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Resume
This article presents an analysis of the supply and demand of a FFBSS 
recently implemented in the city of Bologna, Italy. The main aspects treated 
in this paper are: analysis of bike availability; temporal analysis of FFBSS 
demand; calibration and validation of a novel model that predicts the number 
of daily trips per available bike. This model is based on a linear combination 
of several day attributes, including meteorological and day-type attributes. 
Moreover, an origin to destination analysis is generated showing the spatial 
distribution of FFBSS trips. The methods are applied to a scenario with 
almost a million GPS traces recorded between July and October 2018 by 
the FFBSS in Bologna. Findings could support FFBSS companies to better 
understand the fluctuation of both the transport demand and supply of this 
relatively recent transport mode, as to make more efficient decisions when 
distributing or relocating bicycles.
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contribution to operating cost, is the bike reallocation 
problem: bikes tend to concentrate in different area, 
leading to a demand-dissatisfaction [5-8]. Some static 
[7-8] or dynamic [5, 9] reallocation methodologies 
are proposed in literature. For example, reallocation 
needs are structured by clustering zones with similar 
bike-availability [5]. However, the main issue for free-
floating bike-sharing system is that reallocation models 
require the demand-pattern in order to predict where 
to reposition bikes [10-11] - an issue not yet widely 
studied in literature. This is in contrast with the station-
based bike sharing system where many reallocation 
methods have been proposed and studied [10, 12-15]. 
For example, Chen et al. [16] have tried to predict the 
gap between the inflow and outflow of bike trips in 
a certain time-interval and zone by analyzing land-use, 
weather and air-quality data. Pan et al. [15], propose 
a real-time method for predicting bike-sharing renting 
and returning in different areas of a city during a future 
period based on historical data, weather data and time 
data. Therefore, reallocation models need to know how 
many bikes should be re-allocated, from where to where 
and the reallocation strategy (optimal path), in order to 
increase both the service usage and the user satisfaction 
[17] and to decrease the operating costs. An interesting 
alternative to the bike re-allocate strategy has been 
examined by Pfrommer et al. [18] and Fricker and Gast 
[6]: it consists of incentive policies aimed at encouraging 
users to return bikes where needed. Another FFBSS 
problem could be the absence of a dedicated cycling 

1  Introduction

Congestion problems in urban centers, together 
with the issue of environmental sustainability, has led 
the European Union to develop regulations aimed at 
development of efficient and sustainable urban mobility 
system. Several studies show that cycling mobility 
has significantly increased in recent years [1-4], thus 
taking a pivotal role in the transition to an economically 
feasible, socially acceptable and environmentally 
friendly urban mobility. In this context, bike-sharing 
services represent organic and efficient systems, which 
offer both an alternative and an integration with more 
classic modes of transport. Bike-sharing systems are 
continuously evolving since the late nineties, starting 
from station-based bike sharing system up to the recent 
free-floating bike-sharing system (FFBSS). This latter 
allows users to borrow and return bikes everywhere 
and at any time within the area of service coverage. 
The bikes are located with a geo referenced map on 
a smartphone application through which users can pay 
their own trips. The FFBSS allows a high spatial and 
temporal flexibility. Three particularly useful FFBSS 
characteristics for clients are: 1) they do not need to own 
and maintain a bicycle; 2) they are not forced to make 
a round trip, or to return the bike at the same pick-up 
point and this is particularly important in the case of 
unpredicted adverse meteorological conditions; 3) they 
do not have to worry about bike-theft or vandalism. One 
main problem of the FFBSS, which is also one of the main 
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attributes were also used by Wafic et al. [24] to analyze 
the travel demand of bike sharing systems. Furthermore, 
a spatial analysis aims at identifying the most dominant 
traffic zones involved in FFBSS trips, which improves 
relocating bikes major points of attraction or generation.

As data from other cities will be available, then 
future studies could test the transferability of the 
proposed model - this model does have the potential to 
be generalized to other locations, as it requires data for 
calibration that is either publicly accessible or that could 
be made available by the FFBSS service provider.

The analysis is applied to the city of Bologna by using 
the software SUMOPy [25], developed by the University 
of Bologna. SUMOPy is a software extension of the 
traffic simulator SUMO [26] that contains a dedicated 
plugin for the GPS traces analysis already used and 
tested, as reported in other studies [27-28].

The GPS traces have been collected by the FFBSS 
service provider, Mobike [29], from July to October 2018. 
Generally, a GPS trace is composed of a series of the 
GPS points with both spatial and temporal coordinates. 
From these coordinates it is possible to identify the 
traveled road and even to extrapolate the speed profile 
[30-31]. Unfortunately, for this study only the start and 
end-points of trips have been provided; however, the 
used data set counts almost a million trips, which is 
considerably more than the amount of trips analyzed in 
similar studies [32-33].

The paper is organized as follows: section 2 describes 
the study area and the features of the bike network. In 

infrastructure [19] and the presence of faulty bikes [20-
21], which not only represents a negative impact on the 
company’s balance sheet, but also causes safety concerns, 
complicates the repositioning strategy and reduces the 
number of available bikes. In addition, the stolen as well 
as vandalized bikes clearly represent a not-negligible 
costs’ component [22]. Moreover, a poorly designed 
FFBS system, e.g. in terms of recommended parking 
lots, or without providing discount for the correct bike-
usage, could lead to higher travel-costs for the user and 
discourage the use of the service [23]. However, these 
problems of the bike-sharing system are not yet widely 
studied in literature and to date no FFBSS demand 
model has been studied in detail. 

The paper focuses on a spatial and temporal analysis 
of the FFBS system; apart from a temporal and spatial 
descriptive analysis of the FFBSS trips, the core of 
the paper represents a prediction model of the FFBSS 
demand in terms of average number of daily trips per 
available-bike for different day types. 

As for the model-calibration, the bike-availability 
pattern must be known and this is investigated in this 
paper. 

The prediction model would allow a better 
comprehension of the FFBSS demand fluctuation for 
different days in a certain city. In addition, the model 
would allow to predict the FFBSS demand for the 
following day according to the day-type attributes and 
weather conditions. Such predictions are particularly 
useful for the scheduling of the bike re-allocation. These 

Figure 1 Study area with more important landmarks and the Mobike cover area, highlighted in orange
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with time stamps. However, for the present study, only 
the bike ID and the first and the last GPS points of each 
bike trip have been made available. All the GPS points 
have been imported by the software SUMOPy, where 
they have been matched with the geo referenced road 
network of Bologna. This network has been derived from 
the OpenStreetMap (OSM) database and therefore, each 
edge contains information such as number of lanes, 
length, width, permissions and so on; intersections are 
modeled in great detail, as well. The study area covers 
a surface of approximately 140 km2. Figure 2 shows 
the road network, overlapped with the GPS points and 
the zones used for the origin to destination matrix 
estimation. These zones derive from the 2001 census, 
where the Municipality of Bologna was subdivided into 
125 zones, with an average surface of 0.35 km2 in the 
historical center and of 1.2 km2 in the suburbs. Before 
the GPS point importation phase, many traces have 
been filtered out for the three principal reasons: 1) 
Trips starting or ending outside of the study area. 2) 
Trial trips carried out before the launch of the FFBSS, 
identified by particular bike’s IDs. 3) Trips starting out 
of the study period - some trips were affected by clock 
synchronization errors. During this cleaning phase, 
7,795 incorrect traces have been deleted, which equals 
to 1 % of the total traces provided (915,116). While 
importing the traces in SUMOPy, further filtering on 
distance, time and speed is needed, too short trips in 
terms of both, time and length as the crow flies have 
been deleted. In particular, only trips with at least 30 
s of duration and 100 m of direct length (geometrical 
distance between starting and ending points) have been 
taken in consideration.

These inadmissible traces are probably due to either 
mechanical bike-problems, which occurred after starting 
the trip or recording problem of the device. With this 
phase, the trips with incorrect information, probably 
due to signal problems, were identified and deleted, as 
well. The trace import required almost ten hours on an 
i7 processor and a 7200 RPM ATA disk drive. After the 
import, 743,459 traces remained - which equals 81 % of 
the model provided trips. Trips are more concentrated 

section 3, the data preparation process is described. 
Section 4 analyses the bike availability problem, section 
5 shows a temporal analysis of the FFBSS demand and 
section 6 describes the new predictive FFBSS demand 
model. Section 7 shows a spatial analysis of the FFBSS 
demand. Conclusions and future research directions are 
presented in section 8.

2 Study area

Bologna is a northern Italian city with approximately 
390,000 inhabitants. The climate is convenient for 
cycling all year, with an annual average temperature 
slightly below 15 °C and low rainfall (about 700 mm rain/
year and 74 days of rain per year). Bicycle flows have 
constantly grown in recent years in Bologna, along with 
an increasing bikeway supply [3]. Currently, there are 
129 km bikeways of different types in the city (see Figure 
1): 1) reserved bike lanes; 2) mixed access bike lanes 
with either pedestrian or buses; 3) bike lanes placed side 
by side to either footpaths or road; 4) dirt bike lanes; 5) 
recommended roads in the city center, only where there 
are no bike lanes; 6) paved bike-lanes inside city parks. 
Figure 1 indicates also the main city land-marks and the 
area covered by the Mobike FFBSS (73 km2).

3 Data preparation

The available GPS data includes all the FFBSS 
trips in Bologna from the 1st July 2018 to the 31th 
October 2018, collected by the Mobike company. These 
data are referred to the first four months of Mobike’s 
activity in the city of Bologna: Mobike was the first and 
only FFBSS service in Bologna during the study period. 
This service progressively provided 2,200 bikes called 
“Mobike Lite” by the end of 2018. Data were provided by 
society SRM (Societa Reti di Mobilita [34]) and consist 
of almost one million trips recorded directly by the GPS 
device on each bike. This device does record the GPS 
trace of each trip as a sequence of geo-referenced points 

          
(a)                                                                (b)

Figure 2 Bologna network imported in SUMOPy with the zoning (a) and GPS traces (b)
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4 Bike availability

In order to investigate the FFBSS demand patterns, 
the first step has been to identify the FFBSS supply in 
terms of the bike-availability trend during the study 
period. As anticipated, the Mobike company promised 
2,200 bikes by the end of the 2018. However, it is 
important to know when exactly these bikes have been 
put into service. For this reason, the bike ID of each trip 
in the data sample has been taken into consideration: 
1) to evaluate when bikes have entered the system 
(observing when they registered their first trip) and 2) 
to detect when some bikes left the system (observing 
when bikes registered their last trip), within the study 
period. Figure 3 summarizes the bike supply during 
the study period. The two main curves represent: 1) 
The total number of bikes already used up to a certain 
time (used bikes); 2) the total number of bikes, which 
are no longer used, from a specific time up to the end 
of the study period (these are bikes considered lost). 
The difference between these two curves represents the 
available number of bikes at a certain time. Figure 3 
shows that 2,200 bikes have been gradually introduced 
(blue curve), while the number of unusable bikes - which 
can be considered lost bikes - increased exponentially 
during the study period. 

From the statistical analysis of the bike-usage 
frequency, the average inactive time of bikes is 7.30 
hours. Moreover, the maximum inactive time between 
the two successive bike-usages has been 1,600 hours 

in the historic center: these trips have been compared to 
manual cyclist surveys performed in the city of Bologna 
by DICAM-Transport, University of Bologna since 2009 
(Bicycle survey in Bologna [35]). In particular, since 
2018; the FFBSS bicycles have been observed by the 
manual counts, as well, at 23 key locations. Survey 
results show that the share of the FFBSS bikes is on 
average 7 % of all counted bikes in central zone and 
1.5 % in peripheral zones, observed from 4 counter 
locations. From the first data analysis, it emerges that 
trips carried out during the weekdays are shorter than 
trips carried out during the weekends in terms of both 
time and length, which means that work-day trips are 
generally faster(see Table 1). Clearly, the length as 
the crow flies has been evaluated with the provided 
data, which contains only information on the trip start 
and end-points. Moreover, it has been proven that 
the one-parametric Rayleigh probability distribution 
(RPD) function [36] fits well with the distribution of 
durations of the Mobike trips, where σ is the distribution 
parameter that must be calibrated. After normalizing 
the distribution, while considering minutes as the unit 
of measurement, the σ-parameter has been calibrated by 
maximizing the goodness of fit with the RPD.

The goodness of fit has been evaluated with the 
regression method by calculating the R2 value obtained 
by matching the histogram values of the normalized 
distribution of trip durations with the respective values 
of the RPD. For the case study, the optimal of σ = 8.5 
maximizes R2 at R2 = 0.98.

Table 1 Trips duration, length and speed for different weekdays (the percentage of variation compared to weekday values 
are reported in brackets)

Av. duration [s] Av. direct length [m] Av. speed [km/h]

Weekdays 725 1541 8.03

Saturday 804 (+10.9%) 1624 (+5.4%) 7.70 (-4.1%)

Sunday 824 (+13.7%) 1684 (+9.3%) 7.81 (-2.7%)

Figure 3 Bike availability analysis: provided vs. unusable bikes
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with respect to the daily average in the study period 
(see red columns of Figure 4b), which amounts to 3.16 
trips per available bike per day or 6,000 trips/day in 
total, without considering the bike availability effect. 
Surprisingly, more trips are made on Saturday with 
respect to Monday. This phenomenon may be due to the 
fact that new bike-users may have found in the FFBSS 
enough advantages to choose this means of transport 
during the week-end - especially since the cost per 
ride was very low (0.3€ every 30 minutes) during the 
study period. Moreover, this anomaly can be related to 
distribution of the departure times during the different 
week days: from Friday to Sunday, particularly for 
Saturday, there is a high use of the FFBSS during 
the night, with respect to the use of private bikes. 
The red line in Figure 5 shows the relative frequency 
distribution of the FFBSS trips during the study period; 
from this figure the lower use of the FFBSS for holidays 
emerges, particularly on Sunday and for the month of 
August, with a lower peak on August 15th.

In order to compare the FFBSS demand with 
ordinary cycle trips, results of a stationary bike counter, 
counting all the bike types, have been analyzed. This 
bike-counter is located at the “Tangenziale delle 
Biciclette” cycle way along the Viale Ercolani, Bologna 
(see Figure 1), a bikeway characterized by a high flow of 
cyclists [37]. Cyclists with ordinary bikes seem to show 
different behavior (see Figure 4b), thus confirming that 
FFBSS is particularly appreciated on the week-end, as 
on Saturdays and on Sundays there are more trips with 
shared bikes than trips with ordinary bikes. Another 
reason for the lower use of the FFBSS during work days 
could be that there is a shortage of FFBSS supply during 
the rush hours. From the other hand, Figure 4a does not 
show significant differences between the use of FFBSS 
bikes and the ordinary bikes. The trend of the FFBSS 
usage during the study period is represented day by day 
in Figure 5.

(about 67 days). By considering the 99.5th percentile 
of the inactive time distribution (163 hours), a time-
threshold can be set (see Figure 3, vertical line in light 
blue), after which bikes will be probably used the next 
time only after the study period. Therefore, bikes, 
which recorded their last trip before this threshold 
are probably lost. The curve representing the number 
of bikes no longer used within the study period up to 
the time-threshold has been interpolated with a third-
degree polynomial trend line. With this interpolation, 
an R-square of more than 0.99 has been obtained. 
Assuming that the lost-bike trend remains the same 
for the next few days after the time threshold, the 
interpolating curve is extended up to the end of the 
study period. Based on this assumption, 640 bikes 
were lost within these 4 months. The lost bike curve 
shows an almost exponential growth. This means 
that, after all the bikes have been introduced, the 
number of available bikes decreases exponentially 
with time, which may be a deep concern for  
the operator.

5 Temporal analysis of the FFBSS demand

Keeping in mind the fact that the bike availability 
decreases exponentially in time, an analysis of the 
temporal distribution of all trips has been performed. 
Looking at a monthly aggregation of trip numbers per 
month (red columns in Figure 4a), a contraction of trips 
is clearly visible during the holiday period in August. 
This is true for all the transport modes, as transport 
demand is generally reduced during holidays: people 
carry out less trips during this period. The most likely 
reason is that many people leave Bologna for vacation - 
there were in average 38 % less trips per available bike 
per day in August. From the other hand, on Sunday 
there are on average 20 % less trips per available bike 

           
 (a)                                                                             (b)

Figure 4 Comparison between the relative frequency of all bikes passing from the section of the Bologna bike network  
in “Viale Ercolani” and the Mobike trips per available bike for each month (a), week day (b)
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relation with the dependent variable: the number of 
daily trips per available-bike. Firstly, the comfort average 
daily temperature for cyclists has been estimated more 
precisely: as the absolute difference with the comfort 
temperature. Figure 6 represents the R-square variation 
of the analyzed model for different values of the comfort 
temperature, concluding that 19 °C represent the best 
value for the study period. This means that days with 
an average daily temperature of 19 °C were preferred 
by cyclists. In the study period, days with this average 
daily temperature had a variable temperature between 
16 °C and 24 °C. Regarding the attribute, which refers 
to the period (working or holiday period), it is not 
significant to split holidays from weekdays, especially 
in the summer period: this is why it has been decided to 
adjust this attribute based on the FFBSS user behavior. 
In particular, the bike-usage for both FFBSS and private 
bikes decreases linearly up to the main holiday day (15th 
August), see Figure 5 and then it regrows with the same 
slope. In order to better reproduce the attribute referred 
to the period, the threshold T between holiday and work 
periods has been blunt by assigning 1 to August 15th and

D d1 1
i$- , (1)

to the i-th day, where di is the distance to August 15th in 
terms of days: this applies up to the distance D to August 
15th (the other days will have 0), in both directions. The 
parameter D indicates the number of days influenced by 
the summer period, starting from August 15th. In order 
to find the optimal D and then to determine the impact 
of the summer holidays in the FFBSS demand, the same 
process has been used to find the comfort temperature. 
The variation of the analyzed model R-square with 
respect to D shows that the optimal value for D is 27: 
this means that from 27 days before and after August 
15th (respectively the July 19th and September 11th), the 
number of the FFBSS trips starts decreasing linearly 
until it reaches the level of August 15th. The new linear 
regression with the daily average number of trips per 

6 A new predictive model for the FFBSS 
demand

This paragraph presents a linear regression type 
model to predict the daily traffic of the FFBSS in terms 
of trips per available-bike, depending on the type of day. 
In section 4 was shown that it is important to take into 
account a varying number of available bikes. In order 
to differentiate the day types, several day-attributes 
are included in the model: 1) Sundays (0 for Monday-
Saturday, 1 for Sunday), because on Sunday there is 
a significant demand contraction as shown in Figure 4b; 
2) Holiday period (1 for August, 0 for July, September 
and October); 3) Average daily air-temperature; 4) 
Minimum daily air-temperature; 5) Maximum daily 
air-temperature; 6) Average daily relative humidity; 
7) Average daily wind speed; 8) Maximum daily wind 
speed; 9) Rain (1 if it rained, 0 otherwise); 10) Storm (1 
if there was a storm, 0 otherwise); 11) Fog (1 if there was 
fog, 0 otherwise); 12) Millimeters of rain fall. Different 
data sources have been used to classify the days from 
a meteorologically point of view [38-40]. Since the air-
temperature attributes can influence the decision to 
make a bike-trip (e.g. whether it is too cold or too hot), 
these values have been transformed in an absolute 
difference with respect to the comfort temperature - 
considered initially 20 °C. The same procedure has 
been adopted for the average daily relative humidity, by 
considering 50 % as a comfort value. A linear regression 
has been performed by taking the average number of 
daily trips per available-bike as dependent variable. The 
first days of July (up to the 9th July) are not considered 
since not all bikes were available and the FFBSS was not 
at full capacity. The most significant meteorologically 
variables have been the average daily temperature 
and the millimeters of rain fall; also attributes, which 
characterize the days in terms of the day-type (weekday 
or holiday) and period (working or holiday period) have 
conditioned the FFBSS demand. These variables are 
then more deeply analyzed in order to strengthen the 

Figure 5 Comparison between the relative frequency of all the bikes passing from the section of the Bologna bike network 
in “Viale Ercolani” and the number of Mobike trips per available bike for each day
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reduce bike usage by 0.05 trips per available bike.
Considering this linear regression, it is possible 

to predict the total number of trips carried out by the 
FFBSS by means of the following expression:

N IS IH DT MR NB0 1 2 3 4b b b b b= + + + +^ h , (2)

where βi is the generic coefficient of the respective 
day attribute (β0 is the constant coefficient) and NB 
is the number of available bikes. To better highlight 
the significance of the selected attributes (showed in 
Table 3), it has been analyzed how much the dependent 
variable can vary at most by changing the respective 
attribute between its range of variation obtained in 
the case study. Considering the maximum range of 
each attribute, its influence on the dependent variable 
(considered as N/NB) is on a similar order of magnitude 
(approximately between 0.6 and 2.3). This means that 
the contribution of all used attributes to the demand 
estimation can be considered significant. In order to 
validate the model, Equation (2) has been applied to 
the data sample between the 9th July - when 91 % of the 
total FFBSS supply was already provided - and the 15th 
August. The number of simulated daily trips has been 

available-bike as a dependent variable is summarized 
in Table 2, reporting the coefficients for the above 
illustrated attributes, using a comfort temperature 
of 19 °C and a D-value of 27 days. Moreover, only the 
study period after August 15th has been considered: 
the period before August 15th will be used successively 
for the model validation. All the attribute values are 
statistically significant and they contribute to a similar 
level of variation of the dependent variable, evaluated 
as the average value of each attribute multiplied by the 
calibrated coefficients.

The constant coefficient represents the expected 
number of trips per available/bike in a sunny weekday 
with the average daily temperature of 19 °C. The other 
coefficients represent the decrease in daily average trips 
per available-bike due to different factors. In particular, 
on Sunday, each bike carried out on average 0.92 trips 
less. During the holiday period there is a consistent 
decrease in bike-usage up to 2.29 trips per available-bike 
less, in days closer to August 15th. On the other hand, the 
meteorological conditions influence the average number 
of trips per day per bike, as well: each degree Celsius of 
difference between the average daily temperature and 
the comfort temperature and each millimeter of rain fall 

Figure 6 R-square variation with respect to the comfort temperature

Table 2 Results of the linear regression

Code Attribute Coefficient Standard error Stat. t P>|z| Average Average variation

C Constant 4.258 0.0879 48.449 2.99E-57 / /

IS Sunday [dummy] -0.920 0.1287 -7.149 5.52E-10 0.146 0.134

IH Holiday period -2.292 0.1739 -13.177 5.55E-21 0.220 0.504

DT ΔT [°C] -0.0490 0.0200 -2.451 0.016635 5.459 0.267

MR Rain fell [mm] -0.0512 0.0075 -6.81239 2.32E-09 2.829 0.144

Table 3 Attributes’ significance

Code Attribute Mean Standard deviation Range Max. variation of N/NB

IS Sunday [dummy] 0.146 0.355 0-1 -0.920

IH Holiday period 0.220 0.315 0-1 -2.292

DT ΔT [°C] 5.459 3.244 0-12.94 -0.634

MR Rain fell [mm] 2.829 5.429 0-35 -1.791
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the matrix in its diagonal, which means that many 
trips are intra-zonal and therefore of a short distance. 
In order to better visualize the busiest zones, Figure 9 
shows all zones colored based on the sum of departures 
and arrivals, together with Mobike’s operational area. 
The number of departures and arrivals in each zone 
can differ only if bike-reallocation process was effected 
in the respective zone: in Bologna, 16,000 reallocations 
have been performed in the study period - on average 
140 bikes/day - from the suburb to the central zones. 
The number of bikes reallocated by the Mobike company 
has been evaluated by observing how many times bikes 
finish their trips in one zone and start the following 
trip in a different zone. Figure 9 highlights that the 
majority of trips has been carried out in the central 
zone, in particular in the proximity of the bus and 
train station, the University quarter and the center’s 
main attractors: the central square “Piazza Maggiore” 
and the famous historical tower “Torre degli Asinelli”. 
Figure 10 shows how trip departures are concentrated in 
certain locations. From this figure, it is also possible to 
observe that the user preferences in terms of the trip 

calculated and then compared with the measured ones 
(Figure 7), showing an R-square of 0.87 and a slope close 
to one.

7 Spatial analysis of the FFBSS demand

Based on the zoning of the 2001 population census, 
see Figure 2, an origin to destination trip-analysis has 
been carried out. In particular, an origin to destination 
matrix for the trips during the study period has been 
built by identifying the origin and destination zones 
of each trip from their respective locations of start 
and end points. The FFBSS operational area covers 
144 zones (125 in the Municipality of Bologna and 19 
in its province). Figure 8 shows the resulting origin 
to destination matrix, where each element has been 
colored relatively to the cell value, from red (0 trips) 
to green (greater than 2,139 trips). From this data-
aggregation it is possible to identify the most frequented 
zones (e.g. by looking for rows and columns with greener 
values). In particular, there are many large values of 

Figure 7 Modelled trips (see Equation (2)) versus measured daily number  
of trips with regression line

Figure 8 Origin to destination matrix
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trip has been determined from the temporal attribute 
of the trip’s origin/destination GPS points and by 
associating these points with the geometrically closest 
edges. Successively, for each edge the average arrival 
time has been calculated, as an average travel time of 
trips starting in the center and ending on its proximity.

Comparing the accessibility of Figure 11 to the 
Mobike departure densities in Figure 10, one can clearly 
see a correlation, for example the higher densities and 
accessibility towards the north of the center.

8 Conclusion

An analysis of the first four months - from 1st July 
to 31th October - of the first and only FFBSS activity in 

departure location do not considerably change from 
working days to the week end.

Moving from the central zone to the suburban 
zones, trips seem to decrease gradually. It can be shown 
that this decrease in activity is correlated with the 
accessibility from the city center: the bike-accessibility 
of a zone can be determined by measuring the time 
needed to arrive from other zones. For example, Figure 
11 shows where cyclist, starting from the city center, 
arrived on average while cycling up to 15 minutes.

Figure 11 has been created by elaborating the 
GPS data sample: only trips starting from the city 
center have been considered. The color value of each 
network edge corresponds to the average arrival time 
from a randomly chosen departure edge in the center. 
The time to reach a specific edge during the bike 

Figure 9 Spatial distribution of the average number of FFBSS trips per hour in the study period

Figure 10 Heatmap of trip departures: during the working days (left) and during the week end (right), with the same 
representative scale
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greatest bike-usage in the week-end periods with respect 
to private bike trips, would suggest that in these days 
there are either new bike users or there is a shift from 
the private to shared bikes. On the other hand, during 
the weekdays, especially in peak hours, FFBSS supply 
is not sufficient to satisfy the entire demand, probably 
because of the spatial bike-availability problem. Based 
on the available number of bikes for each day of the 
study period, a new predictive model has been calibrated 
in order to estimate the average daily trips per available 
bike in function of the day type and weather conditions. 
Firstly, the average daily comfort temperature of 19 °C 
has been estimated as the most favorable temperature 
for cyclists. Over the observation period between 19th of 
July and 11th of September, demand declined linearly 
with a minimum at the 15th of August. From this day 
on, demand increases again linearly and in symmetry 
to the previous decline. These results are useful in order 
to quantify the temperature attribute and the holiday 
period attribute. Once the day-attributes are fixed, 
a demand-prediction model has been calibrated with 
trips after the 15th of August and validated successfully 
with others trips - starting from the 9th of July, when 91 % 
of the total FFBSS supply was already provided. Results 
show an R-square between simulated and measured trips 
of 0.87. The attributes that are significant have been: 1) 
the difference between the average daily temperature 
and the comfort temperature; 2) the millimeters of rain 
fall; 3) a dummy variable indicating whether the day is 
a Sunday or not; 4) a period-attribute that distinguishes 
the holiday period from the work period. 

Successively, an aggregate spatial analysis shows 
that trips are more concentrated in the central zone of 
Bologna and in particular in the surroundings of the 
main railway station. Trip density decreases towards 

Bologna has been performed in order to characterize and 
interpret the FFBSS supply and usage. In particular, 
based on the available GPS data, a spatial and temporal 
analysis of the FFBSS demand has been performed. 
Since the FFBSS demand is not yet widely studied in 
literature, this research sheds some light on the supply 
and demand side of FFBSS, which may help in the 
planning and operation of such systems. For the present 
case study, the share of time FFBSS bikes are in use 
amounts to only 2.77 % - which corresponds to about 
40 minutes per day. Trip durations are on average 12 
minutes, distributed with a RPD and σ equal to 8.5. 
A bike availability analysis shows that bikes have 
been put into service gradually during the first two 
months. The number of lost or unusable bikes increases 
exponentially with time: 640 of 2,200 bikes were lost 
in the first four months of the Mobike activity. Those 
bikes were probably stolen, faulty, under repair or left 
in unreachable places. This fact must obviously be of 
a great concern to the FFBSS operator, suggesting the 
necessity to improve bike management strategies. 

On the demand side, a temporal analysis shows 
that, for each weekday, the FFBSS user behavior, in 
terms of number of trips per available bike, seems to 
be constant, whereas on Sunday there is a demand 
contraction, but this reduction in trips is less pronounced 
compared with trips made by privately owned bikes. In 
fact, the FFBSS trips do not seem to follow the ordinary 
temporal distribution of private bicycle trips because 
of the particularities of the service that are also its 
strength: in contrast with trips made by owned bikes, 
the use of FFBSS means not to worry about a bike theft 
and meteorological conditions; e.g. taking the bike in the 
morning does not oblige clients to use it for the return 
trip, as well, in the case it rains. For this reason, the 

Figure 11 Isochrones from the city centre (0 to 15 minutes)
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joining the predictive demand information with a real 
time spatial bike-distribution. In particular, if a zone 
has a frequent bike use, it does not necessarily mean 
that it needs more bikes during the reallocation process 
(in certain zones daily trips can balance themselves). In 
conclusion, this work should help to better understand 
the supply and demand of the FFBSS and can give the 
useful information to improve their future deployment 
and management.
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the suburbs of Bologna. Indeed, it has been shown that 
the FFBSS usage decreases as the travel time to the city 
center increases. This means that the accessibility to 
the city center appears an important spatial attribute. 
Moreover, many trips in the case study are intra-zonal 
and they are characterized by short distances. 

Further research can take inspiration from this 
work, since this topic is not fully understood; for instance, 
the demand prediction method could include zones (as 
used by Chen et al. [16]) to estimate the entire origin to 
destination matrix. Moreover, it would be interesting to 
evaluate the model transferability in terms of both time 
(time-period of the study) and space (other cities). The 
present work could also be integrated in an optimization 
problem that finds the best bike re-allocate strategy, by 
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