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Abstract 

This paper presents and analyses the structure of a new mutual fund management model that allocates a fund’s 
resources with respect to the different time preferences of investors. The proposed model enables the explicit 
definition of investment horizons in a regular open-ended fund framework that uses the popular portfolio insur-
ance strategy based on value at risk. Investors are assumed to be homogeneous in terms of their risk/reward 
preferences but heterogeneous in terms of their investment horizons. Time moments when investment decisions are 
made by individual investors are spread out over time randomly because of the different life cycles of investors. 
We assume that all investors in the fund can be separated into manageable numbers of groups regarding their 
remaining investment horizons. The fundamental concept of the proposed multi-horizon portfolio insurance model 
is optimising the composition of the fund according to the most conservative allocation among the optimal portfo-
lios of all considered groups of investors. A historical simulation based on US financial data is also used to 
compare the proposed model with the regular single horizon strategy and to stress test proposed model with its 
various parameterisations. 
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1. Introduction 

The fundamental objective of most investment deci-
sions made by individual investors is to capitalise on 
invested assets. The time horizon, during which 
expected capitalisation is supposed to materialise, is 
an essential attribute of investment decisions. Solving 
the optimal portfolio selection problem encompasses 
the specification of an opportunity set and definition 
of a preference or evaluation function. 

Let’s define the opportunity set of an individual 
investor as a universe of tradable financial assets, 
particularly a mix of mutual funds that spans the entire 
efficient frontier. Furthermore, let’s assume that 
individual investors make correct investment decisions 
and select an optimal mix of funds. However, the time 
moments within which investment decisions are made 
by individual investors are spread out over time 
randomly because of the different life cycles of 
investors. Investors that invest in particular funds are 

thus homogeneous in terms of their risk/reward 
preferences but heterogeneous in terms of their in-
vestment horizons and reference moments of perfor-
mance attribution. 

The investment strategies of mutual funds differ in 
terms of the strength of commitment to fulfil the 
investment horizon objectives. The vast majority of 
open-ended funds are offered with an implicitly 
defined investment horizon, which is usually defined 
as a time interval. All closed-ended funds and the 
minority of open-ended funds are stated in terms of an 
explicitly defined investment horizon. The investment 
strategies of implicitly defined investment horizon 
mutual funds focus exclusively on the length of the 
investment period and do not tie investment decisions 
to concrete time moments. The investment horizon is 
continuously rolled over. A fund’s portfolio is thus 
adjusted to fulfil the preferences of those investors 
that have just invested. Let’s materialise investment 
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decisions into a distribution of risk/reward underlying 
factors. This distribution can be provided as an expert 
assessment (some sort of risk/reward characteristics), 
by the use of statistical estimators or a Bayesian mix 
of both. Statistical estimates are required to be unbi-
ased and efficient and robust to foreseeable future 
events. If the estimators were absolutely unbiased, the 
investment horizon objectives would be fulfilled on 
average. However, there exist unsatisfied investors 
because of the presence of inefficiency. This is the 
main reason why most open-ended mutual funds offer 
implicitly defined investment horizons. The invest-
ment strategies of these explicitly defined investment 
horizon mutual funds usually exploit investors’ 
preferences for investment products that limit maxi-
mum losses. Popular portfolio insurance strategies, 
life cycle funds or held to maturity bond strategies are 
examples of such explicitly defined investment hori-
zon strategies. 

In addition to the objective of maximising future 
value, individual investors usually prefer investments 
that limit potential losses. This behaviour is described 
by behavioural finance and formalised under the 
cumulative prospect theory model developed by 
Kahneman and Tversky (1992). It has been shown that 
investors search for downside protection strategies 
because of skewed probability weighting, loss aver-
sion and the S-shaped curvature of the utility function. 
Portfolio insurance strategies are constructed to 
maximise invested capital while limiting maximum 
losses within explicitly defined investment horizons. 

The objective of the present article is to introduce 
and analyse the structure of a new mutual fund man-
agement model that enables the explicit definition of 
investment horizons in regular open-ended fund 
frameworks. We focus on the structure of the pro-
posed model and leave the search for the best parame-
terisation to future research. Firstly, investors of 
particular funds are divided into separate subgroups 
according to their moments of investment. There is 
a unique investment period for every subgroup that is 
bounded by the moment of investment and the in-
vestment horizon. The proposed model focuses on all 
active investment periods. Secondly, a dynamic value-
at-risk (VaR)-based portfolio insurance (VBPI) 
strategy is chosen as an optimisation tool because of 
its flexibility in parameterisation and with the elabo-
rated framework. However, the constructed model is 
not restricted to using VBPI only. An investor’s 
expected utility or index of satisfaction is assumed to 
be maximised by portfolio insurance strategies. The 
primary concept of the proposed model is to construct 
an optimal portfolio for each active investment period. 
A fund’s portfolio is allocated correspondingly to the 
most conservative optimal portfolio. If there exist only 
two assets, namely risk-free and risky assets, and the 

efficient frontier is strictly increasing, the most con-
servative portfolio is defined as that with the lesser 
allocation of risky assets. 

Regular single horizon VBPI is first examined in 
general. Then, the two-asset case that enables 
a closed-ended analytical solution is emphasised. The 
next section formalises multi-horizon VBPI (MH-
VBPI) in detail to show how and when opportunity 
costs arise for some investors of the fund managed by 
MH-VBPI. Historical back-testing elaborates on the 
differences between the single horizon and multi-
horizon strategies and shows under what circumstanc-
es both approaches are identical. Finally, the effects of 
different investment horizons, minimum performance 
requirements and the confidence level of the -
quantile estimator are analysed within a historical 
simulation setting. 

2. Value-at-Risk-based portfolio insurance 

The concept of maximising expected portfolio value 
while controlling for a shortfall probability is a con-
ventional alternative to the mean/variance framework. 
This idea was first suggested by Telser (see Elton et 
al., 2003) as a single period evaluation function and 
developed by Leibowitz and Kogelman (1991) into 
a multi-period portfolio insurance strategy. The 
constant proportion portfolio insurance (CPPI) model 
was introduced by Perold (1986) on fixed income 
assets. Black and Jones (1987) extended this method 
by using equity-based underlying assets. Goetzmann 
and Broadie (1992) introduced the safety-first portfo-
lio insurance program, thus improving on the popular 
CPPI model and time-invariant portfolio protection by 
directly controlling for shortfall probability. The 
safety-first portfolio insurance program based on 
Telser’s safety-first criterion is identical to the VBPI 
strategy proposed by Chow and Kritzman (2001) and 
Herold et al. (2005). Both approaches utilise the 
estimated quantile of future portfolio value distribu-
tion as a risk measure and dynamically rebalance 
portfolio composition. Hamidi et al. (2009) elaborated 
on a closely related approach, namely time varying 
proportion portfolio insurance. Fruitful studies from 
behavioural finance have proven that the safety-first 
criterion is consistent with the way investors perceive 
risk (Atwood et al., 1988; Harlow, 1991; Brogan and 
Stidham, 2005). VBPI can be classified as a dynamic 
hedging method set to hedge total risk, defined as an 
undesirable performance. 

2.1 General case  

VBPI can be formalised as the following constrained 
optimisation problem on portfolio percentage weights’ 
vector w: 
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 Tw
VEmax  (1) 

subject to ,Cw  (2) 

    CVVP T
 (3) 

 TVE represents an expected portfolio value for a 

given investment horizon T, calculated in t. The time 
moment t can be interpreted as the moment when the 
investment decision is made. The length of the re-
maining investment period is defined as .tT   C 
is a suitable set of investment constraints. CV (critical 
value) is the minimal portfolio value required at T 
where a small probability equal to 

 
exists that the 

true future portfolio value will be less than CV. The 
minimal portfolio value constraint (3) is described as a 
generic probability measure  .P  It is assumed that 

all expenses incurred by an investor are included in 
the calculation of expected value, quantile and VaR. 

Let’s define  TVQ  as an -quantile of the ex-

pected portfolio value. The corresponding VaR of 
a portfolio’s returns then holds: 
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where ,TR  is the linear return of portfolio value 

between the time moments t and T and tV
 
equals the 

portfolio value at t. The constraint (3) can be thus 
restated as: 

 
  CVVQ T   (5) 

or equivalently as: 
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The stochastic character of the returns on financial 
assets causes a fluctuation in the interim portfolio 
value and this could lead to a change in expectations. 
As a result, the portfolio’s composition must be 
rebalanced. Let’s specify the moment of an investment 
more precisely as 0t  and the moment of rebalancing as 

.1t  The rebalancing is formalised as: 

 
 T

w
VEmax  

subject to ,Cw  

 
  .CVVQ T   

The investment horizon of T is unchanged and the 
realisations of portfolio returns between  10 , tt  

determine the portfolio value at .1t  Dynamically 

managed portfolios can be rebalanced based on 
several methods. Jiang et al. (2009) presented three 
disciplines: time discipline, market move discipline 
and portfolio mix discipline. The first requires re-
balancing the portfolio at predetermined time inter-

vals; the second when a pre-specified move is realised 
in the market; and the last when the difference be-
tween the required and current portfolio composition 
exceeds a specified threshold. The inevitable conse-
quences of rebalancing are transaction costs. A de-
tailed description of transaction costs and their inclu-
sion in the optimisation problem is given by Fabozzi 
et al. (2006). VBPI is closely linked to another portfo-
lio insurance strategy, namely the CPPI model. 

2.2 Two-asset model 

Let’s restrict analysis further to the presence of two 
financial assets only, namely risk-free and risky assets, 
which are independent by definition. Risky assets can 
be interpreted in the spirit of modern portfolio theory 
as a market portfolio. All combinations of risk-free 
and risky assets span an efficient frontier, namely the 
capital market line. The efficient frontier strictly 
increases while the expected return on risky assets is 
higher than is the risk-free return and for all pairs of 
efficient portfolios BA PP ,  holds: 

        BABA PQPQPEPE  , 

where  Q  represents the risk measure. In this 

setting, condition (5) is sufficient to determine the 
optimal portfolio that satisfies the minimal portfolio 
value requirement. The investor specifies his/her risk 
budget with respect to the chosen minimal portfolio 
value and the current portfolio value and invests in the 
risk-free and risky assets such that the -quantile of 
the expected portfolio value equals the minimal 
portfolio value, satisfying all other constraints. 

Let’s assume that the underlying factors of both 
risk-free and risky assets are continuously compound-
ed returns r and c.1 Under these assumptions, VBPI 
can be reformulated to search for the proportion of 
risk-free and risky assets such that the -quantile of 
compounded returns on the portfolio holds: 

   .ln, 



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T V

CV
cQ   (7) 

The -quantile of portfolio returns  P

TcQ  ,  is deter-

mined by the proportion of risk-free and risky assets 
and the probability distribution function of the com-
pounded returns on risky assets. Let’s assume that 
a budget constraint is desired. The proportion of risky 
asset equals wt and the proportion of risk-free assets is 
 .1 tw  The condition (5) can thus be rewritten as: 

 
       .exp1exp , CVrVwcQVw tt

RA

Ttt    (8) 

                                                 
1 The future value of financial asset A, which is fully 
described by continuously compounded returns c, is given 

as:  ,exp ,TtT cAA   where ,Tc is the realisation of the 

return c in time interval  Tt,  and .tT   
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 RA
TcQ  ,

 is an -quantile of the continuously com-

pounded returns on risky assets, r is the continuously 
compounded returns on risk-free assets defined in the 
same basis as   (e.g. per annum), t is the moment of 
portfolio creation or rebalancing and T is the invest-
ment horizon. Rearranging (8) gives the analytic 
solution for the proportion of risky assets: 
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The performance of VBPI is driven by the ability to 
correctly estimate the future probability distribution of 
the returns on risky assets and to manage the ineffi-
ciency of the estimates, e.g. by rebalancing the policy 
and treatment of risk-free asset returns, which is 
briefly introduced in Appendix B. Equation (9) can 
then be reformulated to find out its economical inter-
pretation: 
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The numerator of the second fraction 
  rCVVt  exp  represents the risk budget of the 

portfolio. The risk budget is the present value of the 
portfolio that can be lost when risky assets decrease. 
More often, this is labelled cushion and is the focus 
for the direct calculation of exposure to risky assets in 
CPPI models. The denominator of the second fraction 

     RA

TcQr  ,expexp   is the return differential 

between the risk-free return and the worst considered 
return on risky assets. Appendix A elaborates more on 
the analytics of VBPI models and interconnections 
with CPPI models. 

3. Multi-horizon VBPI models 

Consider an open-ended mutual fund that aims to 
fulfil the objectives of investors with explicitly de-
fined investment horizons. These investors are risk-
averse and anticipate risk as a return (or future portfo-
lio value) that is lower than is the pre-specified critical 
value. Furthermore, their utility functions are opti-
mised by portfolio insurance strategies. We assume 
that investors are homogeneous in terms of their 
risk/reward preferences but heterogeneous in terms of 
their investment horizons and the reference moments 
of performance attribution because of different life 
cycles. All investments are made in discrete time. 

Because the total number of all considered inves-
tors can be unmanageably large, we first split them up 
into separate groups with respect to different invest-
ment periods. Each investment period is determined 
by a unique beginning date, critical value and moment 
of investment horizon maturity. The portfolio value is 
required to reach the critical value at this time mo-

ment. Let’s define the number of different investment 
periods that begin during one calendar year as fre-
quency  and recall the length of investment period to 
be .  Hence, there exist Y investment periods that run 
in every time moment t: 

 .Y  (11) 
Furthermore, we mark the remaining time to maturity 
of period y as .y  The analysis is constrained to the 
described case of two assets, namely risk-free and 
risky assets that span the entire adjusted efficient 
frontier where the dimension of standard deviation is 
substituted for the dimension of VaR. The risk-free 
asset yields continuously compounded rate r and the 
risk-free yield curve is assumed to be flat. The distri-
bution of the risky asset’s prices is mapped to the 
distribution of underlying factors. We consider the 
simpler pricing function where underlying factors are 
compounded returns. The optimal portfolio related to 
the investment period y is calculated in t following (9) 

and is determined by ,yCV  tV  and  .ˆ
,

RA

T

y cQ   We also 

define vector ,ν  which contains all estimated -
quantiles made in t, where every estimate relates to a 
different investment period, and thus to a different 
time moment: 

 
   .ˆ

,,1 Yy

yQ
 ν

 
(12) 

The total number of quantile estimates is equal to the 
total number of investment periods Y, and vector ν  
can be interpreted as a time structure of risk. Alterna-
tively, the quantile estimation can be performed for 
the generic estimation interval ~  (e.g. a time series 
analysis of weekly returns) and subsequently projected 
to the required investment horizons. Time projection 
can be defined as a problem of projecting the distribu-
tional characteristics of financial underlying factors 
from an estimation interval to any other point in time. 
More formally, the time projection function can be 
defined as: 

  .̂ yy f   (13) 

This projects parameter ̂  estimated in the generic 
estimation interval to the required time moment 

.yt   A particular form of the projection function 
depends on the assumed process of security prices and 
underlying factors.2 Interested readers are referred to 
                                                 
2 Three broad groups of time projection functions can be 
specified with regard to the underlying process assumptions: 
identically and independently distributed continuously 
compounded returns; dynamic volatility models; and 
alternative hypotheses. The time projection function under 
the i.i.d. assumption within an elliptical class of distribution 
is analysed in standard financial textbooks. The projection of 
higher statistical moments under the i.i.d. process assump-
tion was examined by Meucci (2004, 2010) and Duc and 
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Meucci (2004) for a formal definition of time projec-
tion. The term structure of risk is treated by Guidolin 
and Timmermann (2006); Colacito and Engle (2009) 
and Brownlees et al. (2009). 

Let’s define the vector ,ζ  that consists of all Y crit-

ical values: 

 
  .

,,1 YyyCV


ζ  (14) 

The value of a particular yCV  is time invariant be-

cause its value is defined at the beginning of the 
investment period. Finally, the composition of the 
optimal portfolio is calculated following (9) for every 
investment period. The composition of the optimal 
portfolio is fully determined by the proportion of the 
risky asset tw  as we assume a two-asset case and 

impose budget constraints. The optimal proportions of 
risky assets calculated in t can be aggregated to the 
vector w: 

   .,, yff w  (15) 
The structure of the vector w determines the final 
composition of the considered mutual fund. As the 
fund’s objective is to fulfil the preferences of all 
investment periods, the allocation to risky assets is set 
as a minimum of all components of w: 

  .min wVBPIMH

tw  (16) 
Equation (16) can be interpreted as a particular choice 
of decision function that finds a fund’s allocation. The 
proposed model follows the allocation of investment 
period most at risk at every point of time. However, 
the investment period that triggers this allocation 
changes dynamically with respect to market develop-
ments. Most often, a binding constraint will be im-
posed by a longest investment period. If a negative 
return is realised, a multi-horizon strategy will be 
driven by shorter investment periods. The strategy is 
suboptimal for new investors in this case. By contrast, 
the opportunity costs are lower than are those of 
a regular portfolio insurance strategy, which is often 
suboptimal for new investors until the final maturity 
date of the strategy, or while the original critical value 
                                                                           
Schorderet (2008). We refer interested readers to Engle 
(2009) for the treatment of dynamic volatility models and 
consequent time projection as well as for further references. 
The alternative hypothesis is postulated and analysed in 
Pástor and Stambaugh (2009). A broad class of scenario 
analysis can be attributed to alternative hypotheses, as well. 

suits the requirements of new investors. Additionally, 
it can be assumed that the mechanism of multiple 
binding constraints reduces estimation risk. 

The fund’s allocation VBPIMH

tw 

 
is not restricted to 

being driven by the minimum optimal allocation of 
various investment periods. In a multivariate setting, a 
more elaborate decision function must be used. Alter-
natively, Hamidi et al. (2009) suggested using the 
average as the decision function in order to reduce the 
start date and horizon date bias in their version of 
VBPI. 

3.1 Example calculations 

A simplified example is presented in the following 
paragraph. Funds’ prices are illustrated to demonstrate 
the functioning of the model. We assume that there are 
four two-year investment periods and that a new 
investment period begins every six months. Investors 
require at least 98% of invested capital at the invest-
ment horizon. Thus, the critical value is set to 98% of 
the fund’s price at the beginning of a particular period. 
Table 1 shows all the required inputs and calculations 
at time t1. The length of the investment period is equal 
to two years for every period. The remaining time to 
maturity is longest for Period 4, which is assumed to 
be the period that has just begun. The oldest period, 
Period 1, matures in six months. The next columns 
show the prices of the fund at the beginning of par-
ticular periods and its corresponding critical values. 
The current fund’s price equals 105.0 (which is the 
reference for the calculation of Period 4’s critical 
value). We assume that the fund’s price has increased 
by 5% since the beginning of Period 1. The columns 
labelled rf and RBy contain the compounded risk-free 
rates that are assumed to be gained in the remaining 
time to maturity of the investment period and particu-
lar risk budget. The risk budgets are calculated from 
(10) as the difference between the current fund’s price 
(105.0 for every period) and the present value of 
a particular critical value, and these are expressed as 
a percentage of the current fund’s price. The risk 
budget is highest for Period 1 as we have assumed 
a 5% performance of the fund in the past 1.5 years. 
The lowest risk budget is achieved by Period 4 as the 
fund performed well since the beginning of Period 2 
and Period 3. The next column shows the estimated 
term structure of risk for the remaining time to maturi- 

Table 1 MH-VBPI example calculation at 1t  

   y  yV  
yCV fr yRB VaR (1%) w (risky asset)

Period 1 2 0.5 100.0 98.0 0.9% 7.9% 11.7% 63.6% 

Period 2 2 1.0 102.0 100.0 1.8% 6.7% 15.6% 40.7% 

Period 3 2 1.5 103.4 101.3 2.7% 6.1% 18.3% 32.0% 

Period 4 2 2.0 105.0 102.9 3.6% 5.4% 20.3% 25.7% 
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ties in all periods, defined as VaR figures at the 1% 
confidence level.3 The optimal allocations for all 
periods are calculated following (9) and are shown in 
the last column. The fund’s composition is driven by 
the optimal allocation of Period 4 because of positive 
performance in proceeding periods and the chosen 
term structure of the risk. 

We also assume that the fund lost approximately 
3.8% in the following six months4 and that its price 
reached 101.0. The current fund’s price represents the 
basis for the calculation of the critical value of the 
newest investment period. Period 2 will now mature 
in six months and the newest period is labelled Period 
5. Table 2 shows all the statistics at time t2. We 
assume in our example that risk-free rates as well as 
the term structure of risk remained unchanged despite 
the decreasing value of risky assets. 

The risk budget of Period 4 is now the lowest, as 
the difference between the current fund’s price (101.0) 
and the present value of Period 4’s critical value 
(102.9) is the lowest. Using (9) and minimising all 
assumed investment periods yields 4.4% risky assets. 
The binding constraint is shifted from the longest 
investment period to the period most at risk. 

4. Multi-Horizon VBPI Performance 

Two questions are particularly important here. Firstly, 
how different is the performance of the presented 
multi-horizon portfolio insurance model from that of 
the regular single horizon strategy when both utilise 
the same portfolio insurance optimisations. Secondly, 
how sensitive is the multi-horizon strategy to different 
investment horizons, critical values and the parameters 
of the used -quantile estimator. Thus, a historical 
simulation based on weekly US financial data from 
5.1.1962 to 22.10.2010 to elaborate on both issues was 
used. 

Risky assets were calculated as a 40/60 mix of eq-
uities and long-term government bonds. Equities were 
                                                 
3 We assume a normal distribution of a risky asset’s com-
pounded returns with an expected value of 0.03 and 
a standard deviation of 0.08. 
4 The loss of 3.8% at the fund level corresponds to a slump 
of approximately 17.4% in the value of risky assets, as 
25.7% of the fund’s assets were invested in risky assets at t1. 

represented by the S&P500 index with reinvested 
dividends5 and we used the total return index of 
generic 10-year US Treasury bonds as a proxy for 
long-term bonds.6 The composition of risky assets was 
rebalanced weekly and we assumed nil transaction 
costs. The risk-free asset was represented by the total 
return index composed of US Treasury bills with 12-
month maturity dates. We used the current yield of 12-
month Treasury bills expressed as a continuously 
compounded rate (risk-free rate). 

We assumed that the compounded returns on risky 
assets showed a conditional normal distribution in 
order to keep calculations as simple as possible. 
However, the usage of biased and inefficient estima-
tors of the -quantile did not influence our analysis as 
both MH-VBPI and VBPI work with the same optimi-
sations. Standard deviation was estimated as a sample 
estimate from a rolling window of 26 past weekly 
observations and the expected return on risky assets 
was held constant at 3% in all simulations.7 The time 
projection of estimated parameters in different in-
vestment horizons was carried out following the 
square root rule of time. 

4.1 Comparison to a single horizon strategy 

In this part, we simulate the performances of hypothet-
ical mutual funds managed by various MH-VBPI and 
VBPI models over two-year investment horizons. All 
portfolios are rebalanced weekly, negative risky asset 
weight is restricted and the confidence level equals 
1%. The multi-horizon model is composed of 12 
investment periods that run in every time moment. 
A new investment period thus starts every two 

                                                 
5 The S&P500 total return index was used since its inception 
in 1988. We used the average dividend yield calculated from 
January 4, 1988 to October 22, 2010 to correct older data. 
6 The index composition was recalculated every month. The 
nine-year and 11-month US Treasury bond was assumed to 
be sold and a new 10-year bond was included in the index, 
both at market prices. 
7 We do not use the time varying risk-free rate of return as 
a proxy for a risky asset’s expected return because of its pro-
cyclical character. The risk-free rate decreases in downturn 
markets as a result of easier monetary policy and thus 
reduces the risk budget unnecessarily. On the contrary, 
a high risk-free rate enables too risky positions in up-
markets. 

Table 2 MH-VBPI example calculation at 2t  

   y  yV  
yCV  

fr yRB VaR (1%) w (risky asset) 

Period 2 2 0.5 102.0 100.0 0.9% 1.9% 11.7% 16.2% 

Period 3 2 1.0 103.4 101.3 1.8% 1.4% 15.6% 9.1% 

Period 4 2 1.5 105.0 102.9 2.7% 0.8% 18.3% 4.4% 

Period 5 2 2.0 101.0 99.0 3.6% 5.4% 20.3% 25.7% 
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Figure 1 CV = 95%, Max Leverage = 100% 

Figure 3 CV = 95%, Max Leverage = 300% 

Figure 2 CV = 100%, Max Leverage = 100% 

Figure 4 CV = 100%, Max Leverage = 300%  
months. A regular single horizon strategy is simulated 
for every investment period considered in MH-VBPI. 
Figures 1–4 show the back-tested returns on MH-
VBPI in relation to the returns on VBPI with respect 
to different critical values and the maximum leverages 
of risky assets. Each circle represents the returns on 
both strategies realised in specific two-year invest-
ment periods. The x axis shows VBPI returns and y 
axis returns on MH-VBPI. 

MH-VBPI performs closely to VBPI in most cas-
es. As expected, a multi-horizon strategy realises 
lower returns than does a regular strategy in high 
return spaces. This is the result of new critical value 
inclusion that is delivered periodically. As a result, the 
convex character of MH-VBPI is restricted. The return 
differential in high return spaces increases when we 
allow for risky asset leverage. VBPI exploits higher 
leverage, whereas a multi-horizon framework remains 
unchanged. By contrast, higher returns on VBPI are 
paid with lower minimum returns and left tail percen-
tiles. VBPI violates critical value requirements in all 
cases apart from the simulation shown in Figure 1. 
Higher maximum leverage helps MH-VBPI outper-

form in lower return spaces, as higher leverage over-
exposes VBPI to inefficient estimators and market 
volatility. 

Figure 5 gives other insights into the differences 
between MH-VBPI and VBPI. Funds managed by 
MH-VBPI can be seen as portfolios of several single 
horizon VBPIs. Allocation into a particular VBPI is 
mutually exclusive as MH-VBPI invests solely into 
the most conservative alternative. This is obviously 
desirable when the most conservative allocation is 
induced by the newest investment period with the 
longest horizon. Otherwise, there arise opportunity 
costs incurred by investors that buy the fund subse-
quently. However, rolling explicitly defined horizons 
and possibly lower estimation errors offset those costs. 
Figure 5 shows the average composition of considered 
funds in the period from 5.1.1962 to 22.10.2010 with 
respect to various critical values. Individual compo-
nents are single horizon VBPIs. The investment 
horizon is two years for both MH-VBPI and individu-
al VBPIs. We assume 12 VBPIs running at every 
moment. The confidence level is kept at 1%. The 
VBPI labelled as period 1 is the strategy with the 
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shortest horizon, while the VBPI labelled as period 12 
is the newest strategy. 

 

Figure 5 Average composition of MH-VBPI 

The fund is mostly invested following the most 
recent single horizon strategy as desired. However, the 
horizon strategy agrees with the newest VBPI mostly 
for risky parameterisations, namely those with lower 
critical values. Both strategies are identical in more 
than 95% of cases with a 50% critical value. Here, the 
risk budget is closely unbounded and the regular 
inclusion of new VBPI influences MH-VBPI to 
a small extent. The portfolio of MH-VBPI differs as 
the critical value increases. Tight risk budgets force 
a multi-horizon strategy to swiftly change focus period 
after market shocks in favour of older VBPIs. The 
percentage of MH-VBPI and newest VBPI concord-
ance continually decreases and both strategies agree 
approximately 45% of the time for a 115% critical 
value. 

4.2 Sensitivity analysis 

We also back-tested the performances of hypothetical 
mutual funds to assess the sensitivity of MH-VBPI to 
different investment horizons, critical values and -
quantile estimators. We considered four different 
investment horizons: one, two, four and six years 
(labelled S1Y, S2Y, S4Y and S6Y). Twelve investment 
periods run in every moment. In the case of a one-year 
horizon, a new investment period begins every month. 
In the case of a six-year horizon, a new period starts 
semi-annually. The fund’s portfolio was rebalanced 
weekly as in the preceding analysis. Every considered 
parameterisation utilised the same risk-free and risky 
assets as well as the risk-free rate and volatility esti-
mate. No leverage of risky assets was allowed. 

Investment horizon 

The investment horizon determines the composition of 
the fund through the amount of risk budget, which is 

defined as the difference between the fund’s price and 
the present value of CV. Additionally, investment 
horizon or time to maturity enters the time projection 
of the -quantile estimate. A longer investment 
horizon results in a more dynamic allocation as more 
sources can be allocated to risky assets. Figure 6 
compares the selected performance characteristics of 
the considered strategies in the historical simulation. 
The critical value was kept at 98% and confidence 
level at 5%. There were 574 one-year return realisa-
tions in the case of a one-year horizon strategy; 281 
realisations of two-year returns in the case of a two-
year horizon strategy; and 135 and 86 realisations of 
four- and six-year returns for four- and six-year 
horizon strategies. The extent of realised returns 
results from the historical performances of the chosen 
assets. 

 
Figure 6 Selected characteristics of strategies’ returns 

All strategies realised comparable average returns 
as well as 25th and 75th percentile returns. However, 
the return distribution of the strategy with the shortest 
investment horizon is most volatile and presents 
positive skewness. As expected, both the volatility of 
realised returns and its skewness decreased for longer 
horizons. As will be briefly shown, comparable 
average returns would diminish if transaction costs 
were contained. To investigate the further risk/reward 
characteristics of MH-VBPI, Figure 7 shows the 
realised sample volatilities of the considered strate-
gies’ weekly returns with respect to different critical 
values. The confidence level was kept at 5%.  

The highest volatility was realised by the longest 
horizon strategy. Strategies with shorter horizons 
realised lower volatilities because of a lower propor-
tion of risky assets. The same holds for the relation of 
realised volatilities and critical values. Higher critical 
values lead to more conservative and thus less volatile 
portfolio performances. However, this relation varies 
across model specifications. The volatility of the 
shortest strategy’s returns decreases most quickly. On 
the contrary, the shape of the realised volatility of the 
strategy with a six-year horizon is relatively horizon-
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tal. This is the result of using the same critical values 
for all models. The decrease in the realised volatility 
of a six-year strategy would be obvious if values 
larger than 110% were used as the critical value. The 
comparison of considered strategies with respect to the 
average weight of equity allocation shows the same 
results. 

 
Figure 7 Realised volatilities of the MH-VBPI strategies 

Average turnover 

Another insight gives a comparison of average weekly 
equity allocation turnover.8 Because we assumed nil 
transaction costs in back-testing, this comparison 
indicates the possible impact of their inclusion. Figure 
8 shows the comparison of equity turnover with 
respect to different critical values. As in Figure 6, the 
confidence level was kept unchanged at 5%. 

 
Figure 8 Average weekly turnover of equity allocation 

The highest average turnover was realised for the 
strategy with the shortest considered horizon and for 
conservative critical values. This is the consequence 
of the same risky assets that resulted in rather high 
trading in the shortest strategy because its composition 
is more sensitive to volatile assets. If we included 
transaction costs in the simulation, the performance of 
                                                 
8 We sum the absolute values of equity allocation changes; 
thus, both positive and negative changes of equity allocation 
are accounted for. 

the shortest strategy would significantly deteriorate. 
For this strategy, it would be optimal to decrease the 
equity component of risky assets. Figure 8 shows 
another interesting relationship between critical value 
and average turnover as well. The highest turnovers 
confront strategies that work with high critical values. 
The risk budget is limited, and even small moves in 
the prices of risky assets trigger a rebalancing of 
portfolios. 

Critical value 

The required critical value has a direct negative 
relationship with risky asset exposure in single period 
portfolio insurance models. The lower is the required 
critical value the higher is the risk budget and portfo-
lio can take larger levels of risky asset exposure. This 
relationship is expected to hold in multi-horizon 
models to lesser extent. Figure 9 shows the perfor-
mance characteristics of the chosen one-year horizon 
strategy with respect to different required critical 
values. The confidence level is kept constant at 5%. 

The most volatile characteristics are realised for 
lower values of the required critical values. As ex-
pected, higher average returns are delivered by those 
critical values and the negative relationship between 
average returns and critical values is obvious as well. 
Interestingly, the inner quartile interval is not signifi-
cantly impacted by changing the critical value re-
quirements. The requirements of minimal return were 
violated for higher critical values only. For CV = 
100%, 13 one-year periods were realised with returns 
lower than zero. As the strategy is performed on an 
overlapping basis, those periods were caused by a 
lower number of unanticipated events (such as the 
1987 market crash). The other parameterisations of 
MH-VBPI brought the same results. 

 
Figure 9 Selected return characteristics of S1Y 

-quantile estimator 

In general, two methods of -quantile estimation are 
used in portfolio insurance models with regard to 
forecasting horizons. Hamidi et al. (2009) specified 
the forecasting horizon as the upper limit of no-trade 
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time interval. The task is to estimate the maximum 
anticipated loss of risky assets that can be accommo-
dated by the portfolio within this interval. The fore-
casting horizon is thus much shorter than is the in-
vestment horizon of the fund’s investors. Alternative-
ly, the forecasting horizon is set to equal the targeted 
investment horizon as in Herold et al. (2005). In this 
way, risk is anticipated directly in terms of the charac-
teristics of terminal value and thus long-term risks are 
acknowledged as well (for more on the intersection 
between short-term and long-term risks, refer to 
Engle, 2009). If the investment horizon were about to 
terminate, both methods would yield the same results. 
In back-testing, the forecasting horizon was equal to 
the investment horizon. We used a simple model of 
conditional normally distributed compounded returns 
and the -quantile was calculated from sample volatil-
ity, a proxy for expected returns and confidence level. 
Figure 10 shows the performance characteristics of a 
one-year horizon strategy for a critical value set to 
95% with respect to different confidence levels. 

The results shown in Figure 10 are somewhat 
counterintuitive. The confidence level does not influ-
ence average returns of one-year investment periods. 
However, the shape of the return distribution changes 
rapidly when for higher confidence levels the proba-
bility mass is centred significantly on the average. 
Even the analysis of the parameterisations of different 
critical values yields the same results. A higher confi-
dence level significantly reduces the dispersion of 
realised returns, although the average return is not 
drastically influenced. The same conclusions can be 
drawn from the analysis of return sensitivity to differ-
ent values of constants used as a proxy for expected 
returns. 

 
Figure 10 Return characteristics of S1Y 

5. Conclusion 

In the present paper, a MH-VBPI model that enables 
an explicit definition of all investors’ investment 
horizons in regular open-ended fund frameworks was 
defined and analysed. The fundamental concept of the 

proposed multi-horizon model is to allocate a fund’s 
assets according to the most conservative allocation 
among optimal portfolios of all groups of investors. 
VBPI was utilised as the optimisation tool. Obviously, 
other portfolio insurance optimisers can be used as 
well. 

A historical simulation based on US market data 
was used to elaborate on (i) the differences between 
proposed MH-VBPI and regular single horizon VBPI 
and (ii) the sensitivities of the proposed model to 
different parameterisations. A multi-horizon strategy 
was performed in close relation to the single horizon 
strategy when excessive leverage was prohibited. The 
characteristics of the single horizon portfolio insur-
ance model were mostly preserved in the multi-
horizon framework. The longer the investment horizon 
and the lower the required minimal portfolio value, the 
higher the fund’s performance. The composition of 
risky assets plays an important role when assessing the 
influence of unwanted trading and thus the same 
composition cannot be recommended for strategies 
with different horizons. Interestingly, the value of the 
confidence level was found to be an important driver 
of the tails of realised returns, with a rather small 
effect on average returns. 

This proposed research can be variously expanded. 
Firstly, more advanced simulation methods are re-
quired to confirm the presented results. Secondly, 
coherent risk measures can be used instead of VaR, 
because they offer better statistical properties, most 
importantly in multivariate settings. Lastly, there 
exists a vast range of risk functions (e.g. principal 
component analysis for fixed-income portfolios) and 
different quantile estimation methods that can be 
elaborated on. Furthermore, the multi-horizon model 
can offer guidance on how to resolve the inherent 
problem of portfolio insurance models, namely how to 
reset the floor value. However, more advanced estima-
tors of future returns must be used. 
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Appendix A Comparison of two assets: VBPI and 
CPPI 

These portfolio insurance models are mostly suited to 
dynamic rebalancing methods. Different rebalancing 
methods that determine the rebalancing period r 
were highlighted in the article. The analysis of the 
maximum loss in risky asset value that can be incurred 
within the rebalancing period keeping a positive value 
of the cushion is mostly labelled gap risk analysis. 
Here, we present analytics based on the developed 
two-asset model and natural extension of CPPI multi-
plier that express the maximal magnitude of decreases 
in risky asset value. 

The CPPI model calculates the proportion of risky 
asset wt from the value of the cushion and multiplier m 
that controls the leverage of the portfolio: 

   
t

t
t V

rFVm
w




exp   (A–1)  

where F stands for the critical value of the portfolio, 
called Floor in the CPPI model. The proportion of 
risk-free assets is calculated from the budget con-
straints. The value of the multiplier can be bounded to 
constrain short sales or too high leverage and can be 
defined as a constant or as some function of market 
variables. In the regular CPPI, the multiplier is set to 
be the constant and the CPPI model does not require 
estimation. It can be shown that the inverse of the 
multiplier equals the maximum considered loss of 
risky assets that is accommodated by the model. This 
can be defined in terms of the realisation of a risky 
asset’s linear return as: 

 .1

_

 ml CPPI

r  (A–2) 

If the risky asset fell by more than CPPI

rl  within the 

rebalancing period, the critical value requirement is 

violated and the portfolio value cannot be restored by 
the risk-free return. The calculation of the correspond-
ing continuously compounded return CPPI

rc  is straight-

forward. The natural next step is to express the proba-
bility of this boundary return. 

The definition of the two-asset VBPI model ena-
bles us to create equivalent analytics. There are links 
between the definitions of the proportion of risky 
assets in the VBPI model (10) and that in the CPPI 
model (A–1) where equation (10) can be seen as 
a more general version of the risky asset proportion 
calculation. Thus, it is possible to calculate implied 
multiplier IMPm  from the VBPI model: 

  
    .expexp

exp

,
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T

IMP cQr

r
m





  (A–3) 

The boundary linear and continuously compounded 
returns induced by the two-asset VBPI model can be 
derived from equation (A–2) and are equal to: 

     1exp_  rcQlVBPI

r   (A–4) 

and 

   ,_ rcQcVBPI

r   (A–5) 
where  cQ is the -quantile of compounded returns 

that are expected to be realised at investment horizon 
T. If the quantile estimation were time-dependent, 
boundary returns would also be time-dependent. It can 
be shown that boundary compounded returns can be 
expressed in terms of the proportions of risky assets 
and risk-free assets as: 
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where   11  ttt VwRF  and 1 ttt VwRA . 

 

 

 

Appendix B Interest rate risk of portfolio insurance 
models 

Risk-free assets are generally assumed to grow linear-
ly over time in portfolio insurance models (see e.g. 
Balder et al., 2009; Chow and Kritzman, 2001; Jiang 
et al., 2009). However, the existence of risk-free assets 
with those characteristics is questionable. Even the 
Treasury bills of the most credible issuers possess 

some sort of price volatility and their prices increase 
rapidly in times of market stress (and yields decrease 
correspondingly). Thus, in the risk scenario, the risk 
budget is suppressed because of both a decrease in 
risky assets and a fall in the risk-free rate. It is possi-
ble that the divested risky asset cannot be reinvested at 
a sufficient risk-free rate. The inverse of the multipli-
er, therefore, assigns a lower total risk. 

 


