment and selection in education [19], resource utilization in healthcare [20]. These models have also been applied to prevent 
the spread of misinformation [21], improve the resilience of supply chains [22,23], and enhance business outcomes of movies [24]. 
This remarkable upsurge of AI has given rise to a follow-up question of how to explain the decisions provided by the automated 
systems [25].

To understand the causation leading to the emergence of explainability of data-driven models, we need to briefly recapitulate 
the timeline of AI developments over the past few decades. The initial years of development in the field of AI (1950–1960) were 
characterized by rule-based learning systems which were easy to interpret but had low accuracy and predictive power thus limiting 
their utility [26]. In 1980s researchers began focusing on improving the predictive powers of AI models [27]. This led to the 
emergence of statistical learning methods popularly known as Machine Learning [28]. Subsequently, in 1990s and early 2000s, 
betterment in accuracy was further achieved by more complex models which were based on artificial neural networks and ensemble 
methods [29,30]. However, this progression came with a cost wherein as the performance quality of the models increased, the 
working of the models became increasingly murky and non-explainable to the users [31]. For instance, a neural-network based model 
for distinguishing husky images and wolves images delivered commendable accuracy on the task, but the model only captured and 
provided outcome on the basis of background snow instead of the characteristic difference of the two animals [32]. Additionally, 
the quantitative role of prior information in data leads to some bias in the decision-making rationale of a system [33] . Hence, 
data-driven explainability comes with substantial new challenges and opportunities [34,35] .

One approach for providing of a data-driven model operates on a post-hoc basis. This approach evaluates the explainability of 
a model on the basis of the predictions from the model. Post-hoc explainability approaches are also used to decipher the modus 
operandi of an opaque model by the use of rules [36,37], anchors [38] and surrogates [39,40]. Partial Dependence Plots (PDP) [41], 
Accumulated Local Effect (ALE) Plots [42] and Individual Conditional Expectations (ICE) [43] constitute this class of approach. There 
is another approach for explaining the predictions wherein specific methods explain the role of the features to arrive at a decision. 
Some examples of such specific methods are LIME [14], and SHAP [16]. There are several other approaches to explain the features 
such as, analyzing the performance after permutation of features [44], and counterfactual explanations of the decisions [45,46].

2.2. Assessing data quality

The output rendered by a model not only depends on the input which is being fed but also on the data on which it has 
been trained. Following this line of reasoning, we focus on understanding the data which trains the model providing an ante-
hoc explanation of the decisions to be taken by a model. Usually, some intrinsic characteristics of a dataset such as, dispersion, 
separability, and class imbalance can affect the goodness and working of a model. From a technical perspective, diverse models such 
as Decision Trees, Support Vector Machines, Neural Network and Nearest Neighbor-based Classifiers have different modus operandi 
and can operate differently on the same training dataset. However, a part of this training could be attributed to the quality of the 
training data. Consequently, knowledge of the dataset can provide us considerable insights into the working of different models. 
Hence, in addition to the explainability of data-driven models, the practitioners are often posed with the challenge of choosing 
the right data for a task. A few works in literature address similar and related concerns. For example, [47] looks for interesting 
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aspects to be explored in a data mining task, [48] focuses on finding the right metric to bring out information and [49] resorts to 
domain-guided questionnaire to obtain the right kind of data.

Now, we discuss the utility of a popular index which quantifies the separation between the collections of points present in a 
feature space. In machine learning, clustering is a popular methodology for grouping the data points where similar points are added 
into the same group while dissimilar points belong to different groups [50]. Several popular measures exist, which estimate the 
goodness of the clustering task [51–53]. One such measure is DBI [9]. Though it has been a popular choice and extensively used 
for evaluating the goodness of clustering output, we didn’t find an extant work where it has been used to evaluate the separation 
of a set of data-points belonging to different classes. This approach of evaluation can be used for a given set of data-points and we 
use this line of action in our work. The lesser the value of DBI obtained in a task, the more is the separation among the classes.

In this work, we demonstrate the use of DBI to estimate the intrinsic separations existing between the classes present in the 
training data. While computing DBI for the training data, we assume that it is a collection of 𝑐 distinct classes. The computation of 
DBI is dependent on the similarities between the points arising from different classes. For each class 𝑖, 1 ≤ 𝑖 ≤ 𝑐, the computation 
of DBI involves finding out quantitative value of its similarity with another class 𝑗, 1 ≤ 𝑗 ≤ 𝑐, 𝑗 ≠ 𝑖. DBI is the cumulative 
sum of such quantitative similarities overall 𝑖, that is for all the classes. The mathematical definition and formulation of DBI is 
provided in Appendix  A.1. For a model which is assigned with the task of classifying the data-points, it is desirable that the classes 
in the training data should be distinct from each other. In mathematical terminology, the different categories should originate 
from distributions with highly different population means [54] thus resulting in a low DBI. The minimum value of DBI is zero and 
denotes the ideal scenario of maximum separation between the categories. However, DBI provides overlap quantification under 
several stringent assumptions such as the classes should possess disparate cluster centers. As such, DBI cannot be relied upon to 
perceive the proportion of class overlap in a dataset. Hence, we need a more generalized index to quantify class overlaps while 
providing better explainability into the goodness of a dataset. Leveraging this gap in the research we propose a new measure based 
on the Euclidean Minimum Spanning Tree for quantifying the class overlaps in the training data. Since data quality particularly in 
classification tasks is a function of intrinsic characteristics of a dataset it is important to investigate class overlap in a dataset. The 
objective of this study is to investigate how the working of a model can be explained without generating the model itself such that 
the explanation is model-agnostic. This is based on the intuition that training data that has good intrinsic separation of its classes 
will result in the implementation of an efficient classifier. On the contrary, training data with overlapping classes will generate a 
sub-optimal classifier [55]. In order to validate our premise, we correlate quantified class overlap indices with the predictions of 
different models. In doing so, we also benchmark the proposed EMSTOI with state-of-the-art DBI to determine the intrinsic overlaps 
in the training data.

3. Proposed research methodology

An insight into the overlap of data-points in the training data can explain the impending classification performance by 
determining the goodness of the undersampled dataset as well as feature importance. We work towards this objective and propose 
a novel measure to quantify the class overlaps in a dataset. As mentioned in section 2.2, the new measure overcomes the limitations 
of state-of-the-art DBI. DBI can provide information about class overlap only when the classes originate from distinct clusters. It can 
provide a sub-optimal output when the origin of the classes in a dataset overlaps. We quantify and compute the separations intrinsic 
to a dataset by using the proposed EMSTOI and DBI in the pre-modeling phase. In the post-modeling phase, we obtain the classes 
of a set of unknown test points from the model and compute the classification performance (accuracy and 𝐹1). Subsequently, we 
compute the correlation between the class overlap scores and classification performance with an expectation that higher separations 
between the classes present in a dataset (lower class overlap index) will be positively correlated with classification performance.

3.1. A new measure based on minimum spanning tree

We use Euclidean Minimum Spanning Tree (EMST) based approach to form a connected network from a given set of datapoints. 
An EMST of a finite set of 𝑛 points in a feature space connects them by a set of 𝑛 − 1 line segments where the points serve as 
the endpoints, minimizing the total length of the segments. The technical foundation of EMST is provided in Appendix  A.2. It is 
important to note that, each of the 𝑛 points can belong to any one of the given classes. After forming the EMST, we look at each edge. 
If both the vertices of an edge belong to the same class, we call it a homogeneous edge. If the vertices of an edge belong to different 
classes, we call it a heterogeneous edge. The percentage of heterogeneous edges in an EMST indicate the degree of class overlap in a 
given dataset. Further, the average weights of the homogeneous edges and the heterogeneous edges also provide insight into the class 
overlaps. In a dataset with low-class overlap, each class will be tight-knit resulting in low average homogeneous edge weights and 
a higher value for average heterogeneous edge weight. We employ a ratio of the number of heterogeneous edges over the number 
of homogeneous edges, and ratio of the average weight of homogeneous edges over the average weight of heterogeneous edges to 
quantify the overlap of the classes present in a dataset. We define the EMST-based class-overlap of a given dataset  denoted by 
EMSTO as follows: 

EMSTO =
𝜀ℎ𝑜𝑚
𝜀ℎ𝑒𝑡

×
𝜈ℎ𝑒𝑡
𝜈ℎ𝑜𝑚

(1)

where 𝜀ℎ𝑜𝑚 and 𝜀ℎ𝑒𝑡 denote the average homogeneous edge weight and average heterogeneous edge weight respectively. 𝜈ℎ𝑜𝑚 and 
𝜈ℎ𝑒𝑡 denote the number of homogeneous edges and the number of heterogeneous edges in the EMST of the given dataset. The 
technical details of the proposed equation are detailed in Appendix  A.3. The more the number of heterogeneous edges, the more is 
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overlap between the classes. Additionally, smaller homogeneous edge weights (shorter homogeneous edges) indicate compact class 
structures. A low-class overlap wherein homogeneous edges have lower weights than the heterogeneous edges is desirable as the 
classes therein are separated from each other and it is expected that the models trained on such a dataset would deliver efficient 
performance. Thus, we compute and explain the class separations intrinsic to a dataset and, consequently, to the model. The values 
of EMSTO can range from 0 to ∞. The former indicates no overlap while the latter is obtained when the classes originate from 
identical distribution. When we want to compare two distributions, such diverse range of values can be too abstract. To address 
this shortcoming, we tweak the EMSTO value mathematically in the following manner to compute EMST based class overlap index 
(EMSTOI). Similar to DBI, this index quantifies the overlap in a dataset in a more effective way. 

EMSTOI = EMSTO
EMSTO + 1

(2)

Unlike EMSTO, the range of EMSTOI is bounded in [0, 1]. The higher the overlap, the higher the value of EMSTOI. The mathematical 
properties of EMSTOI are discussed in Appendix  A.4. Fig.  1 shows the variation of EMSTOI and DBI in differently overlapped datasets. 
In each sub-figure of Fig.  1, we have constructed a synthetic 2-class dataset where the points belong to exactly one of the two given 
classes (indicated by blue and orange colors). For a scenario wherein each class originates from a single cluster, both EMSTOI and 
DBI have shown strong correlations with the degree of overlap. The values of both measures have increased with the increase in 
the class overlap.

However, in situations where each class originates from multiple clusters, DBI can fail to correctly capture the overlap in the data. 
The issue happens when the cluster centers of different classes are located within a small vicinity. The technical details can be found 
in Appendix  A.1. Fig.  2 shows four dataset in which each class originates from two or more non-overlapping clusters. Consequently, 
the classes in each dataset are well-separated. In all the cases, EMSTOI scores are approximately 0, and it is in congruence with the 
actual scenario as there is a low overlap between the classes. On the contrary, the value of DBI is quite high, spuriously indicating a 
strong overlap between the classes. This anomaly in the DBI arises because the resultant means (cluster centers) for the two classes 
are collocated thus misguiding the DBI computation. The proposed measure EMSTOI is immune to such variations and can render 
correct indications about the class overlap present in the data.

3.2. Addressing the class imbalance problem

Class-imbalance problem is a conspicuous characteristic of data arising from a number of real-world domains [56,57]. The 
learning of models gets severely plagued due to this issue [58]. Researchers and practitioners often work on balancing the classes 
of imbalanced datasets. The most popular and convenient way to balance a dataset is undersampling which means eliminating the 
points from the majority class. However, undersampling can be effective only if it provides a separation of the classes.

Therefore, we assess and explain the quality of an undersampled dataset by measuring its class overlap through EMSTOI 
and DBI. For validation, we generate several sets of undersampled datasets from a class-imbalanced dataset. We compute the 
classification performances across all the undersampled sets and explore the correlation between overlap indices (EMSTOI and 
DBI) and classification performances. Empirically, we expect a negative correlation between the overlap indices and classification 
performances.

3.3. Explaining and augmenting the features

We assume that there are 𝑑 features and 𝑛 points in a dataset, . We compute EMSTOI and DBI value 𝑑 times, once for each 
feature. A feature that gives lesser EMSTOI and DBI has a better class-distinguishing ability and it plays a more instrumental role 
in the operation of the classifier model. For example, let there be two features 𝑓𝑖 and 𝑓𝑗 in , and their class overlap indices be 𝑓𝑖
and 𝑓𝑗  respectively. If 𝑓𝑗 < 𝑓𝑖  and also differs by a considerable amount, we can say that feature 𝑓𝑗 is a better distinguisher for 
the two classes than 𝑓𝑖. When the feature values are different for different classes, it can be effective in distinguishing the classes. 
So investigating the class overlaps in the individual features can provide explainability. However, the class overlap scores do not 
reveal anything about the ranges of the feature values. Without looking at the individual values of 𝑓𝑖 and 𝑓𝑗 for the data points, we 
can get an understanding of the intrinsic class overlaps using the EMSTOI and DBI values.

We further explore the correlations between these scores and the classification performances of the features. EMSTOI and DBI are 
low when we have well-separated classes in a dataset. A feature 𝑓𝑗 which possesses non-overlapping ranges of values for different 
classes will possess low EMSTOI and DBI than another feature 𝑓𝑖 with overlapping ranges. By virtue of the separations in the feature 
ranges, 𝑓𝑗 will train an efficient classifier model, 𝑀𝑗 (say) which can give a competent performance score. On the other hand, 𝑓𝑖
with overlapping feature ranges for different classes is likely to output a higher overlap index. Let the classifier model trained by 
𝑓𝑖 be denoted by 𝑀𝑖. Consequently, 𝑓𝑖 will train a less competent classifier model. On the same set of query points, we can expect 
the accuracy of 𝑀𝑖 to be lesser than that of 𝑀𝑗 . We will conduct our experiments on datasets from real-world domains to explore 
and validate this premise. We can also employ the notion of class overlap to determine the feature importance. The feature which 
has the lowest class overlap is the one with the highest feature importance by virtue of rendering the best possible separation of 
the classes. We operationalize this and compute the feature importance from the class-overlap scores which are computed through 
the proposed EMSTO and DBI.

We assume that there are 𝑑 features in a dataset , denoted by 𝑓1, 𝑓2,… , 𝑓𝑑 . Let 𝑓1 , 𝑓2 ,… , 𝑓𝑑  be class-overlap indices 
of 𝑓 , 𝑓 ,… , 𝑓  respectively. Let us denote the importance of feature 𝑓 , 1 ≤ 𝑖 ≤ 𝑑 by 𝐹𝐼 . We compute this value  from 
1 2 𝑑 𝑖 𝑖
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Fig. 1. A comparison of EMSTOI and DBI for quantifying the overlaps in a dataset with two classes wherein each class has exactly one cluster.

𝑓1 , 𝑓2 ,… , 𝑓𝑑  as follows. 

𝐹𝐼 𝑖 =
∑𝑑

𝑖=1 𝑓𝑖
𝑓𝑖

(3)

Eq.  (3) signifies that 𝐹𝐼 𝑖 is inversely proportional to the class-overlap scores, 𝑓𝑖 . Lesser the value of 𝑓𝑖  (less overlap of the classes 
using that feature) of 𝑓𝑖, the more the feature importance. It further indicates that if the 𝑓𝑖  values are equal for 1 ≤ 𝑖 ≤ 𝑑, the 
feature importance values will be equal for all the features. The computed feature importance score depends on the EMSTOI and 
DBI of the concerned feature as well as all other features.

4. Experimental setup

We have conducted two experimental studies to have a pre-modeling understanding of the quality of datasets (that train different 
models). The first study is focused on the overlap of the minority and majority classes while the second study focuses on investigation 
of feature importances in a dataset. We use a variety of datasets for experiments pertaining to these studies.

4.1. Datasets

For the first study, we use two synthetic datasets from the finance domain, namely PaySim and BankSim.
6 
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Fig. 2. Comparison of EMSTOI scores and DBI in binary and multi-class synthetic datasets. In Figures (a), (b) and (c), the points belonging to a class originate 
from exactly two clusters (and are given a distinct color). In Figure (d), the points belonging to three classes (red, orange and blue) originate from two clusters 
and green originates from three clusters. In all four scenarios, the mean (resultant cluster centers) of the classes coincides in the center of the feature space. We 
may note that the clusters are well separated from each other, resulting in non-overlap of the classes. This is well indicated by EMSTOI which are approximately 
0 in all four cases. However, DBI are high in all four cases spuriously indicating a considerable overlap in the data. This shows the robustness and advantage 
of EMSTOI over DBI in quantifying the overlap in the data.

PaySim dataset is constructed by simulating mobile money transactions on the basis of a sample of real transactions [59]. These 
are extracted from one month of financial logs from a mobile money service based in an African country. There are nine numeric 
and categorical features present in total in the dataset. Out of these, we have considered five numeric features namely amount of 
transaction, old balance of origin, a new balance of origin, old balance of destination, and new balance of destination for our study. 
Each transaction is categorized as authentic or fraudulent. In this dataset, 6,362,620 mobile transactions are present wherein 8213 
are fraudulent thus making it a highly imbalanced dataset.

BankSim dataset is formed from an agent-based simulator of bank payments [60]. This simulation is based on a sample of 
aggregated transactional data provided by a bank in Spain. The main motive for constructing this synthetic data is to provide a 
dataset for research in the domain of fraud detection. A total of 594,643 transactions are present in this dataset, out of which, 7200 
transactions are fraudulent. Hence, this dataset is also highly imbalanced. In this dataset also, there are nine numeric and categorical 
features present in total . We have used three numeric features age, gender of the transactor, and amount of transaction for our 
study. The category of each data point (transaction) is either fraudulent or normal.

For the second study, we have used two datasets originating from medical and marketing domains respectively. The first dataset 
namely Maternal health is collected from rural areas of Bangladesh [61]. It has a total of six features — age and five clinical 
parameters namely systolic blood pressure, diastolic blood pressure, blood sugar level, body temperature, and heart rate. Each 
of the 1014 datapoints consists of information on these six parameters for a pregnant woman. The women are categorized with 
respect to their risks for maternal mortality. Each woman belongs to any one of the following classes – high risk, medium risk or low 
risk.

The second dataset known as Advertising dataset1 originates from the marketing domain and deals with the relationship between 
amounts invested in the marketing of a product through TV, radio, and newspapers (features) and the actual sales outcomes of the 

1 https://www.kaggle.com/ashydv/advertising-dataset
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product. There are 200 observations in this dataset wherein the outcome of the sale is the dependent variable. Here the outcome 
of the sales is a continuous dependent variable and we have divided its range into five non-overlapping bins to form a multi-class 
classification problem.

We divide each of these datasets into two mutually exclusive and equal partitions so as to generate the training set and the test 
set.

4.2. Classifiers used for evaluation

We have used four classifiers across all of the experiments for evaluation and validation of the proposed approach.

• Support Vector Classifier (SVC) [62]: It is a supervised learning algorithm which draws a separating boundary (hyperplane) 
between the two classes. We have considered a linear model and allowed some tolerance for misclassification by setting the 
parameter 𝐶 = 1 and 𝛾 = 2. These parameters are related to amount of misclassification allowed during training and curvature 
of the decision boundary, respectively.

• k-Nearest Neighbor Classifier (KNN) [63]: It is an intuitive and popular classification scheme. Using this classifier, the test 
points are classified by looking at the classes of their neighboring points. It does not involve any parameter other than the 
neighborhood size 𝑘. In this study, we have set 𝑘 = 1.

• Naive Bayes Classifier (NB) [64]: Naive Bayes Classifier is based on the Bayes Theorem of the conditional dependence 
between the features and the classes of the points. A key underlying assumption in this particular classifier is the independence 
of the features.

• XG-Boost Classifier [65]: It is an ensemble method which is widely used for large datasets, because of its parallelizable nature. 
XGBoost consists of gradient-boosted decision trees. We have used this classifier in its default settings.

4.3. Evaluation criteria

We need two sets of criteria, one to measure the classification performance of the data, and the second to measure the correlation 
between the overlap indices (EMSTOI and DBI) and classification performance. For measuring the classification performance, we 
use accuracy, and minority class 𝐹1. For computing the correlation between overlap indices and classification performance, we use
Pearson correlation coefficient and Spearman’s rank correlation coefficient. More details about these evaluation criteria are provided in 
Appendix  A.5 and A.6.

4.3.1. Evaluation criteria for classification performance
The datasets used in this study are unbalanced. Evaluating the classification performance of such datasets is slightly different from 

datasets with balanced classes. Accuracy scores give an idea about the overall performance of a dataset. However, considering only 
the accuracy scores provide only a partial understanding of the imbalanced datasets. Therefore, we have also considered minority 
class 𝐹1 to evaluate the performance of the class imbalance dataset.

4.3.2. Evaluation criteria for measuring the correlation
The main contribution of this work is the introduction of EMSTOI, through which we can measure the overlap present in the 

data in the pre-modeling phase itself. This knowledge is helpful in assessing the quality of the data on which a classification model 
is trained. We may note that DBI are also indicative of the overlap in the data to some extent however, it works well only when 
the classes originate from different cluster centers (Appendix  A.1).

We compute the correlations between overlap indices (EMSTOI and DBI) and classifier performances. Correlation refers to the 
extent of the linear relationship between two variables. The value of correlation, 𝑟 is −1 ≤ 𝑟 ≤ 1. If two variables increase or decrease 
in the same direction, the sign of the correlation is positive. On the contrary, if the decrease of one leads to the increase of another 
and vice versa (different direction), the sign of the correlation is negative. The magnitude of the correlation value indicates the 
degree of relation or connection (linearity). The stronger the correlation, the greater the value, and vice versa. A correlation value 
of 𝑟 = 0 indicates no correlation between the two variables. A 𝑟 value close to zero (from either side) indicates a low correlation.

The two variables in our case are the performance score of the model and the overlap scores of the balanced data. If we obtain a 
negative correlation of a significant magnitude, we can conclude that our approach is viable. We compute the correlations between 
performance and overlap scores via two standard metrics Pearson correlation coefficient and Spearman rank correlation coefficient. The 
details of these coefficients is provided in Appendix  A.6.

5. Results and analysis

In this section, we report the results of the two sets of experiments. In the first study, we utilize the PaySim and the BankSim
datasets. In this study, we investigate the correlation between overlap indices (EMSTOI and DBI) and classification performance 
followed by the association between overlap indices and the amount of money saved and money lost. Subsequently, the second 
study is conducted using Maternal Health and Advertising datasets where our objective is to ascertain the feature importance through 
overlap indices.
8 
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Table 1
Results of correlation of EMSTOI and classification performance on PaySim and BankSim datasets.

PaySim BankSim
Classifier Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman 

𝐹1 Accuracy 𝐹1 Accuracy
SVC -0.226 -0.214 -0.255 -0.177 -0.283 -0.242 -0.265 -0.188 
KNN -0.309 -0.287 -0.230 -0.192 -0.251 -0.284 -0.287 -0.269
NB -0.252 -0.279 -0.301 -0.386 -0.188 -0.257 -0.287 -0.288
XGBoost -0.179 -0.223 -0.400 -0.389 -0.292 -0.273 -0.202 -0.168 

Table 2
Results of correlation between DBI and classification performance on PaySim and BankSim datasets.

PaySim BankSim
Classifier Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman 

𝐹1 Accuracy 𝐹1 Accuracy
SVC -0.222 -0.206 -0.227 -0.236 -0.271 -0.142 -0.149 -0.051 
KNN -0.247 -0.252 -0.071 -0.127 -0.165 -0.166 -0.138 -0.127 
NB -0.263 -0.217 -0.223 -0.192 -0.262 -0.217 -0.170 -0.156 
XGBoost -0.267 -0.110 -0.235 -0.174 -0.191 -0.169 -0.134 -0.122 

Table 3
Results of correlation between EMSTOI and amount lost and amount saved on PaySim and BankSim datasets.

PaySim BankSim
Classifier Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman 

Amount lost Amount saved Amount lost Amount saved
SVC 0.281 0.196 -0.323 -0.282 0.264 0.139 -0.207 -0.183 
KNN 0.270 0.265 -0.222 -0.175 0.195 0.236 -0.278 -0.315
NB 0.184 0.215 -0.404 -0.328 0.396 0.257 -0.235 -0.348
XGBoost 0.205 0.245 -0.434 -0.361 0.243 0.132 -0.199 -0.251

Table 4
Results of correlation between DBI and amount lost, and amount saved on PaySim and BankSim datasets.

PaySim BankSim
Classifier Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman 

Amount lost Amount saved Amount lost Amount saved
SVC 0.092 0.152 -0.204 0.186 0.143 0.071 -0.212 -0.133 
KNN 0.115 0.116 -0.225 -0.249 0.171 0.180 -0.262 -0.317
NB 0.159 0.164 -0.291 -0.262 0.082 0.160 -0.213 -0.163 
XGBoost 0.133 0.206 -0.112 -0.133 0.224 0.174 -0.213 -0.221

5.1. Analyzing the correlation between overlap indices and classification performance

The objective of the first study is to investigate the correlation between class overlap and classification performance. The class 
overlaps in the undersampled datasets are measured through EMSTOI and DBI. We also evaluate the classification performance of 
different classifiers trained on the undersampled PaySim and BankSim datasets. We report the correlation results in Table  1 and 
Table  2.

For each dataset, there are four classifiers (SVC, KNN, NB, and XGBoost), two performance evaluation metrics (accuracy and 𝐹1), 
and two correlation metrics (Person and Spearman) — leading to (4 × 2 × 2 =) 16 cases. For both PaySim and BankSim datasets, we 
have repeated this process 50 times (obtaining 50 sets of balanced datasets) and computed the correlation between classification 
performance (accuracy and minority class 𝐹1) and the overlap score (EMSTOI and DBI). As shown in Table  1, for both datasets, a 
weak negative correlation (value ≤ −0.2) is obtained between EMSTOI and classification performance in 13 out of 16 cases. These 
results are in congruence with our expectations and it can be deduced that classification performances could be explained through the 
EMSTOI scores. In terms of DBI (Table  2), a weak negative correlation [66] is obtained between DBI and classification performance 
11 out of 16 times on PaySim dataset and 3 out of 16 times on BankSim dataset. These results demonstrate the superiority of the 
EMSTOI in assessing the quality of datasets on which different classifiers are trained.

5.2. Analyzing the correlation between overlap indices and the amount of money saved and lost

We investigate the correlation between overlap indices (EMSTOI and DBI) and the amount saved through the detection of 
fraudulent transactions. We also investigate the correlation between overlap indices (EMSTOI and DBI) and the amount lost by 
missing the detection of fraudulent transactions. The results for EMSTOI and DBI are reported in Table  3 and Table  4, respectively.

A lesser overlap between the minority class and the majority class of a balanced dataset indicates quality data. This quality data is 
supposed to learn an efficient classifier model which can detect fraudulent transactions accurately and save more amount of money. 
9 
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Table 5
Results of feature-specific overlap indices (EMSTOI) and accuracy of Maternal Health dataset.
 Features Overlap Indices Classifiers

 EMSTOI DBI SVC KNN NB XG-Boost 
 Age 0.624 8.116 0.484 0.519 0.479 0.502  
 Systolic Blood Pressure 0.529 3.511 0.590 0.636 0.618 0.641  
 Diastolic Blood Pressure 0.609 4.920 0.552 0.558 0.581 0.581  
 Blood Sugar 0.486 2.557 0.622 0.647 0.645 0.668  
 Body Temperature 0.633 6.375 0.535 0.539 0.544 0.525  
 Heart Rate 0.687 15.248 0.464 0.502 0.539 0.567  

Table 6
Results of feature-specific overlap indices (EMSTOI) and accuracy of Advertising dataset.
 Features Overlap Indices Classifiers

 EMSTOI DBI SVC KNN NB XG-Boost 
 TV 0.452 3.521 0.540 0.540 0.500 0.500  
 Radio 0.681 22.418 0.480 0.350 0.340 0.340  
 Newspaper 0.772 29.283 0.320 0.230 0.280 0.280  

Table 7
Classification accuracy obtained on original data, data weighted by EMSTOI driven feature importance, and data weighted by DBI driven 
feature importance.
 Classifiers

 SVC KNN NB XG-Boost 
 Maternal Health
 Original data 0.660 0.582 0.635 0.624  
 Data weighted by FI-EMSTOI 0.571 0.609 0.651 0.632  
 Data weighted by FI-DBI 0.566 0.614 0.643 0.637  
 Advertising
 Original data 0.708 0.740 0.640 0.747  
 Data weighted by FI-EMSTOI 0.806 0.797 0.650 0.768  
 Data weighted by FI-DBI 0.736 0.755 0.648 0.762  

On the other hand, an increased overlap of the different classes will train a sub-optimal classifier. Such a model will misclassify the 
fraudulent transactions and increase the loss incurred. We have looked into these perspectives and computed the average amount 
saved and lost through the detection of fraudulent transactions and the overlap indices of the balanced datasets. For both PaySim
and BankSim datasets, we have repeated this process 50 times (obtaining 50 sets of balanced datasets) and computed the correlation 
between the amount saved/lost and the overlap indices. The correlations with the EMSTOI are reported in Table  3 and with DBI are 
reported in Table  4. As expected both EMSTOI and DBI are positively correlated with the amount lost and negatively correlated with 
the amount saved on both datasets. It is noteworthy that for the correlation with the amount lost, EMSTOI outperforms DBI (6/8 
vs. 1/8) on PaySim dataset as well as (5/8 vs. 1/8) on BankSim dataset. Similarly, for correlation with the amount saved, EMSTOI 
performs at par with DBI (7/8 vs. 5/8) on PaySim dataset and (6/8 vs. 6/8) on BankSim dataset. These results substantiate that 
EMSTOI can better assess the quality of data used for training a classification model.

5.3. Analyzing the feature importance using overlap indices

We also study the association between class overlap and classification performance for each individual feature. We report the 
class overlap indices (EMSTOI and DBI) and the accuracy values obtained through four classifiers (SVM, KNN, NB, and XGBoost) 
for all the 6 features of Maternal health and 3 features of Advertising dataset in Table  5 and Table  6, respectively. These results show 
a strong association between the class-overlap indices of the features and the accuracy of classification.

On Maternal health dataset, the lowest EMSTOI and DBI are obtained for Blood Sugar, and the best classification performance 
is delivered by this feature on all four classifiers (Table  5). Additionally, in the Advertising dataset, the lowest EMSTOI and DBI 
are obtained for TV, and the best classification performance is delivered by this feature on all four classifiers (Table  6). These 
findings establish the utility of the proposed approach in determining the feature importance by examining the association between 
feature overlap scores (EMSTOI and DBI) and their respective classification performances. It is important to note that the feature 
importances obtained by our approach are in the pre-modeling phase and without the intervention of the test phase. Our approach 
is also model-agnostic and depends only on the training data.
10 



P. Sadhukhan and S. Gupta Data & Knowledge Engineering 158 (2025) 102421 
Further, we incorporate the feature importance scores in the data before building the model. Prior to training the model, we 
created feature importance-informed training data. This was accomplished by adding weights to the features in decreasing order 
of their EMSTOI. We investigated the outcome of this augmentation on classification performance. We demonstrate this through 
experiments on Maternal Health dataset and Advertising datasets. For these experiments, half of the data points are used in model 
building, and the remaining half is used in prediction. The results of over 100 independent runs on four classifiers are reported in 
Table  7. It shows that the use of weighted features has offered better performance on three out of four classifiers on Maternal Health 
dataset. On Advertisement dataset, the use of weighted features has improved the performances across all four classifiers.

6. Discussion

In this study, we posit that the quality of data is integral to the supervised learning tasks and their business or financial outcomes. 
We consider the problem of explaining the performance of a classifier in the pre-modeling phase by assessing the quality of data. The 
proposed index EMSTOI offers an advantage in terms of data induced, model-agnostic understanding of classification performance. 
The proposed Euclidean minimum spanning tree-based index helps in appropriately measuring class overlaps in data wherein the 
classes can originate from single or multiple clusters. It is noteworthy that when classes originate from multiple clusters, state-of-the-
art indices such as DBI may fail to accurately assess the class-overlap. Experiments and comparative analysis using datasets from a 
variety of domains demonstrate that the proposed approach yields superior assessment of training data. We transform the data-points 
into a connected graph by constructing their Euclidean Minimum Spanning Tree. Subsequently, the proposed index captures the ratio 
of heterogeneous edges over homogeneous edges in an EMST transformed dataset, and the ratio of average weight of homogeneous 
edges over the average weight of heterogeneous edges thereby helping in quantifying the class overlaps in data wherein classes may 
originate from multiple clusters.

The results of classification are not only based on the characteristics of the model but also on the data which is used to learn 
the model. Therefore, the examination of data can provide insights in explaining the output of a model. Our experimental analysis 
shows that there is indeed a correlation between class overlap and classification performance wherein EMSTOI is better correlated 
(as compared to DBI) with classification accuracy as well as minority class F1 scores. EMSTOI also correlates better with the amount 
saved or lost by detecting fraudulent transactions in terms of both correlation coefficients namely Pearson correlation coefficient and 
Spearman rank correlation coefficient. Further, the overlap indices can also be used to derive the importance of different features and 
classification performance based on each feature. Thus using data from diverse domains, we analyze and demonstrate the viability of 
the proposed approach. The use of EMSTOI in comparison to DBI in assessing the quality of data which is used to train classification 
models represents the key methodological contribution of this study.

This study responds to recent call for research to find innovative ways to enhance and understand classification performance 
thereby helping in the more effective exploration of the search universe [67]. It is important to note that several classification 
models have been developed and are in use among researchers and practitioners [62–65]. These models demonstrate a wide variety 
of capabilities depending on the domain for which they are being used. Through the experimental analysis, we demonstrate that 
the proposed approach for explaining the classification performance is model as well as domain agnostic. The proposed index will 
provide an impetus to research in the field of explainable AI for knowledge creation.

6.1. Theoretical implications

This study has several theoretical implications. It helps in advancing understanding of how the different features and their meta-
characteristics are related to each other, given a dataset related to a particular domain. This study also suggests that classification 
performance can be significantly improved by investigating data in the pre-modeling phase, rather than doing one post hoc validation 
at the end. Such middle-range theorizing is crucial to advance the literature on how emerging AI and ML models can deliver 
superior business value [68]. Deducing explainability through interpretable parameters of the data is a natural progression towards 
advancements in AI modeling [69].

The proposed approach offers scholars a new way to reason about empirically observed variations in the classification 
performance of models. The introduction of Euclidean Minimum Spanning Tree based approach also offers a systematic way 
to analyze the geometric properties of data thereby suggesting the need to revisit existing data quality metrics by adopting 
graph-theoretic principles [70]. This approach can overcome challenges arising in a variety of business environments by allowing 
stakeholders to gain insights into model behavior without compromising the confidentiality of data.

Also, the experimental results demonstrate that the proposed index can discern feature importance more effectively in multi-
class datasets. This advances theoretical understanding of how feature spaces can be optimized for improved classifier performance, 
thereby offering new feature selection strategies which prioritize intrinsic class separability [71]. The experimental validation across 
diverse domains, including finance, medical, and marketing datasets, demonstrate the generalizability of the proposed index for data 
quality assessment. Future studies can expand upon theoretical implications of this study by exploring additional graph-theoretic 
artifacts or applying the proposed index in novel contexts such as unsupervised learning or data augmentation. We hope that the 
insights of this study inspire future research designs to assess the quality of collected data prior to empirically analyzing it using 
different types of quantitative models.
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6.2. Managerial implications

In today’s digital environment, there is a lot of heterogeneity in the data generated from a variety of applications [72]. The 
business solutions that classification models offer have gained traction as they simplify mundane tasks while enabling organizations 
to achieve productive results [73]. Considering such a scenario, classification models need to accommodate the data with varying 
structure, characteristics, and quality in an effective way. At the same time, enterprises may like to be able to use interpretable 
measures of data quality wherein they can ascertain the appropriate classification model for their work. As such, managers can 
use the proposed index to evaluate the readiness of datasets for classification tasks, ensuring that classification models are built on 
reliable data.

The increasing expectations of customers and the pursuit to improve classification performance are driving researchers to develop 
new classification approaches without considering the intrinsic characteristics of data [55]. The proposed approach can not only 
generate significant gains for organizations by offering explainability of classification tasks but also allowing customization of 
classification models that serve the needs of diverse sets of users. This can help build trust among stakeholders, by demonstrating the 
logical foundations of model decisions without compromising data security. This is particularly critical for industries dealing with 
sensitive information, such as healthcare and finance, where compliance with regulations like GDPR or HIPAA is mandatory [74].

The ability of the proposed EMSTOI to determine feature importance in multi-class datasets can guide managers in prioritizing 
data attributes that matter most for predictive accuracy. This targeted focus can streamline data collection processes. Moreover, 
the proposed index can be used by managers to identify classification challenges early in the machine learning pipeline. Overall, 
the proposed approach has the potential to minimize the risk of deploying underperforming models, reducing financial losses and 
reputational damage associated with misclassifications.

6.3. Limitations and future research directions

This study is not devoid of limitations. First, the generalizability of the results to unstructured data, such as image, time series, 
networked data or text datasets remains to be established. Second, the computational complexity for constructing and computing 
EMSTOI may pose challenges when applied to large-scale datasets with high dimensionality. Third, the reliance on Euclidean distance 
assumes that data distributions are well represented in Euclidean space. This may limit the method’s effectiveness for data where 
relationships are better captured by non-Euclidean distance measures [75] Finally, the offline experimentation performed in this 
study cannot completely replace online real-time experimentation. As a result, the offline laboratory experimental approach used 
in this work has inherent limitations. Nonetheless, we believe that this study will guide future research and add rigor to the field 
of data quality assessment for AI modeling.

Future research studies in the area of data quality assessment can focus on exploring how the proposed approach performs for 
unsupervised, semi-supervised, and reinforcement learning environments. Secondly, future studies could focus on integrating the 
proposed index with automated feature selection algorithms to optimize dataset quality and improve model training. Thirdly, since 
we use only DBI as a benchmark in this study, future studies should validate the proposed index against a wider array of existing 
measures, such as Silhouette Score, and Calinski–Harabasz Index [76,77] Finally, the experimental datasets used in this study are 
completely labeled. In the future, an augmented approach can be developed which will work well when the data is partially labeled. 
We hope that future work following the aforementioned directions would concentrate on additional in-depth aspects of the proposed 
approach in a more granular way.

7. Conclusion

In this study, we present a graph-theoretic approach for assessing data quality in classification tasks. This study addresses a critical 
need for effective measures that connect model performance with data characteristics. We propose a new index for quantifying the 
intrinsic separations between classes in data. Through experiments on datasets from finance, medical, and marketing domains, we 
validated the effectiveness of the proposed index against the widely used Davies–Bouldin Index (DBI). The proposed index enables 
determination of feature importance and exhibits superior correlation with classification performance thereby demonstrating its 
utility in multi-class datasets. These findings underscore the practical relevance of the measure, offering new avenues for data 
quality assessment, enhancing classifier design and performance evaluation. This study contributes in two important ways. First, it 
establishes a reliable and generalizable measure for data quality assessment. Second, by demonstrating the potential of proposed 
approach to advance classification tasks across diverse domains. Our empirical studies show that the insights on the class separations 
can be used to shed light on several important aspects such as the amount of money saved by detecting fraudulent transactions, the 
amount of money lost by missing the detection of fraudulent transactions, and learning the feature importance. A key advantage 
of the proposed approach pertains to its application in the pre-modeling phase which can offer explanations about a model’s 
performance without even building the model. This study enriches the toolkit for data quality assessment and contributes towards 
building more effective AI systems.
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Appendix A

A.1. Davies–bouldin index

Let us have a set of points in 𝑛 and let 𝐶𝑖 be a cluster of datapoints. We consider 𝐱𝑗 to be a datapoint belonging to cluster 𝐶𝑖. 
We assume that we will carry out the computations in Euclidean space. We denote the 𝑛-dimensional cluster center of 𝐶𝑖 with 𝐴𝑖
and the cardinality of 𝐶𝑖 (number of points in 𝐶𝑖) to be 𝑇𝑖. The within cluster distance between the points of a cluster, 𝐶𝑖 is denoted 
with 𝑆𝑖. 

𝑆𝑖 =
1
𝑇𝑖

( 𝑇𝑖
∑

𝑗=1
‖𝐱𝑗 − 𝐴𝑗‖

2

)

1
2

(4)

We denote the separation between clusters 𝐶𝑖 and 𝐶𝑗 with 𝑀𝑖,𝑗 . 

𝑀𝑖,𝑗 = ‖

(

𝐴𝑖 − 𝐴𝑗
)2

‖

1
2 (5)

Let 𝑅𝑖,𝑗 be a measure of evaluating the vitality of clustering scheme. This measure will depend on two things —- [i] 𝑆𝑖, within 
cluster distance of 𝐶𝑖 for all the clusters — this has to be as low as possible and, [ii] 𝑀𝑖,𝑗 , the separation between two different 
clusters 𝐶𝑖 and 𝐶𝑗 — this has to be as high as possible.

𝑅𝑖,𝑗 is defined in terms of 𝑆𝑖 and 𝑀𝑖,𝑗 as follows. 

𝑅𝑖,𝑗 =
𝑆𝑖 + 𝑆𝑗

𝑀𝑖,𝑗
(6)

This formulation satisfies the following conditions:
[i] 𝑅𝑖,𝑗 ≥ 0.
[ii] 𝑅𝑖,𝑗 = 𝑅𝑗,𝑖.
[iii] When 𝑆𝑗 ≥ 𝑆𝑘 and 𝑀𝑖,𝑗 = 𝑀𝑖,𝑘, we get 𝑅𝑖,𝑗 ≥ 𝑅𝑖,𝑘.
[iv] When 𝑆𝑗 = 𝑆𝑘 and 𝑀𝑖,𝑗 ≤ 𝑀𝑖,𝑘, we get 𝑅𝑖,𝑗 ≥ 𝑅𝑖,𝑘.
Lower the value of 𝑅𝑖,𝑗 , better is the separation between clusters 𝐶𝑖 and 𝐶𝑗 . On the contrary, a higher value of 𝑅𝑖,𝑗 indicates 

increased similarity between the clusters. When the number of clusters obtained in a dataset is more than 2, the highest similarity 
score for a cluster (with respect to another cluster) is taken into account. 

𝐷𝑖 = max𝑗≠𝑖 𝑅𝑖,𝑗 (7)

Davies–Bouldin Index (DBI) is the cumulative sum of 𝐷𝑖 over all clusters in a given dataset. It shows that the overall similarity or 
overlap of the clusters. Lower the value of DB, more separated are the clusters. For a dataset with 𝑁 clusters, 𝐷𝐵 is defined as 
follows. 

𝐷𝐵𝐼 = 1
𝑁

∑𝑁
𝑖=1

𝐷𝑖 (8)

The correctness of DBI in rendering class overlap is dependent on a stringent assumption stated as follows. The cluster centers 
have to be distinct from each other and should possess a substantial amount of separation. If the separation is less, DBI will not be 
indicative of the overlap present in the data. When the classes originate from different cluster centers, DB works well in measuring 
the overlap between them.
13 
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Fig. 3. This figure shows the minimum spanning tree (MST) for 15 arbitrary points. The datapoints belong to class 1 (indicated by red) or class 2 (indicated by 
green). When the two vertices of an edge belong to the same class, it is termed a homogeneous edge (the blue colored edges in the given figure). On the other 
hand, when the two vertices on edge belong to two different classes, we term it a heterogeneous edge (AB, BC, CF, and ED in the given figure.).

A.2. Euclidean minimum spanning tree

The Euclidean minimum spanning tree (EMST) is a minimum spanning tree (MST) of a set of 𝑛 points in 𝑑 , where the weight 
of an edge between each pair of points is the euclidean distance between the two points. An EMST connects a set of points using 
edges such that the total weight of the edges is minimized and each point is reachable from any other point through the edges.

For EMST construction, it is assumed that we have a complete graph for a set of 𝑛 points. The edge weight between any two 
points is their euclidean distance. Hence, we have a graph 𝐺(𝑉 ,𝐸) where 𝑉  is the vertex set, the set of points in 𝑑 and 𝐸 denotes 
the edge set. EMST is a sub-graph 𝐻 of 𝐺 (𝐻 ⊂ 𝐺) in terms of edges satisfying the following two conditions. Let 𝑒𝐻  be the total 
weight of edges in 𝐻 .

[i] A vertex 𝑣 of 𝐻 is reachable from another vertex 𝑢 of 𝐻 , ∀𝑢, 𝑣 ∈ 𝐻 .
[ii] We satisfy condition (i) and the sum of edge weights of 𝐻 , 𝑒𝐻  is minimum.

A.3. Mathematical foundation of the EMST-based class-overlap index

Once we form the EMST from 𝑛 points in a feature space, we have a connected graph of 𝑛 vertices. A key characteristic of EMST 
(and also a MST) is — the points are connected in the most compact fashion by virtue of minimizing the total edge weights. The 
connection weight (or the edge-weight) between any two points indicate their proximity. The task that we are addressing in this 
work is quantifying the degree of class-overlap in a dataset. Two aspects of an EMST are particularly interesting and can serve 
as a data mine in this regard, they are — [i] the class of the two vertices connecting an edge, and, [ii] the weight of that edge. 
Intuitively, in a dataset with well separated classes (low overlap), the edges of an EMST will be mostly formed between vertices 
belonging to the same class, which are termed as homogeneous edges. An edge whose two vertices belong to different classes is known 
as heterogeneous edge (Fig.  3). Since EMST is a connected graph, we will indeed have at least one heterogeneous edge.

A.4. Mathematical properties of EMSTOI

EMSTO renders an overlap value between 0 and ∞ for a dataset. Such an extended and unlimited range can come in the way of 
proper comprehension of overlap existing in a dataset, and while comparing the class overlaps in two different datasets. Motivated 
to address this concern, we tweaked the calculation to restrict the overlap quantification in [0, 1] in the following manner. 

EMSTOI = EMSTO
EMSTO + 1

(9)

The function 𝑓 (𝑥) = 𝑥
𝑥+1  is strictly increasing as 𝑓 (𝑥1) < 𝑓 (𝑥2) ∀𝑥1 < 𝑥2 in the domain of 𝑓 . The strictly increasing property 

can be verified by obtaining its derivative and applying the quotient rule in the following manner.
We compute its derivative as follows:

𝑓 ′(𝑥) = 𝑑
𝑑𝑥

( 𝑥
𝑥 + 1

)

Applying the quotient rule, 𝑑
𝑑𝑥

(

𝑢
𝑣

)

= 𝑢′𝑣−𝑢𝑣′
𝑣2

, where 𝑢 = 𝑥 and 𝑣 = 𝑥 + 1:

𝑓 ′(𝑥) =
(1)(𝑥 + 1) − (𝑥)(1)

(𝑥 + 1)2
= 𝑥 + 1 − 𝑥

(𝑥 + 1)2
= 1

(𝑥 + 1)2
We may note that,
1. 𝑓 ′(𝑥) = 1

(𝑥+1)2  is positive for all 𝑥 > −1, including [0,∞).
2. A positive derivative affirms strictly increasing nature of the function.
Hence, the order of EMSTO values is preserved in EMSTOI. The least value of EMSTOI (0) is obtained when EMSTO is 0. When 

EMSTO=∞, we get EMSTOI value of 1 which can be deduced through L’Hospital’s Rule [78].
14 
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A.5. Definition of the evaluating metrics

• Accuracy [79] score computes the fraction of correctly classified instances (transactions). The higher the accuracy score, better 
is the classification performance, the computed value ranges from 0 and 1 (both inclusive). We define accuracy as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
number of correct predictions

total number of points (10)

• Minority class 𝐅𝟏 [79] is dependent on the correctness of the prediction of the datapoints belonging to the minority class 
(fraudulent transactions). Let 𝑁 be the total number of data points and let the points in the dataset belong to only one of 
the two classes, class 1 (minority class) and class 0 (majority class). Let True Positive (TP) denote the number of datapoints 
correctly classified to class 1 (minority class, fraudulent class). Similarly, True Negative (TN) denotes the number of datapoints 
correctly classified to class 0 (majority class, authentic transactions). False Positive (FP) denotes the number of datapoints 
belonging to class 0 (negative or majority) but have been classified as class 1 (positive or minority) by the model (predicted 
as fraudulent, but actually authentic). Similarly, False Negative (FN) denotes the number of datapoints belonging to class 1 
(positive or minority) but have been classified as class 0 (negative or majority) by the model (predicted as authentic, but 
actually fraudulent).
Hence, 𝑁 = 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
Precision (for the minority or the fraudulent class) is the number of points correctly classified as a minority (fraudulent 
transaction) scaled by the total number of minority predictions (including the predictions misclassified as fraudulent). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(11)

Recall (for the minority or the fraudulent class) is the number of points correctly classified as a minority (fraudulent 
transaction) scaled by the total number of fraudulent transactions present in the data (including the predictions misclassified 
as authentic). 

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(12)

Minority class 𝐹1 is the harmonic mean of the precision and recall for the minority class. It indicates the fidelity of the classifier’s 
decision in the context of the minority class (fraudulent class in this experiment). The higher the value of this metric, the better 
the performance. The computed value lies between 0 and 1. 

Minority class 𝐹1 =
2 ∗ precision ∗ recall
precision + recall (13)

A.6. Definition of the metrics assessing the correlation

• Pearson correlation coefficient, P(X,Y) [79]: Technically, it is the ratio of the covariance of the two variables and the product 
of the variances of the variables. Let 𝑋 and 𝑌  be the two variables. Let 𝜎𝑋 and 𝜎𝑌  denote the variances of 𝑋 and 𝑌  respectively. 
We denote the covariance of 𝑋 and 𝑌  with 𝑐𝑜𝑣(𝑋, 𝑌 ). 

P(X,Y) = 𝑐𝑜𝑣(𝑋, 𝑌 )
𝜎𝑋 ∗ 𝜎𝑌

(14)

• Spearman’s rank correlation coefficient, SP(X,Y) [79]: In essence, it is similar to the previous metric. However, the key 
difference is, instead of considering the values, Spearman’s rank correlation coefficient works on the rank of the values. Let 𝑋
and 𝑌  be the two variables for which we want to compute the correlation. Let 𝑅(𝑋) and 𝑅(𝑌 ) be the ranks of the items of 𝑋
and 𝑌 . Let 𝜎𝑅(𝑋) and 𝜎𝑅(𝑌 ) denote the variances of 𝑅(𝑋) and 𝑅(𝑌 ) respectively. We denote the covariance of 𝑅(𝑋) and 𝑅(𝑌 )
with 𝑐𝑜𝑣(𝑅(𝑋), 𝑅(𝑌 )). 

SP(X,Y) = 𝑐𝑜𝑣(𝑅(𝑋), 𝑅(𝑌 ))
𝜎𝑅(𝑋) ∗ 𝜎𝑅(𝑌 )

(15)

Data availability

Data will be made available on request.
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