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ABSTRAKT

CSAPAI, Adam: Prognézovanie Makroekonomickych Premennych Pouzitim Metéd Strojového
Ucenia: Pripad Slovenska. — Ekonomicka Univerzita v Bratislave. Fakulta hospodarske]
informatiky; Katedra opera¢ného vyskumu a ekonometrie. — Skolitel: prof. Ing. Martin Lukégik,
PhD. — Bratislava: FHI EU, 2024, 148 s.

Tato dizeracnd praca sa zameriava na skimanie u€innosti modelov strojového ucenia (ML) pri
zlepSovani makroekonomickych prognéz, konkrétne zameranych na ukazovatele priemyselnej
produkcie a inflaicie v Slovenskej republike. Porovnanim roéznych modelov ML, ako su
regularizované metody najmensSich Stvorcov, techniky strojového ucenia zaloZené na ensemble,
neurénove siete a podporné vektory, s tradicnymi metoédami, vyskum zdoraziuje, ze ML je
nadradené v zachytavani zlozitych, nelinearnych vztahov, ktoré tradiéné modely casto
prehliadaju. Vyznamna pozornost §tidie je venovana progndézovaniu po COVIDe, s dorazom
na odolnost’ a adaptabilitu modelov na nahle ekonomické zmeny. Zistenia ukazujt, Ze modely
ML, najmi tie, ktoré vyuzivaji techniky ensemble a regularizacie, konzistentne predcia
tradicné metody prognodzovania, ¢o naznacuje vyznamny potencial ML pri zvySovani presnosti
makroekonomickych predikcii. Stiidia nielenze poskytuje tvorcom politik a ekonomickym
analytikom presved¢ivé dovody pre integraciu ML do ekonomického progndzovania, ale tiez
prispieva do akademického diskurzu tym, Ze kladne silny empiricky zéklad pre buduci vyskum
aplikacie ML v ekonomickom prognézovani.

KPacové slova: prognézovanie, strojové ucenie, Slovensko, inflacia, priemyselna produkcia
ABSTRACT

CSAPAI, Adam: Forecasting Macroeconomic Variables Using Machine Learning: The case of
Slovakia. — Unviersity of Economics in Bratislava. Faculty of Economic Informatics; Department
of operations research and econometrics. — Thesis Advisor: prof. Ing. Martin Lukacik, PhD. —
Bratislava: FHI EU, 2024, 148 p.

This study aims to explore the effectiveness of machine learning (ML) models in improving
macroeconomic forecasting, specifically targeting industrial production and inflation indicators
within Slovakia. By comparing various ML models, such as Regularized Least Squares,
Ensemble Machine Learning techniques, Neural Networks, and Support Vector Machines,
against traditional methods, the research highlights ML's superior ability to capture complex,
nonlinear relationships that conventional models often miss. A notable focus of the study is on
post-COVID economic forecasting, emphasizing the models' resilience and adaptability to
sudden economic shifts. The findings reveal that ML models, particularly those using ensemble
and regularization techniques, consistently outperform traditional forecasting methods,
suggesting a significant potential for ML to enhance the accuracy of macroeconomic
predictions. The study not only offers policymakers and economic analysts compelling reasons
to integrate ML into economic forecasting but also contributes to the academic discourse by
laying a strong empirical foundation for future research in ML's application to economics.

Key words: forecasting, machine learning, Slovakia, industrial production, inflation
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Introduction

Forecasting plays a vital role in assessing the economic condition and guiding economic
policymaking. It is foundational for crafting government budgets and crucial for policymakers,
like Central Banks, to time interventions effectively based on forecasts of key economic
indicators such as Gross Domestic Product (GDP), inflation, and unemployment. Current
models, however, often fail to capture the true dynamics between economic variables. For
example, Medeiros et al. (2019) illustrate how governments and international bodies, especially
the ECB, tend to consistently overestimate inflation projections. Such discrepancies can lead to
significant welfare losses and skew inflation expectations, underlining the need for more precise

forecasting models.

With the emergence of big data, enhanced computational capabilities, and advances in
statistical learning, economists now have access to a variety of new methods, including those
based on machine learning. These methods have become increasingly popular in

macroeconomic applications over the last decade, particularly in the last five to six years.

This thesis presents a rigorous assessment of machine learning models for forecasting in
Slovakia. We aim to determine the relative efficacy of machine learning models in capturing

the complexities of the Slovak economy compared to conventional methods.

Our contributions to macroeconomic forecasting are varied and significant. Firstly, we
propose a hybrid approach, inspired by Medeiros et al. (2019), that effectively captures
nonlinearities and variable interactions. This is particularly useful in post-socialist economies
of Eastern Europe, where datasets are often short. Regularizing these datasets before applying
nonlinear methods significantly improves the performance of nonlinear models. Secondly, we
compare the effectiveness of regularization and principal component analysis (PCA) in
handling dimensionally reduced datasets. Our findings indicate that regularization, a machine
learning (ML) technique, yields more accurate forecasts. Thirdly, we explore the use of ML
methods as tools for combining forecasts, demonstrating that these can enhance the accuracy
of individual forecasts. Fourthly, we demonstrate that regularization can significantly enhance
forecasting capabilities compared to traditional benchmarks. Fifthly, we highlight and capture
nonlinearities in the data using Ensemble ML models. To our knowledge, this is the first
application of these two techniques using ML in a small, open industrialized economy within a
monetary union with a short dataset. Sixthly, we are the pioneers in assessing the directional

accuracy of ML models, as existing studies typically focus only on error magnitudes. However,
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the directions of change are equally crucial. Seventhly, we provide a comprehensive overview
of ML model performance in both pre-COVID and post-COVID periods, showing that ML
models perform even better during periods of increased economic volatility and uncertainty.
Although other studies involve periods of crisis as well, they have decades worth of data that
can smooth out the effects of crises. Our sample has two crises despite having only 16 years
data, both at the beginning and end. One model even completely accurately forecasts the highly
uncertain inflation one to three months ahead. Eighthly, we demonstrate how ML methods can
more effectively capture trends based on soft indicators. Ninthly, all of this should serve as a

response to the critique of Makridakis et al. (2018), further elaborated on in Chapter 1.

The thesis is organized as follows. The first chapter reviews the existing literature on
macroeconomic forecasting with machine learning methods. It provides a general overview,
highlights the key findings in the field and justifies our benchmark. The second chapter states
our primary and partial aims, along with the scientific hypotheses. The third chapter provides
an exhaustive overview of our methodology, including the mathematical formulation of the
models, the codes we utilize, the forecast evaluation process and the data preprocessing steps.
The fourth chapter presents the results for both the pre-COVID and post-COVID samples. The
fifth chapter summarizes and interprets the results, while also giving recommendations. The

final chapter concludes.



1 Current state of the field at home and abroad

Breiman (2001) promotes the use of models driven by data that don't rely on any fixed
structures. He emphasizes that these models should not make any assumptions about the Data
Generating Process (DGP), which makes them more adaptable to changes in the DGP.
Moreover, Breiman (2001) argues that models should not assume any specific relationships
between predictors and target variables, making them more robust to errors in model design.

Machine learning models fit these requirements well.

Before moving on to machine learning, it is important to explain why we chose our
benchmark models and how machine learning compares with traditional methods found in
academic studies. Stock and Watson (2007) analyze a model that evolves over time based on
unobserved components. Then, Stock and Watson (2010) examine models based on Random
Walks and univariate time series, finding that these models are very challenging to improve
upon for macroeconomic forecasting. Faust and Wright (2013) review previous research and
agree with these findings. Therefore, we choose Random Walk and ARIMA models as our

benchmarks, as these are commonly used standards in economic forecasting literature.

Vargas (2020) observes that advancements in computing power, statistical learning
theory, and the increased availability of big data over the past decade have led to the adoption
of machine learning methods in economic forecasting. Historically, these methods were
primarily applied to classification tasks, such as predicting loan delinquencies or consumer
purchasing decisions, where they surpassed the performance of traditional models. Although
these applications focus on discrete variables, Vargas (2020) points out that machine learning
can also effectively predict continuous variables such as GDP or inflation. According to Vargas
(2020), machine learning's ability to capture nonlinear relationships in the data enhances our
understanding of complex economic phenomena like asymmetric business cycles, stock market

volatility, and regime switches.

The conclusions of Vargas (2020) are supported by Athey (2019), who notes that over the
past decade, economists have increasingly turned to machine learning for forecasting,
especially when large datasets are available. These methods are mostly used for forecasting
financial variables such as stock prices, as there is ample data. An example case study of
machine learning forecasting is provided by Cibul’a and Tka¢ (2023), who use machine learning
methods to predict bitcoin and other cryptocurrency spot prices. They compare the prediction

capacity of multiple supervised learning algorithms, including ensemble machine learning and

10



neural networks. They conclude that their machine learning algorithms are capable of beating
the benchmark. While Cibul’a and Tka¢ (2023) focus on cryptocurrencies and Athey (2019)
primarily discusses the use of microdata for forecasting, Mullainathan and Spiess (2017)
investigate the application of these methods in macroeconomic forecasting. All of these authors

argue that macroeconomists should add machine learning tools to their forecasting arsenal.

Bolhuis and Rayner (2020) analyze the theoretical aspects of Ordinary Least Squares
(OLS) in comparison to factor models and machine learning. They point out that OLS
predictions may be unsuitable due to issues like predictor relevance, nonlinearity, collinearity,
and high dimensionality. While factor models have been central in data-driven forecasting for
decades and can mitigate problems related to dimensionality and collinearity, they fall short
when it comes to addressing nonlinearity and predictor relevance, often resulting in less
accurate forecasts. In addition to theoretical limitations, Shintani (2005) and Maehashi and
Shintani (2020) provide empirical evidence showing that factor models often underperform.
These authors not only use dynamic factor models for forecasting, but they also employ
principal component analysis to extract common factors. They then apply machine learning
techniques using these factors as a basis. Their findings support that while methods based on
common factors can surpass the benchmarks, as noted by Stock and Watson (2002), they
generally fall short when compared to machine learning models that utilize hard data. With
regards to theory, Bolhuis and Rayner (2020) state that in contrast to factor models, machine
learning methods excel at capturing nonlinear dynamics within high-dimensional datasets.
They adeptly learn from complex historical data relationships without making unwarranted
future projections. Thus, despite the effectiveness of simple data-driven models, their
drawbacks have prompted researchers to explore machine learning as a viable alternative for

macroeconomic forecasting.

To elaborate further, we describe these methods within a macroeconomic framework.
Masini et al. (2021) review recent progress in the field and note that machine learning
encompasses various approaches. Specifically for macroeconomic forecasting, they describe
machine learning as the integration of automated algorithms and statistical methods to identify
patterns in large datasets. They also summarize the differences between the three widely used

categories of machine learning, namely supervised, unsupervised, and reinforcement learning.

Like Masini et al. (2021), we utilize supervised learning techniques for our forecasting
purposes. Supervised learning involves training the model on data that is structured as input-
output pairs. For example, in linear regression models, the inputs (or predictors) and the outputs
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(target variable forecasts) are paired clearly. The model learns a function that maps the input to
the output, aiming to predict the value of the target variable effectively. The specifics of
individual machine learning methods employed are discussed in the methodological section of

this thesis.

The empirical evidence on the macroeconomic forecasting capacity of machine learning
methods is scarce but compelling. Chakraborty and Joseph (2017) apply machine learning to
predict medium-term inflation rates and report that their selected methods can outperform
traditional benchmarks by as much as 29%. Similarly, Jung et al. (2018) employ methods like
Elastic Net, SuperLearner, and Recurrent Neural Networks to forecast macroeconomic
variables for seven advanced and emerging economies, achieving results that surpass the

benchmark World Economic Outlook (WEO) forecasts.

The most often cited study claiming that machine learning models are inadequate
forecasting tools is that of Makridakis et al. (2018). Makridakis et al. (2018) conduct a
comparative examination of machine learning (ML) and traditional statistical approaches to
forecasting, utilizing data from the M3 Competition. They employ various models, including
basic neural networks (such as the Multilayer Perceptron and Bayesian variant), advanced
neural networks (such as Recurrent and Long-Short Term Memory), Support Vector Machine,
a single CART Regression Tree, and basic ensemble models. Their sample spans 14 years and
encompasses 3003 time series. They discuss how traditional statistical methods like ARIMA
and ETS often outperform more complex ML techniques, noting that ML methods entail higher
computational costs and tend to overfit. However, they acknowledge that their findings may be
specific to the dataset used, which comprises a maximum of 126 monthly observations for 3003
variables. In our thesis, we demonstrate that with a dataset of comparable length but fewer
variables, regularization can significantly enhance forecasting performance. Additionally,
recent papers by Masini et al. (2021) and Coulombe et al. (2022), which offer updated
perspectives on ML forecasting, largely disregard eight of the ten methods proposed by
Makridakis et al. (2018), except for RNN and LSTM networks, as Medeiros et al. (2019) argue
that the remaining methods are too simplistic. Similarly, we conclude that employing more
advanced methods leads to substantial improvements in forecasting over general benchmarks

like ARIMA and its variants, employed by Makridakis et al. (2018).

In response to the critique by Makridakis et al. (2018), Medeiros et al. (2019) demonstrate
that machine learning can improve forecasting accuracy by up to 30% for U.S. inflation data.
They utilize a large dataset and employ various methods, analyzing data from periods of both

12



high and low economic uncertainty. According to Medeiros et al. (2019), the main criticisms

against machine learning are unfounded when more advanced methods are applied.

Although these studies recognize that machine learning methods can outperform
traditional benchmarks at both micro and macro levels, they often overlook the underlying
reasons for this superior performance. A second significant limitation, as pointed out by
Coulombe et al. (2022), is their limited scope. These studies typically rely on relatively small
datasets, forecast only a single target variable across a few time horizons, and generally use
between one and three models. The notable exception is Medeiros et al. (2019), which responds
directly to the critique of Makridakis et al. (2018). Furthermore, except for Medeiros et al.
(2019), the primary goal of these papers is to conduct a "forecasting horserace™ using hard
macroeconomic data, focusing predominantly on one accuracy metric, such as mean squared
error or root mean squared error. They neglect the performance of machine learning methods
based on common factors, an aspect only explored by Shintani (2005) and Maehashi and
Shintani (2020). Additionally, these studies often concentrate solely on minimizing forecast
error, overlooking directional accuracy. They also generally fail to explain why these methods

perform well or what might cause one method to outperform another.

These shortcomings are identified by Coulombe et al. (2022), who conduct a forecasting
exercise using US data from the past four decades to explore the factors contributing to the
superior performance of machine learning methods. They forecast multiple target variables
across five different time horizons using various models, pinpointing the critical success factors
for machine learning in forecasting. Firstly, they find that nonlinearities significantly impact
the data generating process in the US, enhancing the predictive power of machine learning
models. Secondly, they demonstrate that regularization techniques greatly improve forecasting
accuracy, outperforming traditional factor models. Lastly, they establish that B-fold cross-
validation is more effective for model selection than the traditional information criteria

typically used in econometrics.

Medeiros et al. (2019) also delve into why regularization and nonlinearities are critical in
macroeconomic forecasting. Starting with regularization: in recent years, as big data becomes
more prevalent, macroeconomists are reevaluating the significance of each variable within
these large datasets. In addition to factor models, there has been an increased use of shrinkage
and variable selection techniques. Notably, Medeiros and Mendes (2016), and Giannone et al.
(2021) recommend Lasso models for macroeconomic forecasting, which have shown to
outperform traditional benchmarks. These studies primarily focus on US inflation data and
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short-term forecasting. The most extensive study by Medeiros et al. (2019) reveals that although
shrinkage methods are slightly less precise than tree-based methods in the US, they significantly

enhance forecasting accuracy.

Regarding nonlinearities, Medeiros et al. (2019) also provide a theoretical backdrop. For
example, the relationship between inflation and employment is nonlinear and depends on
economic slackness. Additionally, nonlinearity arises from uncertainty; for instance, the
nonlinear hiring practices due to the high costs associated with firing employees. Furthermore,
the zero lower bound (ZLB) on nominal interest rates introduces nonlinearity between inflation,
employment, and interest rates, especially under unconventional monetary policies. The role of
houses as collateral and their interaction with monetary policy and financial intermediation
further complicates this nonlinearity. As evidenced during the Great Recession, the burst of a
housing bubble can precipitate severe credit downturns, marked by nonlinear dynamics. Our
dataset for Slovakia encompasses the Great Recession and a prolonged period of near-ZLB
interest rates, suggesting that nonlinearities are significant in the timeframe under study. What
is more, Obradovi¢ and Lojanica (2022) provide further evidence of nonlinearities in inflation.
They test the presence of a unit root in the inflation of the selected Western Balkan countries.
The authors find that inflation in Serbia and Bosnia and Herzegovina are best described by

nonlinear mean reverting behavior.

To summarize the theoretical section, we first highlight the importance of providing
accurate macroeconomic forecasts. We then outline the key advantages of data-driven models
that rely on statistical and machine learning techniques. We also explain our rationale for
selecting specific benchmark models. Additionally, we highlight the limitations of the main
forecasting models commonly cited in the literature and discuss how machine learning can
address these shortcomings. Moving forward, we delve into the application of machine learning
within the macroeconomic framework, noting that while empirical results are promising, they
often have a limited scope. Most studies focus on a small number of models over few
forecasting horizons, are predominantly conducted on large economies, and largely neglect
directional accuracy. Finally, we conclude this section by emphasizing the importance of
considering regularization techniques and nonlinear relationships in the data to enhance
forecasting accuracy and model robustness. In the next chapter we describe our aims. dataset,

the forecasting setup and the methods selected for forecasting.
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2 Aims of the thesis

In this chapter, we outline the objectives of our research. Our principal aim is to rigorously

evaluate the forecasting performance of various selected machine learning models and compare

these results against an econometric benchmark model. To the authors’ knowledge, there is no

published study at the time of writing this thesis that dwells on the applicability and

performance of these methods in a small open industrialized economy in a monetary union.

We forecast key Slovakian macroeconomic time series; specifically, industrial production

and inflation. Medeiros et al. (2019), Coulombe et al. (2022), and Maehashi and Shintani (2020)

also forecast these variables, deemed to be representative indicators of a nation's economic

health, to assess the performance of machine learning models.

To fulfill the principal objective of our study, we have established several specific goals:

Methodological detailing. In Chapter 3, we describe the machine learning
methods used in our research in detail. We also outline our three key
methodological contributions. These consist of combining regularized and
nonlinear methods, using machine learning methods as forecast combination
tools, and comparing the performance of principal component analysis with
regularization as a dimensional reduction technique.

Data description. We provide a detailed description of the macroeconomic
database provided by the National Bank of Slovakia. This part also includes an
overview of the data gathering and preprocessing steps taken to prepare the data
for analysis.

Performance analysis. We conduct a thorough analysis of the performance of
various machine learning models in forecasting Slovakian macroeconomic
variables. This involves testing specific hypotheses related to the effectiveness of
these models compared to traditional forecasting methods.

Summarization and Recommendations. Finally, we aim to summarize the
results of our study and provide policy and methodological recommendations
based on our findings. We also suggest areas for further research that could build
on our work, potentially leading to improved forecasting methods or applications

in other economic contexts.
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By systematically addressing these aims, we hope to contribute significantly to the field
of economic forecasting, particularly in the context of applying advanced computational

techniques to the analysis of macroeconomic data.

To achieve our objectives, we need to adopt the following primary and secondary

scientific hypotheses for each forecasted variable. The primary scientific hypotheses are:

H1 [Nonlinearities play a statistically significant role in the data generating process of the
Slovak macroeconomic time series.

H2 | Regularization can statistically significantly improve the quality of the macroeconomic
forecasts of our target variables.

If true, then when employing observable "hard" data, at least one machine learning model
from either the Regularized Least Squares or the Ensemble Machine Learning categories, as
specified later in Chapter 3, should statistically significantly outperform the benchmark at every

forecast horizon.

Our primary aim is a rigorous assessment of model performance, which lacks an exact
definition. However, based on Coulombe (2022) we believe that, in addition to the main
hypotheses, our secondary scientific hypotheses can be considered comprehensive. These

secondary scientific hypotheses are:

H3 Hybrid models can enhance the forecast accuracy of nonlinear methods.

When using indicator data, forecasting models based on machine learning are
H4 | more likely to forecast the correct direction of the change in the variable than
the benchmark model.

H5 Regularization based methods based on hard macroeconomic data deliver
better performance than dimensional reduction based on PCA.

To summarize, this chapter presents the principal aim of the thesis along with the partial
aims, and both the primary and secondary hypotheses. In the following section, we describe the

tools used to achieve these aims.
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3 Methodology and methods

In this chapter, we outline the methods and methodology used to obtain our results.
Firstly, we briefly describe the R statistical programming software used for our calculations.
The packages used for modeling are listed in Table 1. Secondly, we introduce our benchmark
models. As we automate the exploration of functional space, Table 2 presents different

benchmark possibilities.

Thirdly, we discuss the first group of methods, known as Ensemble Machine Learning.
Fourthly, we provide a theoretical description of Regularized Least Squares methods. We
selected multiple models from each category to provide a thorough overview of each category's
performance and to highlight the main benefits and limitations of each method. We categorize
the models following Coulombe et al. (2022), grouping them by their ability to either regularize
or capture nonlinear relationships. We chose three methods from each category to ensure our

results are robust and not merely due to chance from selecting a single method.

Fifthly, we present one of our key methodological contributions: the potential to combine
these two model categories to enhance results. Sixthly, we outline the two types of neural
networks considered for forecasting. Seventhly, we characterize the Support Vector Machine
Regression. Eighthly, we describe our forecasting setup, focusing on the rolling window
approach, extracting and applying common factors, and the methods by which we prepare

composite forecasts using machine learning.

The ninth subchapter presents the forecast evaluation procedures. The tenth subchapter
explains stationarization, describes the macroeconomic database of the National Bank of

Slovakia, and outlines our database and observation periods.

In summary, this chapter provides a comprehensive overview of our methodology,

machine learning methods, the evaluation of their performance, and data description.

3.1 RStudio

RStudio! is an integrated development environment (IDE) tailored specifically for the R

programming language, which is extensively utilized in scientific research and data analysis. It

! https://posit.co/download/RStudio-desktop/
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features a variety of packages and offers a user-friendly interface for composing, executing, and
debugging R code, making it an indispensable tool for researchers engaged in statistical

analysis, data visualization, and scientific modeling.

RStudio enhances productivity through tools like syntax highlighting, code completion,
and built-in data visualization capabilities, which help streamline data-driven workflows. This
makes it a highly efficient, intuitive, and user-friendly platform with extensive resources for
implementing machine learning methods. The list of the packages, along with their respective
machine learning methods is provided in Table 1. The code snippets of each method along with
the CV and manual hyperparameter setup are presented in the subchapters of the particular

method’s description.

Table 1: R packages

Method Package

Benchmark “forecasting” by Hyndman and Khandakar
(2008)

Ridge “oglmnet” by Friedman et al. (2010)

Lasso “glmnet” by Friedman et al. (2010)

Elastic Net (EN) “glmnet” by Friedman et al. (2010)

Random Forest (RF) “randomForest” by Liaw and Wiener (2002)

Boosting “caret” by Max (2008)

Bagging “caret” by Max (2008)

Support Vector Machine (SVM) https://cran.r-
project.org/web/packages/e1071/index.html?

Feedforward Neural Network (FFNN) “nnet” by Venables and Ripley (2002)

Long Short-Term Memory Neural | https:/tensorflow.RStudio.com/?

Network (LSTM)

Source: authors’ own work

Moreover, except for a few hyperparameters which we have to manually specify, we
utilize these packages to automatically adjust the hyperparameters during each iteration of the
forecasting procedure. This approach ensures that we achieve the optimal values for each
individual forecast. In summary, RStudio serves as an effective and straightforward tool for

macroeconomic forecasting with machine learning, so we use it.

2 This package lists no citation info at the website so I can only provide the website link.
3 This package lists no citation info at the website so I can only provide the website link.
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3.2 Benchmark models

In this subchapter we detail the forecasting methods employed in our study. Our
computational work is conducted using RStudio. As benchmarks, we employ models such as
Autoregressive Integrated Moving Average (ARIMA) and Random Walk (RW), the latter being
a simpler subset of ARIMA models. These models are selected based on their fit as determined

by the Akaike Information Criterion (AIC), which RStudio calculates automatically.

Ye+h = YVt T €ttn (D

where y;,, represents the forecast of the target variable at time t + h, y: is the last observed
value of the target variable at time t, and €, ., is the white noise error term at time t + h. Besides
Stock and Watson (2010), Atkenson and Ohanian (2001) also show that despite being a simple
model, the Random Walk is hard to beat in forecasting exercises. Pratap and Sengupta (2019),
Mahajan and Srinivasan (2019) and Medeiros et al. (2019) also use this model as one of their

benchmarks.

Additionally, Pratap and Sengupta (2019) and Chakraborty and Joseph (2017) also
incorporate the ARIMA(p,d,q) model of Box and Jenkins (1970) as another benchmark,
underlining its prevalent use for comparative analysis in time series forecasting. We write an

ARIMA model as

¢(B)(1 — BNy, = c+0(Be, 2)

where &; is a white noise error term, d is the order of integration, B represents the lag operator,
and ¢ and 6 are the AR and MA polynomials of order p and g, respectively, which describe the

order of the autoregressive and moving average terms.

As the model selection procedure is automated in R with the auto.arima function from the
forecasting package of Hyndman and Khandakar (2008), other possible benchmark models,
nested in the ARIMA framework, are presented in Table 2.

Table 2: Possible benchmark specifications

White noise ARIMA(0,0,0) with no constant
Random walk ARIMA(0,1,0) with no constant
Random walk with drift ARIMA(0,1,0) with a constant
Autoregressive ARIMA(p,0,0)

Moving average ARIMA(0,0, ¢)

Source: Box and Jenkins (1970)
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3.3 Ensemble Machine Learning

This subchapter presents the Ensemble Machine Learning methods, namely Random
Forest, Boosting and Bagging. It is largely based on Masini et al. (2021). Before describing the
methods, we provide a brief note on the symbols used. An uppercase letter like X represents a
random variable, whereas a lowercase letter x indicates a fixed (non-random) value. Bold type,
used for both X and x, signifies multivariate entities like vectors or matrices. The notation [l-l,

for g = 1 stands for the £, norm of a vector. For any set S we use |S| to denote its size.

The objective is to forecast Y, using T observations of the random (Y;, Z})', where h =

1, ..., H. The following derivations of machine learning methods assume that {(Y;, Z})'};2, isa

]Rd+1

covariance-stationary stochastic process on . As a result, we stationarize the data prior to

training.

To continue with, we define an n-dimensional vector of predictors X,:=
(Yt_l, v Yoo, Zy, ...,Z;_T)’ using fixed integers p =1 and r = 0, where n =p + d(r + 1).
In the rest of the thesis, we consider the direct forecasting model

Yoon = fuX) + Upsp, h=1,.. H, t=1,...,T. 3)

Here, f,: R™ - R is an undefined (measurable) function, and U p:= Yiyp — fn(Xy) is

presumed to have zero mean and finite variance.

In equation (3), the function f;,(X.) is unknown, and for many applications, the
assumption of linearity proves too limiting, necessitating more flexible forms. Assuming a
quadratic loss function, the estimation problem becomes the minimization of the functional \(

S(f), defined as

S(f):= Z{;{l [Yeen — f(Xt)]Z; (4)

where f € G, a generic function space.

3.3.1 Decision Tree

Masini et al. (2021) explain the basic concept of a decision tree as follows. A decision
tree is a nonparametric approach that through local approximations estimates an unknown

nonlinear function f}, (X;) from (3). This is achieved by recursively splitting the covariate space.
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Masini et al. (2021) provide a graphical example. Figure 1 presents a decision tree on the
left side, which corresponds to the spatial partitioning shown on the right side for a two-
dimensional case. For instance, consider predicting basketball players' scores based on their
height and weight. The tree’s initial split divides players based on a height threshold of 1.85
meters, separating taller players from shorter ones. Following this, the tree further divides each
group based on weight: the left branch continues with shorter players, and the right with taller
ones. The scores are then predicted at each terminal node by calculating the average score
within each group. The process of developing the tree involves determining the optimal point
for splitting at each node, which involves selecting the best variable and the specific value for

the split, such as height at 1.85 meters in the given example.

Figure 1: Decision Tree

height < 1.85m
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height
Source: Masini et al. (2021)

The decision tree approximates the function f;, (X;) using the formula

1 ifX,€R,

_yJ =
hp(Xe) = Zjil Bili(Xy), where L (X,) = {0 otherwise. -

)

This model essentially represents a linear regression on Jr dummy variables, with each I;(X;)
being a product of indicator functions that activate based on whether X; € R; defined by the
tree's splits. Let J: = J; denote the set of indices for parent nodes (where a leaf begins) and N: =
N7 for terminal nodes (where a leaf ends). The tree's structure has regions labeled as Ry, ..., R;,

with the root node (first parent node) located at position 0. Each parent node at position j has
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two child (split) nodes located at positions 2j + 1 and 2j + 2. Each parent node is associated
with a threshold (split) variable Xst> where s; € S = {1,2, ..., p}.

Figure 2 presents an example based on Masini et al. (2021). On Figure 2 the parent nodes
are indexed by ] = {0,2,5} and the terminal nodes, which are the leaf ends where predictions
occur, are indexed by T = {1,6,11,12}. This example shows how different regions and splits
are organized within a regression tree to categorize data points based on their covariate values,

thus facilitating the stepwise prediction process modeled by hp(X,).

Figure 2: Parent and terminal nodes of a decision tree

Parent
node 0
Terminal Parent
node 1 node 2
(Region 1) /\
Parent Terminal
node 5 node 6

(Region 4)
Terminal Terminal
node 11 node 12
(Region 2) (Region 3)

Source: Masini et al. (2021)

The approximating model can be written as
hp(Xe) = Xier BiByi(Xs 0)), (6)

where
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nj(14m4,5)
2

Bux;00) = | [ 1(Xs,0) x[1-1(Xs06

j€]

1 ifXg ¢ <c
I(Xg.;c) = { A
( sptr ) 0  otherwise,

—1 if the path to leaf i does not include parent node j;

-]

)] (1-n;,7)(14n45)

)

0 if the path to leaf i include the right-hand child of parent node j;

1 if the path to leaf i include the left-hand child of parent node j.
Here, the notation J; refers to the indices of parent nodes that are included in the path leading
to leaf node i. Each leaf node i, which belongs to the set T, is associated with a set of conditions
0, = {c, } where k belongs to JJ;. These conditions ¢, are thresholds or decision criteria at each

parent node that must be satisfied for the path to proceed towards the terminal node i.

The expression Y} ;e;By; (X £ Bj) = 1 describes a fundamental property of the decision
tree structure. Here, By; (X £ Bj) is a binary function that evaluates to 1 if the input X; meets the
criteria specified by 8; for the path to node i, and 0 otherwise. This implies that for any given
input X,, exactly one path through the tree will satisfy all the conditions from the root to a

terminal node, ensuring that each input is uniquely classified into one region R;.

3.3.2 Random Forest

Breiman (2001) introduces Random Forest (RF), while Wager and Athey (2018) prove
consistency and asymptotic normality of the RF estimator of f,(X;). Masini et al. (2021)
provide a brief overview. Random Forest consists of multiple regression trees, each developed
from a bootstrap sample of the initial dataset. Considering the context of time series data, a
block bootstrap approach is utilized. Let's assume there are B bootstrap samples. For each
sample b,b =1, ..., B, a tree containing K}, regions is constructed using a randomly chosen
subset of the original regressors. The parameter Kj,is selected to ensure a minimum number of
observations in each region. The ultimate prediction is derived by averaging the outputs from

each tree when applied back to the original data in the following way
5 1 T, 5 .
Yerne = Ezgzl[zizblﬁi,bB]]i,b(Xt;ei,b)]- (7

Besides the work of Wager and Athey (2018) on inference from random forests, Davis

and Nielsen (2020) also demonstrate a uniform concentration inequality for regression trees
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based on nonlinear autoregressive stochastic processes and establishes the consistency for a

broad range of random forests.

Figure 3 depicts the R code for the Random Forest method, utilizing the "train" function
from the caret package for optimal training outcomes. We restrict the number of variables
randomly sampled as candidates at each split (known as "mtry") to 60 or fewer. This is a
reduction from the default setting, which samples about one-third of the total variables,
approximately 80 variables, and would significantly increase computational costs. However,
we allow for fewer than 60 variables at splits if the data indicates that this is optimal. Other
hyperparameters of the Random Forest method, such as the number of trees (""ntree"), the size
of terminal nodes ("nodesize"), and their maximum number in a forest ("maxnodes"), are

determined through 5-fold cross-validation at each iteration of the rolling window process®.

Figure 3: R code of the Random Forest method

# Limit the range for mtry to make it more efficient
Timited_mtry <- seqg(l, min(60, ncol(x)), by = 1)

# Set up the Random Forest mode]

rF_model <- trainix, v,
method = "rf",
trZontrol = trainControl (method = "cv", number = 50,
tuneGrid = expand.gridimtry = Timited_mtry))

Source: based on Max (2008)

3.3.3 Boosting

Masini et al. (2021) reviews the Boosting algorithm. Boosting is a method that
progressively refines the approximation of nonlinear functions using simple base learners,
through a process called sequential approximation. Specifically, the version known as Gradient
Boosting, introduced by Schapire (1990) and Friedman (2001), operates like a Gradient Descent

in the space of functions.

This approach is iterative, where boosted decision trees aim to adjust the gradient of the
loss function using small trees in each cycle. For a quadratic loss as in (4), which is the focus
of this discussion, the algorithm effectively refits the residuals left from the previous round.
The described boosting algorithm, particularly for quadratic losses, employs a shrinkage

parameter v € (0,1] within the range of (0,1] to moderate the learning speed. When v

4 For more information on our forecasting setup, please refer to Subchapter 3.8.1
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approaches 1, the model converges faster and fits better to the training data, though it risks
overfitting and potentially poor performance on new, unseen data. Overfitting can significantly
skew derivative estimates, even when only considering training data. Therefore, a learning rate
between 0.1 and 0.2 is suggested to achieve a balance between convergence speed and

overfitting mitigation.
The boosting algorithm works as follows:

1. Initialize:
by =V:= %Z?zl Y.
This value serves as the initial approximation of the response variable.
2. For each iterationm =1, ..., M:
(a) Compute residuals as

Um =Y: — Otm-1-

This step involves calculating the residuals between the actual data points and the predictions

from the previous iteration.
(b) Fit a tree model as
Qe = Nier,, BimBy,, i (X5 Oim)-
Here, a tree model is grown to fit these residuals. Each tree makes a prediction #;,,, which is a

sum over the leaves i of the tree T,,, weighted by coefficients fB;,,,, and evaluated using basis

functions By, ; parameterized by 0,,.
(c) Optimize the contribution of the tree
Pm = arg minp Z’{:l [utm - pﬁtm]z-

This step involves finding the optimal scaling factor p,, that minimizes the squared error

between the actual residuals and the scaled predictions from the current tree.

(d) Update the model

btm = bem-1 + vpmﬁtm-
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The predictions are updated by adding a fraction (controlled by the shrinkage parameter v of

the scaled tree predictions to the previous predictions.
3. Final Model:

The final prediction for a future value Y., is given by
+Xm=1 Vpmlen ()
=Y + XM -1 VPm Zker,, PemBy,x(Xei Om)

This expression represents the initial average plus the accumulated contributions of all trees,

adjusted by their respective optimal scaling p,, and the shrinkage factor v.

This sequential building and updating process is designed to iteratively reduce errors in
the predictions, using trees to model residuals at each step and adjusting the contribution of

each tree to prevent overfitting.

Figure 4: R code of the Boosting method

# Define hyperparameter grid for GEM

gbhmGrid <- expand.gridin.trees = 100,
interaction.depth = (1, 3, 5,
shrinkage = c(0.01, 0.1,
n.minobsinnode = c(10, 200D

# Train GBM model using the selected features

ghm_model <- trainix_selected, v,
method = "gbm",
trControl = trainControl(method = "cCv
tuneGrid = gbhmGrid)

, humber = 5,

Source: based on Max (2008)

In the case of Boosting, we specify additional values for the hyperparameters, either for
computational efficiency or based on theoretical considerations. We continue to utilize the
"train" function from the caret package of Max (2008). Initially, we set the shrinkage parameter
to either 0.01 or 0.1, following the recommendations of Masini et al. (2021) to strike a balance
between fit quality and computational expense. Furthermore, we determine the number of trees
to grow ("n.trees"), and we set potential values for interaction depth as well as for the minimum
number of observations required in each node ("n.minobsinnode"). Subsequently, we employ
5-fold cross-validation to compute the remaining hyperparameters at each iteration of the
rolling window process and to evaluate our specified values, ultimately selecting the best-

performing model.
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3.3.4 Bagging

Breiman (1996) introduces the concept of bagging, short for Bootstrap Aggregating,
Bagging is a method to decrease the variance of unstable predictors. It gained traction within
the time series analysis community through the work of Inoue and Kilian (2008). They applied
it to generate predictions using multiple regression models that have nearly zero regression
coefficients and potentially correlated or conditionally heteroscedastic errors. In the context of
time series, the bagging algorithm must consider the temporal aspect when creating bootstrap
samples. Bagging is particularly useful when the predictor count is large compared to the
sample size, as in our case. Masini et al. (2021) describes the bagging algorithm for times series

models as follows:

1. Organize the set of tuples (Vipp, X:),t =h+1,...,T into a matrix V which has
dimensions (T — h) X n. This matrix contains the target variable y,,;, and the predictors x;

from each corresponding time period.
2. Generate bootstrap samples. For i = 1, ..., B (where B is the number of bootstrap

samples we create), draw blocks of M rows from matrix V with replacement. These blocks form
the bootstrap samples {(y(ﬁ-)z,xf{)z), . (y(*l-)T, xf’lf)T)}.

3. Compute Bootstrap Forecasts. For each bootstrap sample, calculate the forecast
y&)whlt as

0 if tf < cVvj,

A*' — N 9 9
Y)e+hlit {a)}"(*i)t otherwise, ®

where X(;),: = S(;y:2(;): and S; is a diagonal selection matrix with the j-th diagonal element

given by

. :{1 if |¢;] > c,
{ltj|>c} 0 otherwise ,

Here c is a critical value predefined in our analysis, and /1’&) is the Ordinary Least Squares

(OLS) estimator recalculated for each bootstrap sample.

4. Average the forecasts. Finally, compute the average forecast y;, . over all bootstrap

samples as
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Ve+hit =

B
> Soeie-s:
i=1

This structured approach iteratively assesses the robustness and stability of the model

2|~

predictions by using the block bootstrap method, accounting for temporal dependencies and

potential heteroscedasticity in the time series data.

The bagging algorithm outlined above necessitates the ability to estimate and analyze in
a linear model. However, this becomes impractical when the number of predictors exceeds the
sample size (n > T), necessitating modifications to the algorithm. Garcia et al. (2017) and

Medeiros et al. (2019) implement the following modifications to the algorithm:

0. Perform n univariate regressions of y;,, on each covariate in x;. Calculate the ¢-
statistics and retain only those that are significant at a predetermined level. Label this new set

of regressors as X;.

1-4. Follow the same steps as previously, but replace x; with X;.

3.4 Regularized Least Squares

Regularized Least Squares (RLS) encompasses penalized regression methods. Here we
consider the Lasso, Ridge and Elastic Net. Before we dive deep into the methods, we outline

our notation. This subchapter is based on the work of Kock et al. (2020).

For any vector x € R", the £,-norm of x is defined as || x [I= / n . xZ, which

represents the Euclidean norm. The €;-norm of x, denoted as |l x I, is the sum of the absolute
values of the entries of x, or Y7 ; |x;|. The £5-"norm" of x , although technically not a norm,

counts the number of non-zero elements in x, given by Il x ll;,= Y11 1y, 20}-

For any subset A € R", the cardinality of A4 is represented as |A|. The vector x is derived
from x and contains only those entries of x whose indices are in A4, resulting in a vector of
length | A |. Similarly, for an n X n matrix B denotes the submatrix consisting of rows and

columns indexed by A, and is thus of dimension |A| X |A].
Next, this chapter explores variants of the classical linear regression model, written as
yt Z,B'Xt+6t, t = 1,...,T, (10)
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where T € N and 8 is a k X 1 vector of unknown parameters. The subscript t indicates that the
observations are sequential, reflecting the time series nature of the data. Furthermore, (°
denotes the true parameter vector, which is assumed to be unique within the context of this
chapter. Define A = {i: § # 0}. The cardinality of A, denoted s, = |A|, reflects the number
of non-zero coefficients. When s, is substantially smaller than k, f° is described as sparse.
This sparsity is crucial for certain statistical methods and interpretations within time series

analysis.

Consider the equation y = Xf8 + € represented in the standard matrix format, where Z =

(y,X). A penalized regression estimator 8 is derived by solving the following optimization
problem:

B € argmin[ll y — XB I+ p(B, a, Z)]. (11)
BERK

Here, 2 > 0 acts as a penalty or tuning parameter, and p: R x R x RT*(1+k) - [0, 00) is the
penalty function, which imposes a cost on the elements of 8 for being non-zero. The parameter
a is a d-dimensional tuning parameter chosen by the user. Although the penalty function p
generally does not depend on any tuning parameter, it can be influenced by the observed data

Z.

In all of the following forms of p, for any (&, B) € R* x R™*(*%) n(B,a, B) = 0 if and

only if # = 0. This condition means p penalizes f# when it is not zero, thereby the estimator [A?
from equation (11) is termed penalized as it minimizes both the regular least squares objective

and the penalty function p. The value of A, when increased, assigns more importance to the

penalty function, leading to B having generally smaller (in absolute terms) entries compared to
the least squares estimator. Moreover, Kock et al. (2020) emphasize that the penalties discussed

lead to estimators that are viable even when k > T.

3.4.1 Ridge

The first penalty term, Ridge, is presented in Hoerl and Kennard (1970) and concisely
described in Kock et al. (2020). It uses

p(B,a,Z) =X, BE. (12)
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The Ridge Regression estimator, ﬁridge (4), is derived from the closed-form solution
f?ridge (1) = (X'X + AI,)~1. Note that ﬁridge (0) = Bors when well-defined. Ridge Regression
proves particularly useful when X' X is (nearly) singular, where the ordinary least squares (OLS)
estimator faces issues such as non-uniqueness and high variance. Although unbiased in cross-
sectional data, the high variance of the OLS estimator leads to a significant mean square error

(MSE). In contrast, ﬁridge is biased for any A > 0; however, there is always some 4 > 0 for

which the MSE of ﬁridge (A) is strictly lower than that of the OLS estimator, as detailed in Hoerl
and Kennard (1970). This lower variance underpins the effectiveness of Ridge Regression even

in time series analysis. However, it's important to note that although Ridge Regression reduces

. . . n A n2 n A n2 .
the magnitude of the parameter estimates (i.€., |[Brigge (DI < [[Bowsll for A > 0), it does not

produce coefficients that are exactly zero, thus limiting its utility for variable selection.

Figure 5 illustrates the R code for implementing the Ridge regression method. We
optimize the parameter values for A as suggested by Friedman et al. (2010), while setting a =
0 to configure a Ridge model. We proceed with the model training using 5-fold cross-validation
and utilize the "train" function from the care package of Max (2008) to select the optimal A
during each iteration of the rolling window process. Upon determining the best A value, we
estimate the Ridge model using the "glmnet" function from the glmnet package by Friedman et
al. (2010). Subsequently, we use the estimated model for predictions and calculate the forecast
errors.

Figure 5: R code of the Ridge method

# Set up the parameter grid for lambda (alpha is fixed to O for Ridge)
lambda_grid <- 104seq¢-3, 1, Tength.out = 100}
param_grid <- expand.grid(alpha = 0, Tambda = Tambda_grid)

# Perform nested cross-validation

inner_cv <- trainControld(method = "cv'", number = 52
outer_cy <- trainControl(method = "cv'", number = 5)
model <- trainix, vy, method = "glmnet", trControl = inner_cv, tuneGrid = param_grid)

# Retrieve the optimal hyperparameters
optimal_Tambdal[i]l <- modelfbestTuneflambda

# Make predictions on the test data using the optimal hyperparameters
ridge_model <- glmnetix, v, Ffamily = "gaussian", alpha = 0, lambda = optimal_lambdalil)

Source: based on Friedman (2010) and Max (2008)
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3.4.2 Least Absolute Shrinkage and Selection Operator (LASSO)

The second penalty term is Lasso, introduced by Tibshirani (1996) and briefly outlined
in Kock et al. (2020). It uses

p(B,O!,Z) = ?=1 |,8i|a (13)

within the framework described by equation (11). This contrasts with Ridge Regression, which
employs the squared £,-norm; the Lasso uses the £;-norm. A distinctive feature of the Lasso is
its ability to produce coefficient estimates that are exactly zero when the penalty parameter A is

sufficiently large, effectively performing variable selection.

The Lasso combines estimation and variable selection in a single step, starkly contrasting
traditional methods which typically estimate parameters first and then conduct hypothesis tests
to determine which parameters are non-zero. Traditional model testing procedures heavily
depend on the sequence and type of tests conducted, such as sequential t-tests or a combination
of joint and individual tests, leading to final models that vary based on the testing approach.
Alternatives like using information criteria (AIC, BIC, HQ) for model selection also exist. Both
of these variable selection methods are generally applicable only to least squares estimates for
k <T and become computationally burdensome as k increases. The Lasso, therefore, is

particularly popular in high-dimensional settings where the number of predictors k < T.

With regards to inference, van de Geer et al. (2014) introduces the desparsified LASSO
to create (asymptotically) valid confidence intervals for each f8;, by adjusting the original
LASSO estimate B. Van de Geer et al. (2014), however, do not explore time series analysis.
Adamek et al. (2020) further develop the foundational work by van de Geer et al. (2014),
applying it to time-series models. They adapt the desparsified LASSO for time series analysis,

even when the number of regressors may increase faster than the sample size.

The code for optimizing Lasso, as illustrated in Figure 5, remains identical except for the
modification where a is set to 1. This adjustment configures the model for Lasso regression,

which enables variable selection by shrinking certain parameter coefficients to zero.

3.4.3 Elastic Net

The third penalty term, introduced by Zou and Hastie (2005), is the Elastic Net. The
method is briefly characterized in Kock et al. (2020). The penalty function is
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p(B.a,Z)=aXl, B+ (1 -a) X5, IBi (14)

for a € [0,1]. This penalty represents a convex combination of the Ridge Regression penalty
(a = 1) and the Lasso penalty (a = 0), effectively harnessing the benefits of both approaches.
Particularly in scenarios where there is high correlation among explanatory variables—
common in time series applications—the Lasso tends to select only one variable from a group
of correlated variables. This selection might not be ideal depending on the specific application
requirements. For instance, if the objective is to consider all relevant variables within a highly
correlated group, the elastic net becomes preferable as it tends to include multiple correlated
variables rather than selecting just one. This makes the elastic net particularly useful in

applications where the representation of all related variables is critical.

Figure 6 presents the R code for the Elastic Net method. This code is nearly identical to
that shown in Figure 5, with the key distinction being the optimization of both 4 and « at each
iteration. This dual optimization ensures that we assign the optimal weight to both the squared
£,-norm (Ridge) and the £;-norm (Lasso) at each iteration, effectively balancing shrinkage and

variable selection.

Figure 6: R code of the Elastic Net method
# Set up the parameter grid for alpha and lambda
alpha_grid < seg(Q, 1, by = 0.12
Tambda_grid <- 104seq(-3, 1, length.out = 1000
param_grid <- expand.gridalpha = alpha_grid, Tambda = Tambda_grid)

# Perform nested cross-validation

inner_cv <- trainControl(method = "cv", number = 5)
outer_cy <- trainControlimethod = "cv'", number = 5)
model <- trainix, v, method = "glmnet", trControl = inner_cv, tuneGrid = param_grid)

# Retrieve the optimal hyperparameters
optimal_alphali]l «<- modelibestTunedalpha
optimal_Tambdali]l <- modelfbestTunetlambda

# Make predictions on the test data using the optimal hyperparameters
elastic_net_model <- glmnet(x, v, family = "gaussian", alpha = optimal_alphalil, Tambda = optimal_lambdalil)

Source: based on Friedman (2010) and Max (2008)

3.4.4 Selection of penalty parameters

Kock et al. (2020) show an example of cross-validation applied to RLS models. Cross-
validation (CV) is one of the most commonly used methods for selecting models and variables.
In penalized regressions, CV is utilized to choose the penalty parameters. This technique
involves dividing the sample into two separate groups: a training set (known as "in-sample")

and a validation set (referred to as "out-of-sample"). The model parameters are determined only
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using the data from the training set, and the model's performance is then evaluated on the
validation set. Consider A and A as the sets of possible values for the parameters A and «,
respectively. Also, let V € {1, ..., T} be the indices for the validation set observations, and T S
{1, ..., T} the indices for the training set observations. Typically, but not always, the training set
indices are the complement of the validation set indices as T: = V¢. The estimated parameter,
Br(A, @), is calculated from the training data T for each pair of tuning parameters (4, @) € A X

A.

For each pair of tuning parameters (4, «), the function

VO V) = Ty (e~ xtpr )

represents the summation of squared prediction errors over the validation set V, where y, and
x; are the observed outcomes and predictor values, respectively, and ,@T (4, a) is the parameter
estimate from the training set. The variable V refers to a pre-defined collection of validation

sets, denoted as V = {V, ..., Vg}, each paired with corresponding training sets {Ty, ..., Tg}.

The cross-validation error for a given combination of tuning parameters (4, a) is

computed as
CV{a)=XE, CV(Aa, V),

where each CV(4,a,V;) represents the prediction error for a specific validation set V;. To
identify the optimal set of tuning parameters, one selects

(A, &) € argmin CV (A, a).
(A,@)EAXA

The final estimate of the parameters, ,BA’(/i, @) is then calculated using all observations 1, ..., T.
The determination of B and the corresponding sets {V;, ..., Vg} involves choosing between two

primary types of cross-validation (CV) methods: exhaustive and non-exhaustive.

In the exhaustive category, the most prevalent method is the leave-v-out CV. This
approach involves using v observations as the validation set and the remaining observations to
estimate the model parameters. This process is repeated for all possible combinations of v
observations chosen from the total T observations. Consequently, B = (g), where each V;
contains exactly v observations, and T; = Vf,i = 1, ..., B. A frequently used configuration

within this framework is the leave-one-out CV, where v = 1. This results in B = T, and each
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validation set V; = {i} consists of a single observation indexed by i. This method is especially
thorough as it tests each data point individually as a validation set, ensuring that the model is

robustly validated across all data points.

Non-exhaustive CV methods offer a practical solution to the high computational demands
of exhaustive CV by reducing the number of sample splits. One of the most common non-
exhaustive methods is B -fold cross-validation. In this approach, the sample is divided into B
subsamples, or "folds," each containing approximately the same number of observations. This
partitioning is typically done randomly to ensure that each subset is representative of the whole.
In B -fold CV, the B validation groups Vj, ..., Vg are disjoint, meaning each observation is
included in exactly one validation group. Consequently, the training sets are defined as T; =
Vf,i =1, ...,B. This setup allows for each subsample to be used as a validation set once, while
the remaining B — 1 subsamples are used as the training set. The results from each fold are then
averaged to produce a final model estimate. Common choices for B are 5 or 10, balancing
between computational efficiency and the reliability of the validation process. This method is
widely used due to its robustness and relatively lower computational load compared to
exhaustive methods. In this thesis we use 5-fold cross-validation for both linear and nonlinear

models.

3.5 Combined RLS and EML methods

One of the main methodological contributions of this thesis is the proposal of machine
learning method combination. To be more precise, we use RLS methods for data preparation

and then apply nonlinear methods to the pre-selected or shrinked variables.

According to our knowledge, the only other paper that proposes something similar is
Medeiros et al. (2019). Their methodology involves two distinct specifications that integrate
Random Forests, adaLASSO (adaptive Least Absolute Shrinkage and Selection Operator), and
Ordinary Least Squares (OLS) regression.

Their first specification begins with the use of a Random Forest to select relevant
variables from a dataset. Random Forests, being robust and capable of handling nonlinearities
and interactions between variables, effectively determine which variables are most influential.

The variables selected through this process are then used in a traditional OLS regression. The
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OLS model, known for its simplicity and interpretability, provides a linear relationship between

these selected variables and the target variable, in this case, inflation.

Their second specification starts with variable selection using adalL ASSO, a modification
of the LASSO technique that adapts the penalty terms based on preliminary estimates of the
coefficients. This method is particularly effective in reducing the bias in variable selection,
promoting a more refined set of predictors. Following the selection of variables through
adaLASSO, these are then utilized within a Random Forest model. The idea here is to explore
how the selected variables perform in a nonlinear modeling context, provided by Random

Forest, thus assessing the impact of including or excluding certain predictors.

The overarching goal of both methodologies is to dissect and understand the roles of
variable selection and the handling of nonlinear relationships in economic forecasting. By
experimenting with these hybrid approaches, Medeiros et al. (2019) aim to ascertain which
aspects—variable selection or the ability to model nonlinear dynamics—play a more crucial

role in accurately forecasting inflation.

The results of Medeiros et al. (2019) show that they cannot improve upon a simple
Random Forest benchmark, which still performs best in their dataset. In contrast to their
methodology and results, we employ 9 different specifications (combining each RLS and EML
method with the other) and show that the combination of these methods can lead to substantial

improvements in forecasting accuracy.

Figure 7: R code of the combined Elastic Net and Random Forest methods

# Retrieve the optimal hyperparameters
optimal_alpha <- modelfbestTunefalpha
optimal_Tlambda <- model3bestTune$lambda

# Fit the Elastic nNet model with optimal hyperparamaters
elastic_net_model =- glmnet(x, v, family = "gaussian", alpha = optimal_alpha, Tambda = optimal_lambda)

# Extract the coefficients and identify the non-zero features
enet_coefs «- coefielastic_net_model, s = optimal_lambda)
selected_features «<- which(enet_coefs != 0)

# Filter the features Tor the Random Forest model
x_selected <- x[, selected_features, drop = FALSE]
# Train the Random Forest model using selected features
Timited_mtry <- seq(l, min(60, ncol(x_selected)), by = 1)
rf_model «- train(x_selected, v,

method = "rf",

trlontrol = trainControlimethod = "cv", number = 53,
tuneGrid = expand.gridimtry = Timited_mtry)

Source: based on Friedman (2010) and Max (2008)
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Figure 7 presents an example of a hybrid specification combining the Elastic Net and
Random Forest methods. The initial part of the Elastic Net code mirrors that shown in Figure
6. At each iteration, we select the optimal A and a values using 5-fold cross-validation. We then
estimate the Elastic Net model and select variables corresponding to non-zero coefficients.
These selected variables are subsequently used in training the Random Forest model, also
through 5-fold cross-validation. Finally, we use the Random Forest model, which has been
trained on the variables identified by the Elastic Net, for forecasting. This approach leverages
the strengths of both methods—variable selection or shrinkage from Elastic Net and the

predictive power of Random Forest.

3.6 Neural Networks

In this subchapter, we introduce the Feedforward and Long Short -Term Memory (LSTM)
neural networks that we employ, starting with the former. LeCun et al. (2015) provide a detailed
examination of the Feedforward Neural Network (FFNN), offering a comprehensive review of
neural network theory. The FFNN is described as a predictive model featuring a single hidden

layer, written as

Verh = f(Xt) + €t+n, (15)
where
f&x) =%, 6;0(w/X, +b;) +b. (16)

Here, o represents an activation function, g denotes the number of hidden units (neurons), and
evn is the forecast error. We estimate the parameters (6),wj,b;,b) for j=1,..,q by

minimizing the least square criterion.

For the FFNN the literature standard activation functions are the sigmoid function written

as

1

O-(Z) = 1+e—z’ (17)

and the ReLU (rectified linear unit) function written as

0 ifz<O

o, 18
z  otherwise (18)

o(z) = {

where z represents the input of a hidden layer. These activation functions help introduce
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nonlinearity and allow the FFNN model to capture complex nonlinear relationships in the data.
We test the performance of both and find they provide similar forecast results. In this study we
specify the FFNN according to Masters (1993) and Gu et al. (2019). Their hidden layers range
from 1 to 5 with the number of a hidden unit g, in each layer ¢ following the geometric pyramid
rule of Masters (1993). The geometric pyramid rule of Masters (1993) is a method used in the
training of neural networks. The rule suggests a geometric progression in the size of each layer
of the network. Typically, this means that each successive hidden layer in a neural network
should have fewer neurons than the one preceding it, forming a pyramid shape if you were to
graph the number of neurons per layer. This can aid in preventing overfitting and improving
the generalization capabilities of the network. By systematically reducing the number of
neurons, the network is forced to capture the most essential features in the early layers, which

can be more effective for learning complex patterns with fewer parameters.

In conclusion, the FFNN can be an appropriate tool to analyze complex nonlinear
relationships, but correctly specifying the model to meet the data is a huge computational cost
which is the main reason the performance of this networks lacks behind the performance of other

machine learning methods in our study.

Continuing, we introduce the LSTM network, a variant of Recurrent Neural Network
(RNN). The forecasting model of a recurrent neural network with one hidden layer can be

formulated as
Yern = L=y Ophje + b + eeip, (19)
where
hje = o(Wj X + X1 Ojhie—s + b)), (20)

where b stands for bias, hi, ho, ..., hqe represent the g hidden units in the hidden layer at
period t and o represents the activation function used to produce the output of the hidden layer.
The hidden layer of this network receives inputs from both the preceding layer and from its
own outputs in the previous time step, via an internal loop referenced in (17). This structure
allows it to capture the serial dependencies inherent in time series data. As Hochreiter and
Schmidhuber (1997) noted, this type of simple recurrent neural network is prone to the
exploding or vanishing gradient problem, which complicates the learning of long-term
dependencies. To address this issue, a specific version of the RNN, such as the LSTM, is

necessary to effectively capture and maintain these long-term dependencies within the data.
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Hochreiter and Schmidhuber (1997) introduce the Long Short-Term Memory (LSTM)
network, a specialized form of the Recurrent Neural Network (RNN) that is particularly
prevalent in the field of macroeconomic forecasting. The LSTM network incorporates a
unique component known as the memory cell within its RNN framework. This memory cell
is crucial for capturing long term information, as it primarily relies on the memory from the
previous time step. Additionally, the LSTM network includes two essential gating
mechanisms: the input gate and the forget gate. The input gate regulates the entry of new
information into the memory cell, whereas the forget gate determines when to remove
outdated information. These features make the LSTM network exceptionally suitable for
analyzing time series data due to its capability to maintain relevant historical information over

extended periods, thereby enhancing its predictive accuracy.

Because our computer resources are limited and we don't have access to advanced computing,
we cannot use grid search® to choose the best settings for our neural network. Instead, we follow the
advice of Maehashi and Shintani (2020) and manually set the number of parts in the network to 10.
For the parts of the network that need activation functions, we use the hyperbolic tangent function,
which is a common choice. For the special parts of the network called gates, we use the sigmoid
function. This setup helps us manage our limited resources while still following established methods
in the field.

In summary, we use the LSTM neural network for forecasting with 10 hidden units and
two different activation functions. Given better computational capacity, our results could have

been more accurate, as stated in Chapter 4.

Figure 8: R code of the LSTM neural network

# Define LSTM neural network model

model12 <- keras_model_sequential()

model2 5%:=%
layer_densetunits 32, activation = "relu", input_shape = clwindow_size * (hcol(datay-1))) %%

layer_dense(units = 16, activation = "relu') %%

layer_denseCunits = 1) # Output layer

mode12 %=% compilefoptimizer = "adam", loss = "mean_sguared_error')

# Train the LSTM mode]
model2 %% Fit(<_train, v_train, epochs = 50, batch_size = 1, verbose = 0)

Source: based on “keras” and “tensorflow” packages in R
Figure 8 depicts the code snippet for an LSTM network. We must predefine all critical
hyperparameters, including the activation function, optimizer, batch size, and epochs. The

section titled "Train the LSTM model™ is normally part of a rolling window loop; however, it

5 Grid search for neural networks involves systematically exploring multiple combinations of model parameters
to determine which configuration performs best for a given task.
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is presented separately here to illustrate its functional form in R. Ideally, all previously
mentioned hyperparameters should be optimized within the forecasting loop of the rolling
window scheme to enhance model performance and accuracy in predictions, but this comes at

a high computational cost.

3.7 Support Vector Machine

Vapnik (1995) presents the Support Vector Machine (SVM) method and Fiszeder and
Orzeszko (2021) provide a brief review. This subchapter is based on the latter paper. Consider

the regression model defined as
y=r(x)+46 (21)

Here, r(x) represents the regression function, y is the dependent variable, x is the set of
predictors, and & is zero-mean noise with a variance of ¢2. Using a training dataset
{(X¢, ¥¢)}t=1,..1, our goal is to estimate the unknown regression function with a function f(x),

such that f(x) varies from the actual outputs y; by no more than ¢ and is as smooth as possible.

In SVM, the input X is initially transformed into a high-dimensional feature space through
a fixed (nonlinear) mapping. Following this transformation, a linear model is established within

this new feature space, written as

f&O =Xk wigi(x) +b. (22)

The dimension d of the feature space, along with functions ¢;(x) representing nonlinear
transformations, coefficients w;, and a bias term b are crucial components. The ¢;(X) functions
transform the input X into the feature space. It's important to highlight that the capacity of the
SVM model to approximate a smooth input-output mapping is influenced by the dimension d

of this space. Essentially, a larger value of d results in a more precise approximation.

According to (22), to determine the function f(X), one needs to estimate the coefficients
® = (wq, Wy, ...,wy)" and the bias term b. To assess the quality of this estimation, Vapnik
(1995) proposes the usage of the e-insensitive loss function of the form

y-fool<e,

otherwise (23)

0,
L0 ={) _ roo|—e
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This function implies that errors smaller than & incur no penalty. SVM employs this &-
insensitive loss function to perform linear regression in the d-dimensional feature space, while
simultaneously striving to reduce model complexity by minimizing the squared norm of w,

represented as || w [I*’= o' w.

The optimal regression function in SVM is identified by minimizing the functional

O(w,§) =7 Il @ 17+ C TP, (G +&D. (24)

where C is a predetermined positive constant and &, and &/ are nonnegative slack variables.
These variables represent the upper and lower bounds on the deviations from the predicted

outputs relative to the actual outputs expressed as

Ve —f(X) S e+ &

) —ye<e+é 23)

forall t = 1,2, ..., T. The parameter C serves to control the penalty applied to observations that
fall outside the e-margin, which helps in mitigating the risk of overfitting. The values for both
€ and C are set by the user, influencing the model's complexity and its sensitivity to deviations

beyond the e-threshold.

The optimization problem in SVM can be converted into a dual problem, where the

solution is characterized by
FX) =21 (@ —a)K(x, %) st.0<a, <C,0<a;<C. (26)

Here, a; and a are Lagrange multipliers, Tg; denotes the number of support vectors, and K is

the kernel function, which is defined as

K(x¢,x) = ?:1 0;(X)p;(Xe). (27)

The kernel function K enables the computation of the inner product in the feature space
without directly calculating the potentially complex and high-dimensional transformations ¢;.
This approach simplifies the mathematical operations by replacing the explicit computation of
the feature vectors @(X) = (¢1(X), 92(X), ..., p4(x))" with the kernel function K, which
efficiently captures the necessary dimensional interactions. This transformation into the dual
problem and the use of a kernel function significantly reduce the computational complexity
compared to solving the primal problem directly, especially in scenarios involving high-

dimensional data spaces.
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The most popular kernel functions are:

e Linear (dot product): K(X;, X) = X;X,
e Gaussian / Radial: K (x,,x) = exp(—Ilx, — xII*),
e Polynomial: K(x,,x) = (1 +xIx)?;p = 2,3, ...

out of which the latter two allows for nonlinear SVM computation. In this thesis we use the

Gaussian kernel.

Figure 9 illustrates the setup of an SVM (Support Vector Machine) in R using the e1071
package. In this setup, we partially define the parameter grid, conduct cross-validation,
optimize the hyperparameters, and estimate the forecasting model using these optimal

hyperparameter values.

Figure 9: R code of the SVM method

tune_grid <- expand.grid(C = c(0.1, 1, 103, sigma = c(0.1, 1, 100D

# Cross-validation
ctrl «<- trainControl(method = "cv", number = 53

# Hyperparameter optimization
tuned_svm <- train(x, vy, method = "swmRadial', tunecrid = tune_grid, trlontrol = ctrl)
best_params <- tuned_swvmibestTune

svm_model <- swm(x, v, kernel = "radial", cost = best_params3iC, gamma = 1 / (2 * best_params$sigma))

Source: based on the el071 R package

3.8 Forecasting setup

3.8.1 General setup

This subchapter outlines our forecasting setup. We forecast two key economic indicators:
industrial production (IP), measured by the Index of Industrial Production, and inflation (Inf),
measured by the harmonized index of consumer prices. We project these measures for 5
different periods: 1, 3, 6, 9, and 12 months ahead. The Index of Industrial Production is
commonly used as a proxy for GDP, as discussed and applied by Coulombe et al. (2022) and
Maehashi and Shintani (2020).

Our dataset starts during the Great Recession, a period marked by significant economic
uncertainty and volatility. The early observations from this period could potentially skew the

overall dataset. To mitigate this issue, we utilize a rolling window scheme for forecasting,
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which allows the parameter estimates to adjust over time. This approach is also adopted by
Pratap and Sengupta (2019), Mahajan and Srinivasan (2019), and Maehashi and Shintani (2020)
for similar reasons. Recently, McCracken (2020) demonstrate that using a fixed estimation
window can cause the Diebold and Mariano (1995) statistic to potentially diverge under the
null hypothesis. This finding also underscores the importance of employing a rolling window

scheme for forecasting.

Specifically, we maintain a constant window size, always using 6 years of observations
for each estimation point during the period of 2008M01-2019M12 and 10 years during the
period of 2008M01-2023M12, adjusting the initial point of estimation as needed. Any
adjustments to the window size of our estimations lead to consistent conclusions as those

presented in Chapters 4 and 5.

To provide an actual example, take the case when the period is t = R. For this, we build
the forecast y“r+n for the target variable yr+n utilizing solely the information available up to
t = R. We subsequently assess the forecast error yr+n — Yr+n. In the succeeding period t =
R + 1, the model is reestimated with the data available upto t = R + 1 and a new value y g4 p+1
is forecasted, while we drop the initial observation from the original sample. Hence, the
complete sequence of hyperparameters, lag lengths and common factors is recomputed when

new forecasts are formulated, even if there is no alteration in the model specification.

Additionally, considering that each machine learning model requires specific parameter
selection, we follow the guidance of Coulombe et al. (2022) to counter the overfitting issue that
often arises when dealing with large datasets and complex models. To do this, we employ B-
fold cross-validation — explained in the Lasso subchapter for RLS methods — a method whose
statistical validity is affirmed by Bergmeir (2018). In our implementation, B is set to 5. This
means that the in-sample dataset is randomly divided into five distinct subsets, each accounting

for approximately 20% of the in-sample observations.

For each of these five subsets, and for every set of hyperparameters under consideration,
four subsets are used for model training, while the fifth subset is reserved as a test subset to
evaluate forecast accuracy. The mean squared error (MSE) is utilized as the evaluation metric.
This approach not only helps in fine-tuning the models but also ensures that the training process

is robust against overfitting.
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In summary, we use a rolling window scheme to continuously adapt our forecasts to new
data, while B-fold cross-validation assists in the careful selection and validation of model

hyperparameters, ensuring that our forecasting models are both accurate and generalizable.

3.8.2 Common factors

Moreover, we utilize Principal Component Analysis (PCA), as proposed by Stock and
Watson (2002), to extract common factors from our dataset. The purpose of using these
common factors is to capture the latent forces that drive the data-generating processes across a
large number of variables, and then use a more condensed set of factors as predictors for our

forecasting efforts. In this framework, a potential predictor x;: is generated by the equation
Xit = A’iFtk + e, (28)

where Fk = (f1t, fat, ..., fxe) is a k X 1 vector representing unobserved common factors, A;
denotes the factor loadings, and e; is the idiosyncratic error for each observationi = 1, ..., N

andt =1, ..., T.

The forecasting process using these common factors involves two main steps. First, we
minimize the sum of squared differences YN 37T_; (xl-t — A;Ftk)z to compute F¥ as the
principal components of the predictors {x;.}}_;. These principal components have unit variance
and are orthogonal to each other. We set the maximum number of principal components to 20.

To determine the optimal number of factors to use for each forecast, we apply the Bai and Ng

(2002) information criterion:

IC(k) = InV (k) + k () In ¢y, (29)

where V (k) = ming, qo (NT) 'S0, 5T (i - AF) and Cyp = min{VN,VT}.

Secondly, once the factors are derived, we use them to construct forecasts A-periods ahead
utilizing machine learning models. In summary, the PCA-derived common factors serve as
critical input variables for the machine learning models, enhancing the robustness and accuracy

of our forecasting approach.
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3.8.3 Composite forecasts

To complete our discussion on our forecasting setup, we delve into the methods used for
combining forecasts. Bates and Granger (1969) highlight that combining individual forecasts
can enhance forecast accuracy and potentially yield better outcomes than any single model
alone. Clements and Hendry (2011) affirm the benefits of combining forecasts from different
models to improve accuracy, though they recognize that in some cases, individual models might
outperform combined forecasts. Biirgi (2015) contends that achieving more accurate forecasts
through any method other than combining individual models using equal weights is

challenging; therefore, he recommends the arithmetic mean for combining forecasts.

Adding a contemporary perspective, Araujo and Gaglianone (2023) explore the use of
machine learning techniques for forecast combination. They employ methods like adalasso and
Random Forest, which uniquely use individual forecasts as inputs, rather than traditional
predictors. Their findings suggest that in their specific context, using machine learning for
combining forecasts results in improvements over the simpler methods of averaging, such as

the arithmetic mean or median.

Motivated by these findings, our study also utilizes machine learning methods as forecast
combination tools to evaluate whether they can produce more accurate forecast combinations
than individual model forecasts. In summary, our approach involves combining individual
forecasts using various weighting procedures, including more complex machine learning-

driven combinations, to identify the most effective method in enhancing forecast accuracy.

3.9 Performance evaluation

We evaluate the forecasting performance of our models using literature standard
measures, namely the Mean Squared Error (MSE), Mean Absolute Error (MAE), and
Directional Accuracy (DA). To facilitate model comparisons, we relativize these metrics by
dividing the metric of the evaluated model by that of the benchmark model, normalizing the

benchmark to 1, which simplifies comparisons.

The Mean Absolute Error is defined as

MAE =2zl Zealel (30)

n
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This formula calculates the average of the absolute differences between the forecasted values
and the observed values, providing a measure of prediction accuracy that is not sensitive to

extreme values.
The Mean Squared Error is expressed as

N 52
MSE = St Gim20? 31

This metric computes the quadratic mean of the forecast errors. Using both MSE and MAE is
crucial. MSE is a common standard in machine learning as most models are trained to minimize
this or the Root Mean Squared Error (RMSE), and MAE provides a robustness check.
Consistent results across these metrics confirm that the model’s accuracy is not solely

influenced by a few large errors, ensuring the reliability of the model's predictive performance.

In addition to the classical measures of forecasting performance such as Mean Squared
Error (MSE) and Mean Absolute Error (MAE), we also incorporate Directional Accuracy (DA),
a metric ignored so far in the machine learning forecasting literature. We argue that this
omission is problematic because accurately predicting the direction of change in a variable is
as critical as the magnitude of errors. A model that fails to capture the correct trend direction
essentially provides incorrect forecasts, regardless of how small the error might be. Constantini

et al. (2016) write Directional Accuracy as follows

DA, = 1(sgn(yy — yi_n) = sgn(Pr — ve_n)), (32)

where Iy is the indicator function that equals 1 if the signs of the actual change (y; — y¢—5)
and the forecasted change (9, — y;_p) are the same, and 0 otherwise. This metric assesses
whether the forecasted values are moving in the same direction as the actual values, thereby
evaluating the model's ability to capture trends in the data effectively. Using DA along with
MSE and MAE provides a comprehensive view of a method’s performance, assessing its
accuracy in both magnitude and direction of predicted changes. This multi-faceted evaluation
helps in ensuring that the forecasts are not only close in value to the actuals but also aligned in

their directional movement.

To conclude our evaluation, we compare the Mean Squared Error (MSE) of each model
against our benchmark model. A model is considered to outperform the benchmark if it has a

lower MSE. To determine whether this improvement is statistically significant, we employ the
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Diebold-Mariano (DM) test statistic, formulated by Diebold and Mariano (2002), which is

designed to compare forecasting accuracies. The DM-statistic is calculated as

DM = (33)

i~

Here, d represents the sample mean of the loss differentials between the two forecasts
over T periods. The term 47 is an estimate of the variance of these loss differentials, which is
often calculated using Newey-West standard errors to adjust for autocorrelation and
heteroskedasticity. In this thesis we present the p-values of this test to determine the statistical
significance of our results. We test whether our forecasts are better against the null hypothesis
that the two forecasts from two different models have the same accuracy. If p <0.05, we reject

the null.

The DM test is flexible in that it can be applied regardless of the specific loss function
used to measure forecast errors, and it adjusts for potential issues like autocorrelation in the

forecast error series.

By applying the DM test, we ensure that observed improvements in MSE are not due to
random fluctuations in the data but are statistically significant, reflecting true advancements in

forecasting capability.

3.10 Data

3.10.1 Data preparation and preprocessing

In this subchapter we describe the Augmented Dickey-Fuller test for stationarity and the

data standardization procedure. We begin with the former.

If a time series is nonstationary, meaning its mean and variance change over time,
traditional methods of hypothesis testing, constructing confidence intervals, and making
forecasts can be highly inaccurate. One reason for nonstationarity might be a trend in how the
data is generated. As highlighted in Subchapter 3.3, Masini et al. (2021) outline that machine
learning methods are built on the assumption that inputs are stationary, leading us to formally

examine — and adjust if needed — the input time series.

Dickey and Fuller (1979) introduce a specific test for checking if a series is stationary,
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known as the Dickey-Fuller test. This test's null hypothesis assumes that the time series is
nonstationary, possessing a unit root. The alternative hypothesis, on the other hand, suggests
that the time series is stationary. We are particularly interested in the enhanced version of this
test, called the Augmented Dickey-Fuller (ADF) test.

Consider the linear regression model

AY:=Lo+ Y1+ yiAY 1+ y2AY 2+ -+ ypAY—p + Us (34)

The Augmented Dickey-Fuller (ADF) test for a unit root examines the hypothesis Ho:
6§ = 0 (trend) against the alternative H1: § < 0 (stationarity) using the ordinary least squares
estimate of the t-statistic. The number of lags in the test is determined by selecting the lag

length that minimizes the Akaike Information Criterion (AIC), written as
AIC = 2k — 2In(L), (35)

where k represents the number of estimated parameters in the model, and L is the maximum

likelihood estimate for the model.

If a series is nonstationary, there are several methods to transform it into a stationary
series. These methods include converting the data into logarithms to stabilize the variance,
differencing the data, or combining these techniques. We employ the adequate methods for our

input data.

What is more, Zhang and Qi (2005) assert that machine learning methods perform
optimally when the input data exhibit a Gaussian distribution. Consequently, we standardize
the time series data to have zero mean and unit variance prior to modeling to adhere to this
requirement. We standardize the predictors by transforming them to a variable with a zero mean

and unit standard deviation. This is done as

Actual value of the predictor - Mean of the time series (3 6)

Standardized value = — - .
Standard deviation of the time series

In summary, in the previous paragraphs we present the methods by which we preprocess

the data. The next subchapters contain the data description.
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3.10.2 Macroeconomic database of the National Bank of Slovakia

In this chapter, we detail the data utilized in our forecasting experiments. Firstly, we
introduce the database, which is a primary factor in our decision to focus on Slovakia. The
National Bank of Slovakia (NBS) has compiled and maintains an innovative, accessible, and
exemplary public macroeconomic database.® To our knowledge, a public macroeconomic

database of this scope is currently unmatched among the V4 countries.

The data is presented in a clean, consistent, and concise format, encompassing multiple
periods, formats, and categories. This comprehensive availability and quality of data
significantly enhance the reliability and breadth of our analyses. In addition to observed
macroeconomic variables, the database includes "soft" indicators. These are referred to as soft
because they predominantly consist of survey-based data that gauge the expectations of
economic participants, rather than measuring actual economic activity. Coulombe et al. (2022)
recommend using these indicators as input data for forecasting with machine learning methods.
Unlike observed macroeconomic variables, these indicators are available with minimal time
lag, enabling policymakers to initiate discussions without waiting for hard macroeconomic
data’ to become available. Although forecasting methods based on soft indicators are not
expected to achieve lower forecast errors than those based on hard data, their primary function
is to indicate the potential direction of the economy at a given time. Therefore, we can utilize
measures of directional accuracy to assess whether these methods are meeting their intended
purpose. To sum up, our forecasting approach includes not only real macroeconomic variables
but also leading indicators. For soft indicators, our primary focus is on the directional accuracy
of the forecasts, which is crucial for understanding the potential future trends rather than precise

values.

A limitation of the database is that it only contains actual data after revisions; hence, older
data vintages before revisions are not available. This constraint makes it challenging to compare
the forecast performance of machine learning methods with historical forecasts made by entities
like central banks, which had access to different data at the time of their forecasts. Furthermore,
to our knowledge, no country or organization maintains a publicly available revisions database

that includes sufficient data to reliably train machine learning methods. Therefore, data-driven

& https://nbs.sk/statisticke-udaje/vybrane-makroekonomicke-ukazovatele/makroekonomicka-databaza/
7 By hard macroeconomic data we mean actually observed macroeconomic data of the time series in Tables
Al.1-A1.8 in Appendix 1.
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models such as ARIMA and Random Walk remain the literature standard for benchmarking, as

discussed in Chapter 1.

In summary, the database is well-suited for our purposes as it contains ample data to
reliably train machine learning methods. We employ data-driven models, specifically Random
Walk or ARIMA, as benchmarks for the reasons previously mentioned. This setup ensures a
robust framework for evaluating the effectiveness of machine learning in macroeconomic

forecasting.

3.10.3 Our dataset

Given the breadth of the database, we divide our dataset into two segments to use machine
learning for forecasting our chosen variables: industrial production, measured by the Index of
Industrial Production (IP), and inflation, measured by the Harmonized Index of Consumer
Prices (Inf). We select these target variables because they are frequently used in machine
learning forecasting literature, as noted in studies made by Chakraborty and Joseph (2017),
Jung et al. (2018), Medeiros et al. (2019), Maehashi and Shintani (2020), and Coulombe et al.
(2022).

We document the observation period as utilizing the time series from the database,
captured monthly and adjusted for seasonality when applicable, spanning from January 2008
(2008M01) to December 2019 (2019M12). This period encapsulates the economic fluctuations
of'the 2008-2009 Great Recession and a subsequent extended phase of economic stability. Later
we extend the observation period to include data up to September 2023 (2023M09) to also cover
the economic impacts of the COVID-19 pandemic. We use variables from the following
categories: industrial production, prices, revenue, wages, employment, foreign trade, current

account, exchange rates and indicators. 8

Regrettably, splitting the data into distinct segments to compare model performance
across different economic conditions is impractical. Specifically, the dataset from the crisis
period alone would be insufficiently large for effective training of machine learning or other
statistical models, rendering any derived conclusions unreliable. Consequently, we choose to

utilize the entire dataset without segmenting it into multiple periods. To address potential

8 The full list of variables and their specific categories is presented in Appendix 1
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temporal variations in the regression parameters, we apply a rolling-window approach, which

is detailed in Subchapter 3.8.1.

To continue with, we detail the data preprocessing steps, focusing on stationarization and
standardization, along with the extraction of common factors. As emphasized in Subchapter
3.2.1, ensuring the stationarity of time series is crucial before they are used in forecasting
models. To achieve stationarity, macroeconomists typically eliminate the seasonal and trend
components of the data. Fortunately, our macroeconomic database offers both seasonally
adjusted and unadjusted series, allowing us to directly utilize the seasonally adjusted data,
thereby bypassing the need for manual seasonal adjustments. A few series are not available in

the seasonally adjusted form, so we stationarize them accordingly.

Figure 10: Seasonally adjusted and non-adjusted series of IP
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For illustration, Figure 10 showcases the effect of seasonal adjustments on industrial
production series, highlighting the smoother nature of the seasonally adjusted series, which is
more suitable for forecasting purposes. Figure 10 also indicates that the data exhibits an upward
trend over time. Thus, to prepare the series for modeling, we remove this trend component.
Trend removal involves taking the first differences of the variables in percentages like the
unemployment rate, thereby following the standard approach in literature; and of soft
indicators, which range between -100 and 100 and cannot be logarithm-transformed due to the
presence of non-positive values. These series achieve stationarity post-differencing. For other

variables, we apply logarithmic transformation to stabilize variance and then apply
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differencing. Upon completion of these adjustments, each time series is confirmed to be

stationary, as verified by the Augmented Dickey-Fuller (ADF) test.

Figure 11 displays the industrial production series post-trend removal, demonstrating a
series that oscillates around a constant mean with stable variance. Despite this, a few influential
observations may exist that could potentially increase forecasting errors, suggesting that the use
of Mean Absolute Error (MAE) might be appropriate for assessing the robustness of our

forecasting results.

Lastly, we conclude our preprocessing by mean-variance standardizing the regressors.
This normalization process is essential for aligning the scales of the variables, facilitating more

effective analysis and comparisons across the data set, as detailed in Subchapter 3.10.1.

Figure 11: Stationary series of IP
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Last but not least, we extract common factors from the data, aligning with one of our
objectives outlined in Chapter 2. Our goal is to evaluate whether data that has been
dimensionally reduced through factor analysis can yield forecast errors and accuracy
comparable to those obtained using the original time series from which the factors were
extracted. We employ Principal Component Analysis (PCA), as detailed in Subchapter 3.8.2,
utilizing a rolling window scheme to systematically apply common factors at each step in the
forecasting process. Once extracted, these factors are then used as regressors in various machine
learning methods. This approach, while established, has been infrequently tested in practical

scenarios. We aim to explore whether machine learning methods can effectively forecast our
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selected variables using both the original, complete time series and the dimensionally reduced

information set derived through PCA.

To summarize, this chapter introduces the data preprocessing steps, the NBS
macroeconomic database and outlines the specific data we utilize for forecasting. We detail the
preprocessing steps, including stationarization, standardization, and factor extraction.
Following these, the data is fed into the methods, and the results are subsequently discussed in
the following chapter. This methodology ensures that we comprehensively prepare the data to

accurately evaluate the effectiveness of machine learning methods in economic forecasting.
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4 Results

4.1 Pre-COVID

4.1.1 Forecasting industrial production using hard macroeconomic data

This subchapter presents the results of industrial production (IP) forecasts based on hard
macroeconomic data. Table 3 displays the relative MSE values for the RLS machine learning
methods, with the MSE value of the benchmark model set as 1 for comparison. It is evident that

each machine learning method surpasses the performance of the benchmark model.

Table 3: Relative MSE and MAE of RLS models - IP

Relative MSE h=1 h=3 h=6 h=9 h=12
Benchmark 1 1 1 1 1

Lasso 0.25376 0.25854 0.25077 0.25699 0.26991
Ridge 0.57640 0.58032 0.59155 0.58178 0.57804
Elastic Net 0.25925 0.25221 0.26200 0.27318 0.25893
Relative MAE

Benchmark 1 1 1 1 1

Lasso 0.45058 0.44097 0.45073 0.44895 0.45683
Ridge 0.80952 0.80917 0.82727 0.82146 0.81080
Elastic Net 0.45879 0.44100 0.46591 0.46079 0.44607

Source: authors’ calculations

In analyzing MSE, we find that all RLS models perform better than the benchmark.
Specifically, both Lasso and Elastic Net models exhibit a relative MSE of around 0.25. This
suggests that in the Elastic Net model, the Lasso component carries more weight compared to
the Ridge component. Referring to Subchapter 3.4, we observe that in this scenario, selecting
variables plays a more crucial role than shrinking coefficients. The Ridge model also surpasses
the benchmark, showing a relative MSE between 0.57 and 0.59 for every forecast horizon.

Consequently, all RLS models outshine the benchmark model.

Furthermore, the relative MAE results reinforce our earlier conclusion, being smaller than
those of the benchmark. This reassures us that the RLS models' superior performance isn't

simply due to a few large forecast errors.

To summarize, the RLS models consistently outperform the benchmark across every
horizon. This robust performance is expected due to the presence of numerous correlated
variables in the dataset, which tend to convey similar information. Additionally, the shorter time
series used in our study compared to other machine learning research might prompt Lasso and

Elastic Net methods to disregard less critical variables due to the limited number of
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observations available. Moreover, the magnitude of the outperformance remains consistent

across all models and forecast horizons, as depicted in Figure 12.

Figure 12: Relative MSE of RLS models over time - IP
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The machine learning methods demonstrate robust superiority as evidenced by their
outperformance in both MSE and MAE metrics. This consistent outperformance across metrics
allows us to evaluate the statistical significance of the results using the DM test, as detailed in
Subchapter 3.9. The DM test focuses on analyzing the original forecast errors rather than the
derived MSE or MAE values. Table 4 displays the outcomes of this test represented in terms of
p-values. Notably, numbers marked with two asterisks (**) indicate horizons where the
forecasts of machine learning methods statistically significantly outperform the forecasts of the
benchmark model at the 5% significance level. The forecasts generated by most RLS models
exhibit significant improvement at the 5% level of confidence. Only the forecasts for the 9 and

12-month horizons of the Ridge model show significance at the 10% level.

Table 4: DM test p-values of RLS methods - IP

h=1 h=3 h=6 h=9 h=12
Lasso 0.00639" 0.01358" 0.01289" 0.04393" 0.00794"
Ridge 0.00575™ 0.03273"™ 0.04754" 0.06779" 0.05317"
Elastic Net 0.00664"" 0.01321" 0.01174" 0.04661"" 0.00935™

Source: authors’ calculations

Since the outperformance is statistically significant, we can express the magnitude of

outperformance in percentage terms. Table 5 indicates that the Lasso model's outperformance

ranges between 73.01% and 74.92%. Ridge consistently outperforms the benchmark by 40.84%
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to 42.20%, while Elastic Net closely mirrors Lasso, ranging between 73.80% at 2 = 6 and
74.78% at h = 3. The results suggest that by fine-tuning hyperparameters at each step, the
methods effectively select the most relevant variables for the forecasts to surpass the benchmark

model. Shrinkage also seems to work, but to a lesser extent.

Table 5: % improvement of RLS forecasts over the benchmark - IP

h=1 h=3 h=6 h=9 h=12
Lasso 74.62% 74.15% 74.92% 74.30% 73.01%
Ridge 42.36% 41.97% 40.84% 41.82% 42.20%
Elastic Net 74.07% 74.78% 73.80% 72.68% 74.11%

Source: authors’ calculations

Continuing from the previous points, it is crucial to establish that machine learning
methods not only yield lower forecast errors but also accurately capture the direction of change
in the forecast variable. This aspect is often as important as the magnitude of the errors because
a method that predicts the correct trend but is off in magnitude can still be very useful, especially
in macroeconomic planning and policy making. To assess this capability, we compute the
directional accuracy of each machine learning method and compare it to that of the benchmark
model. Directional accuracy specifically measures the percentage of times the predicted change
in direction (increase or decrease) of the forecast variable aligns with the actual observed

change. The comparative results of this analysis are presented in Table 6.

Table 6: Directional accuracy of RLS models - IP

h=1 h=3 h=6 h=9 h=12
Benchmark 41.43% 31.37% 26.67% 21.51% 22.18%
Lasso 90.00% 88.24% 86.92% 86.74% 85.59%
Ridge 72.86% 74.02% 74.10% 73.66% 74.01%
Elastic Net 90.00% 86.76% 87.44% 85.48% 85.45%

Source: authors’ calculations

Each RLS model is more likely to correctly predict the direction of change in the target
variable compared to the benchmark model, as demonstrated in Table 6. The DA of both Lasso
and Elastic Net ranges between 85.45% and 90.00%, while the DA of Ridge falls between
72.86% and 74.10%. In contrast, the benchmark model exhibits a DA ranging from 21.51% to

41.43%, depending on the forecast horizon.

Furthermore, this enhancement remains consistent over time, as illustrated in Figure 13.
Another noteworthy observation emerges: as the forecast horizon extends, the DA of the
benchmark model decreases significantly, contrasting with the marginal decreases observed in

Lasso and Elastic Net models. This discrepancy arises because our benchmark model inherently
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integrates only short-term information. The DA of the Ridge model maintains consistency,
albeit at a lower level compared to Lasso or Elastic Net, yet still notably surpassing that of the

benchmark.

Figure 13: Directional Accuracy of RLS models over time - IP
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We proceed by presenting the results of the EML models in Table 7.

Table 7: Relative MSE and MAE of EML models - IP

Relative MSE h=1 h=3 h=6 h=9 h=12
Benchmark 1 1 1 1 1
Bagging 0.47081 0.46523 0.48503 0.49009 0.48902
Boosting 0.51369 0.46769 0.48275 0.53275 0.47255
Random Forest | 0.53703 0.54068 0.54897 0.54848 0.54870
Relative MAE
Benchmark 1 1 1 1 1
Bagging 0.60385 0.59082 0.61838 0.61948 0.60656
Boosting 0.62291 0.60607 0.63971 0.67181 0.60336
Random Forest | 0.67807 0.67354 0.68552 0.66990 0.66560

Source: authors’ calculations

Firstly, in terms of MSE, every EML model outperforms the benchmark. Bagging exhibits
a MSE ranging between 0.47 and 0.49, Boosting between 0.46 and 0.54, and Random Forest
between 0.53 and 0.55. This indicates that Bagging performs best for every horizon, except for
h =12, where Boosting holds a slight advantage. Secondly, the relative MAE results corroborate
our earlier conclusion, as they are also smaller than those of the benchmark. This assures us
that the outperformance of the EML models is not attributed to a few large forecast errors. One

notable observation from the analysis is that, in terms of MAE, the nonlinear methods show a
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smaller increase compared to the relative MSE than the RLS methods. This suggests that
nonlinear methods might be less susceptible to the impact of large forecast errors. Additionally,
the magnitude of the outperformance remains consistent for every model and across every

horizon, as illustrated in Figure 14.

Figure 14: Relative MSE of EML models over time - IP
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Table 8 presents the p-values from the DM test. The forecasts from Bagging are
significantly better at the 5% level for every horizon. For the Boosting model, the forecast at /
=1 is significant at the 10% level, while the forecasts for the remaining horizons are significant
at the 5% level. Similarly, the forecasts from the Random Forest model show significant

outperformance at the 5% level for all horizons except for 2= 1.

Table 8: DM test p-values of EML methods - IP

h=1 h=3 h=6 h=9 h=12
Bagging 0.03742" 0.00904™ 0.01138" 0.04915™ 0.02405™
Boosting 0.05308* 0.02725** 0.01276** 0.02942%** 0.02178**
Random Forest | 0.06095* 0.04542** 0.02695** 0.02935** 0.03348**

Source: authors’ calculations

Since the outperformance is statistically significant, we can quantify the magnitude of
outperformance in percentage terms. Table 9 presents the results. The table reveals that the
outperformance of Bagging ranges between 50.99% and 53.48%, which is impressive, although
slightly less than the best RLS models. Boosting demonstrates outperformance ranging from
46.72% to 53.23%, while Random Forest shows outperformance between 45.10% and 46.30%.

Generally, Bagging emerges as the best-performing model, except for # = 12, where Boosting
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holds a slight advantage. Among the EML models, Random Forest exhibits the highest

consistency.

Table 9: % improvement of EML forecasts over the benchmark - IP

h=1 h=3 h=6 h=9 h=12
Bagging 52.92% 53.48% 51.50% 50.99% 51.10%
Boosting 48.63% 53.23% 51.72% 46.72% 52.74%
Random Forest | 46.30% 45.93% 45.10% 45.15% 45.13%

Source: authors’ calculations
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Moving on to directional accuracy, every EML model is more likely to correctly predict
the direction of change in the target variable compared to the benchmark model. The results are
presented in Table 10. The DA of Bagging ranges between 86.15% and 87.43%, Boosting
between 79.39% and 82.77%, and Random Forest between 82.56% and 85.51%. In comparison,
the benchmark model exhibits a DA ranging from 21.51% to 41.43%, depending on the forecast

horizon. What is more, this improvement is consistent over time, as shown in Figure 15.

Table 10: Directional accuracy of EML models - IP

h=1 h=3 h=6 h=9 h=12
Benchmark 41.43% 31.37% 26.67% 21.51% 22.18%
Bagging 87.14% 86.76% 86.15% 86.74% 87.43%
Boosting 81.43% 80.88% 81.28% 79.39% 82.77%
Random Forest | 85.51% 82.84% 82.56% 83.69% 84.46%

Source: authors’ calculations

In Table 11, we present the results of the remaining models, namely the Support Vector
Machine (SVM), the Feedforward Neural Network (FFNN), and the Long-Short Term Memory
58



Neural Network (LSTM). Due to their less compelling performance, we summarize their results

in one table.
Table 11: Forecasts with SMV, FFNN and LSTM - IP
Relative MSE h=1 h=3 h=6 h=9 h=12
Benchmark 1 1 1 1 1
Support Vector | 0.77375 0.85289 0.75612 0.74687 0.75215
Machine
Feedforward 7.42215 7.02437 6.87417 6.60251 6.42844
NN
LSTM NN 128.124 18.7122 7.54591 4.03824 3.68138
Relative MAE
Benchmark 1 1 1 1 1
Support Vector | 0.92173 0.9459 0.90444 0.89306 0.90576
Machine
Feedforward 3.71541 3.56651 3.56545 3.48494 3.40986
NN
LSTM NN 13.2955 4.81009 3.17909 2.20504 2.24366
DM test
Support Vector | 0.20681 0.05121 0.03532 0.13286 0.00035
Machine
Feedforward 1 1 1 1 1
NN
LSTM NN 1 1 0.99996 0.99192 0.99998
DA
Benchmark 41.43% 31.37% 26.67% 21.51% 22.18%
Support Vector | 65.71% 67.65% 69.23% 71.33% 71.89%
Machine
Feedforward 54.29% 55.39% 56.15% 57.17% 57.77%
NN
LSTM NN 45.71% 48.04% 48.97% 53.41% 54.38%

Source: authors’ calculations

Starting with the relative MSE, these models either show results closer to that of the
benchmark, as observed in the SVM model, or higher, particularly in the case of the NN models.
Notably, both NN models exhibit substantial underperformance. However, this can be
attributed to the inability to optimize hyperparameter search using R, unlike the other models.

This limitation is evident in the overall results.

Furthermore, the relative MAE further confirms the underperformance of the FFNN and
LSTM models, as neither of them produces statistically significantly better forecasts compared
to the benchmark model. Although their DA values are slightly higher than those of the
benchmark, given the magnitude of errors and the superior performance of other models, we
advise against drawing meaningful conclusions from these models for now. Once we have

access to appropriate computational capacity, we plan to delve deeper into exploring their
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performance. Until then, we do not give them further attention in this study.

Moving on to the SVM model, as previously mentioned, it manages to outperform the
benchmark, albeit to a lesser extent compared to other models. This outperformance is
statistically significant at the 5% level for h =6 and h =12, and at the 10% level for h = 3, but
it is insignificant for h =1 and h = 9. The DA values of the SVM model range between 65.71%
and 71.89%, which are lower than those of the other models, despite showing an increase in
accuracy with the forecast horizon.

To summarize, in this subchapter we forecast industrial production using hard
macroeconomic data. Most of the machine learning models exhibit significant outperformance
compared to the benchmark model, with the exception of the neural network models due to
computational limitations. The models, sorted from best to worst in terms of % improvement
over the benchmark, are presented in Table 12. There are some models that are really close to
each other in terms of performance, and one model might be the best on one horizon, while
another on a different horizon (e.g. Lasso is better than Elastic Net at h = 9, while the latter

slightly outperforms the former at h = 12).

Table 12: Forecasting models from best to worst - IP

h=1 h=3 h=6 h=9 h=12
1. Lasso Elastic Net Lasso Lasso Elastic Net
2. Elastic Net Lasso Elastic Net Elastic Net Lasso
3. Bagging Bagging Boosting Bagging Boosting
4. Boosting Boosting Bagging Boosting Bagging
5. RF RF RF RF RF
6. Ridge Ridge Ridge Ridge Ridge
7. SVM SVM SVM SVM SVM
8. FFNN FFNN FFNN LSTM LSTM
9. LSTM LSTM LSTM FFNN FFNN

Source: authors’ calculations

Firstly, the top-performing models are Lasso and Elastic Net, which demonstrate
statistically significant outperformance of the benchmark model at every forecasting horizon at
the 5% level. Additionally, Lasso and Elastic Net models boast the highest directional accuracy
values among all models, with consistent results over time. Although the Ridge model's
performance is slightly weaker, it still significantly outperforms the benchmark, albeit not as

effectively as Lasso and Elastic Net.

Secondly, EML models display slightly higher errors and lower directional accuracy
compared to Lasso and Elastic Net. However, they are still capable of statistically significant

outperformance of the benchmark model, especially Bagging, which emerges as the top
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performer among the EML models.

Thirdly, the Support Vector Machine (SVM) model yields mixed results, leading us to
recommend prioritizing models from the previous two categories, particularly Lasso and Elastic
Net for regularization, and Bagging for capturing nonlinear relationships in the data.

Moving forward, we delve into exploring the forecasting performance of machine

learning models based on common factors in the next subchapter.

4.1.2 Forecasting industrial production using common factors

In this subchapter, we explore the application of machine learning methods to forecasting
based on common factors extracted from the available dataset, drawing inspiration from the
works of Shintani (2005) and Maehashi and Shintani (2020). Our aim is to ascertain whether
this approach outperforms the benchmark model and, if so, how it compares to forecasting

performance based on hard macroeconomic data without dimensional reduction.

Table 13: Relative MSE of forecasts based on common factors - IP

h=1 h=3 h=6 h=9 h=12
Benchmark 1 1 1 1 1
Lasso 0.701524 0.700192 0.681737 0.852603 0.698305
Ridge 0.689632 0.705956 0.641994 0.640785 0.687538
Elastic Net 0.715571 0.832926 0.705255 0.667444 0.670397
Bagging 0.873563 0.831503 0.840161 0.812082 0.813511
Boosting 0.729903 0.681461 0.676986 0.663042 0.688355
Random Forest | 0.837169 0.873106 0.832147 0.831806 0.825432
SVM 0.739667 0.714448 0.720253 0.712005 0.710229

Source: authors’ calculations

To commence, Table 13 presents the relative MSE values of the forecasts based on
common factors. The results indicate that forecasts based on common factors continue to
outperform the benchmark model, with no relative MSE exceeding one. Starting with RLS
methods, both Lasso and Elastic Net yield similar results, as does the Ridge model, despite
being the least effective in forecasting using hard macroeconomic data. The cause of this might
be the reduced dimension of the dataset, as if there is not too many observables, coefficient
shrinkages is more pronounced while Lasso loses its edge. Interms of EML methods, Boosting
outperforms both Bagging and Random Forest, which exhibit comparable results. Additionally,
the performance of the Support Vector Machine (SVM) model remains consistent with the

findings in the previous subchapter, meaning it is still the weakest performing model.

61



Table 14: % difference between forecasts based on factors and hard data - IP

h=1 h=3 h=6 h=9 h=12
Lasso 176.45% 170.83% 171.85% 231.76% 158.72%
Ridge 19.64% 21.65% 8.53% 10.14% 18.94%
Elastic Net 176.01% 230.24% 169.18% 144.32% 158.91%
Bagging 85.55% 78.73% 73.22% 65.70% 66.35%
Boosting 42.09% 45.71% 40.23% 24.46% 45.67%
Random Forest | 55.89% 61.48% 51.58% 51.66% 50.44%
SVM -4.40% -16.23% -4.74% -4.67% -5.57%

Source: authors’ calculations

Continuing, we present the percentage difference between the relative MSE values of
forecasts based on hard macroeconomic data and common factors in Table 14. Positive values
indicate that the model based on hard data is more accurate, while negative values suggest the

opposite.

To add, Table 14 reveals that in most cases, models based on hard data exhibit greater
accuracy. Moreover, their forecasts demonstrate higher consistency across multiple horizons.
For instance, while Table 3 highlights the consistency of Lasso forecasts, Table 14 demonstrates
that the magnitude of underperformance for forecasts based on common factors fluctuates
significantly, ranging between 158% and 232% for the Lasso model. This indicates that
forecasts based on hard macroeconomic data are more consistent over multiple horizons
compared to those based on common factors. Similar observations can be made for the Ridge
model. On the other hand, the SVM model displays lower errors when forecasting based on
common factors. However, the differences are relatively small, ranging between 4.40% and

5.57%, except for & = 3, which shows a larger difference at 16.23%.

Table 15: Directional accuracy of forecasts based on common factors - IP

h=1 h=3 h=6 h=9 h=12
Benchmark 41.43% 31.37% 26.67% 21.51% 22.18%
Lasso 65.71% 68.63% 67.95% 68.64% 67.66%
Ridge 65.71% 66.67% 68.21% 68.82% 69.07%
Elastic Net 64.29% 67.65% 68.46% 68.10% 68.64%
Bagging 68.57% 68.14% 69.74% 71.51% 72.74%
Boosting 62.86% 69.12% 66.67% 67.03% 67.66%
Random Forest | 67.14% 64.22% 67.95% 69.71% 69.77%
SVM 67.14% 65.69% 67.18% 68.46% 70.06%

Source: authors’ calculations

To conclude, we present the directional accuracy of forecasts based on common factors
in Table 15. This table reinforces our previous findings. Directional accuracy values based on

common factors are significantly higher than those of the benchmark model. However, they are
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lower compared to the results based on hard macroeconomic data, as shown in Tables 6 and 10.

Nonetheless, their values remain relatively stable across multiple horizons.

In conclusion, forecasts based on common factors outperform the benchmark model but
underperform forecasting based on hard macroeconomic data. The exception is the SVM
model, which, despite displaying lower errors with common factors, is generally the worst-

performing model.

4.1.3 Forecasting industrial production using soft indicators

In Subchapter 3.10, we establish that soft indicators are unlikely to yield forecasts with
lower errors compared to those based on hard data. However, their primary purpose is not to
precisely capture the magnitude of change in macroeconomic variables. Instead, they serve to
reflect the sentiments of economic participants regarding the general direction of the economy
and its components. Consequently, they offer an approximate overview of where the economy
is headed. The key advantage of soft indicators lies in their availability, as there is no substantial
lag in obtaining data, unlike macroeconomic variables where decision-makers often face delays
of weeks or even months. In summary, due to their design and availability, soft indicators can
serve as a valuable tool for forecasting the direction of the economy, as acknowledged by

Coulombe et al. (2022).

Table 16: Relative MSE of forecasts based on indicators - IP

h=1 h=3 h=6 h=9 h=12

Benchmark 1 1 1 1 1

Lasso 1.32312 1.34674 1.39162 1.51222 1.48444
Ridge 1.12521 1.14370 1.22579 1.35124 1.37424
Elastic Net 1.29585 1.16898 1.24093 1.58505 1.50255
Bagging 1.31483 1.38907 1.46642 1.61058 1.63486
Boosting 1.28823 1.24934 1.38982 1.48275 1.52916
Random Forest | 1.27363 1.29351 1.36195 1.52735 1.51519
SVM 1.21398 1.22918 1.31444 1.42896 1.43386

Source: authors’ calculations

Given this premise, we are interested in exploring the potential of combining input data
from soft indicators (listed in Table Al1.9) and utilizing machine learning methods for
forecasting. Our objective is to demonstrate that by combining indicators in this manner, we

can increase the likelihood of forecasting the direction of change in our target variable, which
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in this case is industrial production. We conduct the forecasting exercise and report the relative

MSE values in Table 16.

As anticipated, Table 16 confirms that indicators are not the most suitable source of
information when we seek the most precise forecasts in terms of magnitude. Generally, the
benchmark model outperforms machine learning models based on indicators in forecasting
industrial production, as indicated by their relative MSE values consistently exceeding 1. Our
results thus underscore the superiority of using hard data to minimize relative MSE in forecasts.
Alternatively, if access to a large dataset is limited, relying on the benchmark data-driven model

proves to be more reliable than using indicators, if we are interested in the magnitude of errors.

Table 17: Directional accuracy of forecasts based on indicators - IP

h=1 h=3 h=6 h=9 h=12
Benchmark 41.43% 31.37% 26.67% 21.51% 22.18%
Lasso 61.43% 61.27% 58.46% 56.27% 56.50%
Ridge 55.71% 57.84% 57.18% 57.53% 57.77%
FElastic Net 58.57% 59.80% 62.31% 58.42% 59.18%
Bagging 57.14% 55.39% 56.67% 56.63% 56.92%
Boosting 58.57% 61.27% 55.13% 58.24% 59.46%
Random Forest | 58.57% 61.27% 60.26% 58.96% 60.59%
SVM 61.43% 60.29% 59.49% 59.32% 59.04%

Source: authors’ calculations

Continuing, we analyze directional accuracy, our primary metric of interest in the case of
indicator data. The DA values are presented in Table 17, revealing several noteworthy
observations. Firstly, every machine learning model significantly outperforms the benchmark
model across all horizons, validating our assumptions and demonstrating the effectiveness of
utilizing indicators for forecasting. Secondly, while the outperformance is smaller compared to
forecasts based on hard macroeconomic data, this outcome is anticipated. Forecasts based on
indicator data inherently yield lower DA values than those based on hard macroeconomic data
due to the nature of indicators measuring sentiments and their availability. Thirdly, this
outperformance remains consistent across horizons, as depicted in Figure 16. Fourthly, there
are minimal differences between models, indicating that we can select the model with the least
computational requirements (such as Lasso in our case) and utilize it for computing directional

accuracy.

In conclusion, indicators serve their intended purpose effectively. By leveraging an

extensive dataset of soft indicators and employing machine learning models, we can predict the
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direction of change in industrial production with a higher likelihood than if we solely relied on

the benchmark model.

Figure 16: Directional accuracy of forecasts based on indicators - IP
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Continuing our analysis, we present the relative MSE and MAE results of the forecasts

of inflation in Table 18.

Table 18: Relative MSE and MAE of RLS models - Inf

Relative MSE h=1 h=3 h=6 h=9 h=12
Benchmark 1 1 1 1 1

Lasso 0.85183 0.84309 0.84579 0.82543 0.82269
Ridge 0.65684 0.66673 0.65922 0.65645 0.63384
Elastic Net 0.57095 0.62576 0.62040 0.54723 0.59771
Relative MAE

Benchmark 1 1 1 1 1

Lasso 0.87313 0.86684 0.86351 0.86148 0.86148
Ridge 0.79810 0.81195 0.80224 0.79797 0.79797
Elastic Net 0.74610 0.75678 0.76212 0.71168 0.71168

Source: authors’ calculations

Firstly, when we look at MSE, we find that all RLS models perform better than the

benchmark. The Lasso model has a relative MSE ranging from 0.82 to 0.86. Similarly, the Ridge

model shows a relative MSE of around 0.63 to 0.65 for each forecast period, consistently

outperforming the benchmark. The most effective among these is the Elastic Net model, with a
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relative MSE between 0.57 and 0.63. Notably, since the Ridge model exhibits a lower relative
MSE compared to Lasso, the Elastic Net model incorporates more information from Ridge,
indicating that in this scenario, shrinkage is favored over variable selection. This is in contrast
to Table 3, when variable selection was preferred. Overall, all RLS models surpass the

benchmark model in terms of performance.

Secondly, the relative MAE results further support our earlier conclusion, as they are also
lower than those of the benchmark. In opposition to Table 3, the differences between relative
MSE and MAE values are relatively miniscule in Table 18. This suggests that RLS models are
more robust to large outlier forecast errors in this case. Furthermore, the extent of
outperformance remains consistent across all models and forecast horizons, as demonstrated in

Figure 17.

Figure 17: Relative MSE of RLS models over time - Inf
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To ascertain the statistical significance of this outperformance, we present the DM test
values in Table 19. It is evident that each forecast generated by the RLS models exhibits

statistically significant improvement at the 5% significance level.

Table 19: DM test p-values of RLS methods - Inf

h=1 h=3 h=6 h=9 h=12
Lasso 0,00622%** 0,00127** 0,00415** 0,00525** 0,00168**
Ridge 0,01335%* 0,01527** 0,01263** 0,01498** 0,03328**
Elastic Net 0,00197** 0,00430** 0,00565** 0,00775** 0,02192**

Source: authors’ calculations
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Table 20: % improvement of RLS forecasts over the benchmark - Inf

h=1 h=3 h=6 h=9 h=12
Lasso 14.82% 15.69% 15.42% 17.46% 17.73%
Ridge 34.32% 33.33% 34.08% 34.35% 36.62%
Elastic Net 42.91% 37.42% 37.96% 45.28% 40.23%

Source: authors’ calculations

Given the statistical significance of the outperformance, we can express the extent of

improvement in percentage figures. Table 20 presents the results. The Lasso model's

outperformance ranges between 14.82% and 17.73%, with an increase as the forecast horizon

increases. The Ridge model consistently outperforms the benchmark by 33.33% to 36.63%,

while the Elastic Net model yields the highest improvement, ranging from 37.42% at 4 = 3 to

45.28% at h =9.

Table 21: Directional accuracy of RLS models - Inf

h=1 h=3 h=6 h=9 h=12
Benchmark 60,00% 61,27% 59,74% 57,89% 56,07%
Lasso 65,71% 68,63% 70,77% 71,33% 71,89%
Ridge 72,86% 70,59% 70,26% 70,97% 72,46%
Elastic Net 71,43% 73,04% 75,90% 77,60% 76,98%

Source: authors’ calculations

Figure 18: Directional Accuracy of RLS models over time - IP
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Transitioning to DA, each RLS model demonstrates a greater likelihood of correctly

capturing the direction of change in the target variable compared to the benchmark model. The

findings are summarized in Table 21. The directional accuracy of the Lasso model falls within

the range 0f 65.71% to 71.89%, while that of Ridge ranges from 70.26% to 72.86%. The Elastic
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Net performs best in terms of DA as well. In contrast, the benchmark model's directional

accuracy varies from 56.07% to 61.27%, contingent upon the forecast horizon.

Furthermore, this enhancement maintains consistency over time, as depicted in Figure 18.
The DA values of Lasso and Elastic Net exhibit a slight growth as /4 increases. However, the
DA values of the Ridge model do not display a discernible pattern of growth. Another
noteworthy observation is that, with an increase in the forecast horizon, the DA of the

benchmark model experiences only a marginal decrease.
We proceed by presenting the results of the EML models in Table 22.

Table 22: Relative MSE and MAE of EML models - Inf

Relative MSE h=1 h=3 h=6 h=9 h=12
Benchmark 1 1 1 1 1
Bagging 0.67586 0.69034 0.67162 0.67980 0.65210
Boosting 0.66167 0.73106 0.73522 0.82561 0.81767
Random Forest | 0.76327 0.76775 0.74941 0.74185 0.73045
Relative MAE
Benchmark 1 1 1 1 1
Bagging 0.80201 0.80335 0.79988 0.81326 0.81326
Boosting 0.7671 0.83876 0.82218 0.87872 0.82839
Random Forest | 0.8565 0.83859 0.82778 0.82819 0.80148

Source: authors’ calculations

Figure 19: Relative MSE of EML models over time - IP
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To start, when evaluating MSE, each EML model demonstrates superior performance

compared to the benchmark. Bagging exhibits an MSE ranging from 0.67 to 0.70, Boosting
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ranges from 0.66 to 0.83, and Random Forest ranges from 0.73 to 0.77. Notably, Bagging
emerges as the top-performing model, except for 2 = 1, where Boosting marginally outperforms
it.

Secondly, the relative MAE results reinforce our earlier findings, as they also indicate
lower errors compared to the benchmark. Moreover, the magnitude of outperformance remains

consistent for Bagging, as depicted in Figure 19. Figure 19 also illustrates an increase in forecast

errors for Boosting and a slight decrease for Random Forest as the forecast horizon increases.

Table 23 presents the p-values from the DM test. It's noteworthy that every individual
EML model exhibits statistically significant outperformance compared to the benchmark at the

5% significance level across all forecast horizons.

Table 23: DM test p-values of EML methods - Inf

h=1 h=3 h=6 h=9 h=12
Bagging 0.00318** 0.00246** 0.00215** 0.00228** 0.00701**
Boosting 0.00155** 0.010271** 0.01181%** 0.04125** 0.01602**
Random Forest | 0.01956** 0.02505** 0.01219** 0.02601** 0.04646**

Source: authors’ calculations

Table 24 highlights the outperformance of Bagging, ranging between 30.02% and
34.79%. This achievement is particularly noteworthy as it surpasses the performance of Lasso
and closely rivals that of Ridge, falling just short of the Elastic Net model's superiority. Among
the other EML models, Boosting demonstrates an outperformance ranging from 17.44% to
33.83%, while Random Forest shows a narrower range of improvement, between 23.22% and
26.96%. Interestingly, Boosting's strongest outperformance occurs at 4 = 1 but diminishes as 4
increases, whereas Random Forest exhibits a slight increase in outperformance over the forecast

horizons.

Table 24: % improvement of EML forecasts over the benchmark - Inf

h=1 h=3 h=6 h=9 h=12
Bagging 32.41% 30.97% 32.84% 32.02% 34.79%
Boosting 33.83% 26.89% 26.48% 17.44% 18.23%
Random Forest | 23.67% 23.22% 25.06% 25.81% 26.96%

Source: authors’ calculations

Progressing to DA, each EML model demonstrates a greater likelihood of correctly
capturing the direction of change in the target variable compared to the benchmark model. The
findings are presented in Table 25. The directional accuracy of Bagging ranges from 70.48%
to 73.04%, while that of Boosting ranges from 65.71% to 70.42%, and Random Forest ranges

from 68.57% to 70.00%. In contrast, the benchmark model's directional accuracy varies from
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56.07% to 61.27%, depending on the forecast horizon. Moreover, this outperformance is

consistent over time, as depicted in Figure 20.

Table 25: Directional accuracy of EML models - Inf

h=1 h=3 h=6 h=9 h=12
Benchmark 60.00% 61.27% 59.74% 57.89% 56.07%
Bagging 71.43% 73.04% 72.31% 71.15% 70.48%
Boosting 65.71% 69.12% 69.49% 67.38% 70.42%
Random Forest | 68.57% 68.63% 70.00% 69.71% 68.64%

Source: authors’ calculations
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In Table 26, we present the results of the SVM, FFNN and LSTM models. Firstly, we
acknowledge that computational resource constraints rendered the Neural Network models
impractical for our analysis, as elaborated in Subchapter 5.1.1, thus we won't delve into further
details here. Moving forward, we direct our attention to the SVM model, which exhibits notably
stronger performance in forecasting inflation compared to industrial production. While its
relative MSE is higher compared to previously described models in this subchapter, the near-
identical values of relative MSE and MAE indicate that the model adeptly captures significant
data patterns and can accommodate potentially large forecast errors without substantial impact.

Additionally, these results hold high statistical significance at the 5% level across all horizons.

Regarding DA, the SVM model achieves values ranging from 68.77% to 74.15%,
indicating its outperformance compared to the benchmark model. Its performance generally
aligns with that of the Ridge and Bagging models, slightly trailing behind the Elastic Net model
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while surpassing Lasso, Boosting, and Random Forest.

Table 26: Forecasts with SMV, FFNN and LSTM - Inf

Relative MSE h=1 h=3 h=6 h=9 h=12
Benchmark 1 1 1 1 1
Support Vector | 0.83966 0.85146 0.85869 0.85031 0.82470
Machine
Feedforward 458.15 451.18 438.00 420.98 418.35
NN
LSTM NN 5716.14 1617.63 1219.65 477.68 637.59
Relative MAE
Benchmark 1 1 1 1 1
Support Vector | 0.86623 0.87089 0.87021 0.86015 0.86015
Machine
Feedforward 27.9724 27.7361 27.2919 26.7198 26.7198
NN
LSTM NN 76.7502 42.9465 35.6332 21.4885 21.4885

DM test

Support Vector | 0.00709 0.01365 0.01686 0.01555 0.00413
Machine
Feedforward 1 1 1 1 1
NN
LSTM NN 1 1 0.99997 0.99998 0.99905

DA

Benchmark 60.00% 61.27% 59.74% 57.89% 56.07%
Support Vector | 68.57% 70.59% 73.08% 73.48% 74.15%
Machine
Feedforward 44.29% 45.10% 45.90% 46.42% 46.75%
NN
LSTM NN 48.57% 37.75% 54.62% 57.89% 53.25%

Source: authors’ calculations

To summarize, in this subchapter we forecast inflation using hard macroeconomic data.
Most of the machine learning models exhibit significant outperformance compared to the
benchmark model, with the exception of the neural network models due to computational
limitations. The outperformance is lesser in magnitude compared to industrial production, but
it is highly statistically significant at each horizon. The models, sorted from best to worst in

terms of % improvement over the benchmark, are presented in Table 27.

Firstly, among the models evaluated, Ridge and Elastic Net stand out as the top
performers, with Elastic Net being number one on each horizon, demonstrating statistically
significant outperformance of the benchmark model at every forecasting horizon at the 5%
significance level. Additionally, both Ridge and Elastic Net models exhibit the highest
directional accuracy values across all models, with consistent performance over time. Notably,

in contrast to the good performance of Lasso in the case of industrial production, its
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performance deteriorates substantially and it remains one of the worst performing models,
surpassing only the SVM. The outperformance of the Lasso model is also statistically
significant on every h at the 5% level though.

Secondly, EML models, while displaying slightly higher errors and lower directional
accuracy compared to Ridge and Elastic Net, are still capable of achieving statistically
significant outperformance of the benchmark model. What is more, Bagging surpasses Lasso
in terms of DA. Bagging emerges as the overall top performer except for h = 1, showcasing
notable effectiveness in capturing nonlinear relationships in the data.

Thirdly, the SVM model yields far more compelling results compared to industrial
production. It is still the weakest model, but the outperformance becomes statistically
significant on every h. Moreover, it is the most robust model in terms of influential forecast

errors, as it produces really similar relative MSE and MAE values.

Table 27: Forecasting models from best to worst - Inf

h=1 h=3 h=6 h=9 h=12
1. Elastic Net Elastic Net Elastic Net Elastic Net Elastic Net
2. Ridge Ridge Ridge Ridge Ridge
3. Boosting Bagging Bagging Bagging Bagging
4. Bagging Boosting Boosting RF RF
5. RF RF RF Lasso Boosting
6. Lasso Lasso Lasso Boosting Lasso
7. SVM SVM SVM SVM SVM
8. FFNN FFNN FFNN FFNN FFNN
9. LSTM LSTM LSTM LSTM LSTM

Source: authors’ calculations

4.1.5 Forecasting inflation using common factors

Table 28 presents the relative MSE values of the inflation forecasts derived from common
factors. Table 28 underscores that forecasts derived from common factors continue to
outperform the benchmark model, with no relative MSE exceeding one. Within the RLS
methods, the performance of the Lasso model experiences a decline compared to industrial
production forecasting, while Elastic Net maintains satisfactory results. Notably, the Ridge
model demonstrates a significant improvement and emerges as the top-performing RLS
specification. This is likely the result of the reduced information set, where shrinkage becomes

more pronounced in contrast to variable selection.
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Table 28: Relative MSE of forecasts based on common factors - Inf

h=1 h=3 h=6 h=9 h=12

Benchmark 1 1 1 1 1

Lasso 0.91935 0.92376 0.93345 0.93323 0.91158
Ridge 0.52143 0.51825 0.52280 0.51764 0.50053
Elastic Net 0.60710 0.61172 0.60056 0.59217 0.56605
Bagging 0.82478 0.83360 0.85232 0.84480 0.80954
Boosting 0.93111 0.93141 0.87634 0.86724 0.94901
Random Forest | 0.82074 0.84776 0.81986 0.76227 0.71753
SVM 0.70042 0.71128 0.71516 0.70507 0.69529

Source: authors’ calculations

Turning to EML methods, Bagging and Random Forest exhibit nearly identical
performances, with the exception of # = 12, where the latter marginally outperforms the former
by almost 0.08. Boosting, however, fares less favorably compared to these two. Furthermore,
the Support Vector Machine (SVM) model's results demonstrate a notable improvement,

compared to its performance on hard data.

Table 29: % difference between forecasts based on factors and hard data - Inf

h=1 h=3 h=6 h=9 h=12
Lasso 7.93% 9.57% 10.37% 13.06% 10.81%
Ridge -20.62% -22.27% -20.69% -21.15% -21.03%
Elastic Net 6.33% -2.24% -3.20% 8.21% -5.30%
Bagging 22.03% 20.75% 26.90% 21.03% 22.67%
Boosting 40.72% 27.41% 19.19% 5.04% 16.06%
Random Forest | 7.53% 10.42% 9.40% 2.75% -1.77%
SVYM -16.58% -16.46% -16.72% -17.08% -15.69%

Source: authors’ calculations

Table 29 presents the percentage difference between the relative MSE values of forecasts
based on hard macroeconomic data and those based on common factors. Primarily, the table
reveals that in most instances, models based on hard data exhibit greater accuracy. Nonetheless,
there are a few exceptions. Firstly, the Ridge model based on common factors surpasses its
counterpart based on hard macroeconomic data. Additionally, Elastic Net demonstrates superior
performance at certain horizons compared to forecasts based on hard data, albeit with small
percentage differences ranging between 2.24% and 5.30%. Furthermore, the Support Vector
Machine (SVM) model consistently yields lower errors compared to the model forecast based
on hard data, indicating its robust performance. This result is in line with the SVM result of

Table 14.

In Table 30, we present the directional accuracy of forecasts based on common factors.

This table further reinforces our conclusion that hard macroeconomic data should be prioritized
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for forecasting purposes. While directional accuracy values based on common factors generally
exceed the benchmark, they typically fall short compared to results derived from hard
macroeconomic data. Notably, there are instances, such as from 42 = 1 to 4 = 9, where the
benchmark outperforms Boosting in terms of directional accuracy, a scenario not observed

when using real data.

Table 30: Directional accuracy of forecasts based on common factors - Inf

h=1 h=3 h=6 h=9 h=12
Benchmark 60.00% 61.27% 59.74% 57.89% 56.07%
Lasso 64.29% 65.69% 66.15% 66.13% 66.10%
Ridge 67.14% 67.16% 67.44% 67.56% 67.09%
Elastic Net 68.57% 67.16% 68.72% 68.64% 68.50%
Bagging 68.57% 71.57% 70.77% 69.53% 69.49%
Boosting 58.57% 60.29% 59.74% 57.53% 62.29%
Random Forest | 64.29% 64.22% 62.56% 62.19% 65.11%
SVM 60.00% 61.27% 59.74% 57.89% 56.07%

Source: authors’ calculations

4.1.6 Forecasting inflation using soft indicators

The results of machine learning and benchmark model forecasts based on these indicators
are presented in Table 31. As anticipated, the table reveals that indicators are not the most
suitable source of information when aiming to capture the magnitude of changes in
macroeconomic variables. This is primarily because they yield forecasts similar to the
benchmark model, which necessitates significantly less data and computational resources. It's
worth noting that the SVM and Elastic Net models have no relative MSE over 1. However, all

values are so close to 1 that they are practically indistinguishable.

Table 31: Relative MSE of forecasts based on indicators - Inf

h=1 h=3 h=6 h=9 h=12

Benchmark 1 1 1 1 1

Lasso 0.99920 1.00930 1.02142 1.01731 0.97916
Ridge 1.00141 1.00944 1.02160 1.01633 0.97927
Elastic Net 0.94591 0.95314 0.96228 0.95526 0.91147
Bagging 1.16871 1.20947 1.18994 1.18321 1.14751
Boosting 1.16607 1.11865 1.06712 1.09477 1.07865
Random Forest | 1.00079 0.99324 1.00011 1.00889 0.99492
SVM 0.94591 0.95053 0.96228 0.95526 0.91147

Source: authors’ calculations
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Table 32: Directional accuracy of forecasts based on indicators - Inf

h=1 h=3 h=6 h=9 h=12
Benchmark 60.00% 61.27% 59.74% 57.89% 56.07%
Lasso 64.29% 65.69% 66.15% 66.13% 66.10%
Ridge 64.29% 65.69% 66.15% 66.13% 66.10%
Elastic Net 64.29% 65.69% 66.15% 66.13% 66.10%
Bagging 62.86% 64.22% 64.62% 64.52% 64.41%
Boosting 54.29% 54.90% 55.90% 56.09% 59.60%
Random Forest | 64.29% 65.20% 65.13% 65.41% 65.68%
SVM 64.29% 65.69% 66.15% 66.13% 66.10%

Source: authors’ calculations

Figure 21: Directional accuracy of forecasts based on indicators - Inf
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Continuing our analysis, we delve into directional accuracy, our primary measure of
interest when utilizing indicator data. The directional accuracy values are presented in Table
32. Several notable observations emerge. Firstly, every machine learning model consistently
outperforms the benchmark model across all forecast horizons, except for Boosting. Within the
RLS models, there is no discernible difference in directional accuracy values, rendering the
choice between them irrelevant. Similarly, EML models generally outperform the benchmark,
except for Boosting, which exhibits lower directional accuracy values. While one model
underperforms, the others align with expectations. Secondly, the level of outperformance is
smaller compared to when using hard macroeconomic data. This outcome was expected, as
forecasts based on indicator data typically yield lower directional accuracy values. However,
it's crucial to acknowledge that indicators offer the advantage of earlier availability and

capturing sentiments. Thirdly, the consistent outperformance is evident, as depicted in Figure
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21, albeit to a lesser extent than in Subchapter 4.1.3. Fourthly, there are no substantial
differences between models, suggesting that selecting the model with the least computational

capacity (in this case, Lasso) suffices for computing directional accuracy.

In conclusion, indicators effectively serve their purpose. Through leveraging an extensive
dataset of soft indicators and employing machine learning models, we can predict the direction

of change in inflation with a higher likelihood than if we relied solely on the benchmark model.

4.2 Post-COVID

4.2.1 Forecasting industrial production using hard macroeconomic data — post-

COVID

In this subchapter, we utilize our revised dataset, which now encompasses data from the
COVID era, hence referred to as the post-COVID dataset. We commence our analysis by
delineating the relative MSE and MAE outcomes of the forecasts pertaining to industrial
production, derived from hard macroeconomic data. Table 33 presents the results of the RLS
models. Firstly, in terms of MSE, all RLS models demonstrate superior performance compared
to the benchmark. Both Lasso and Elastic Net models exhibit a relative MSE of approximately
0.02, indicating that the Lasso component within the Elastic Net model carries a higher weight
in comparison to the Ridge component. On the other hand, the Ridge model also surpasses the
benchmark by maintaining a relative MSE ranging between 0.15 to 0.16 for every forecast
horizon. This indicates that variable selection emerges as a crucial factor, surpassing coefficient
shrinkage in significance. To highlight the differences between shrinkage and selection, we

present the selected variables from Tables A1.1 — A1.8. on Figures 22-24.

Table 33: Relative MSE and MAE of RLS models - IP

Relative MSE h=1 h=3 h=6 h=9 h=12

Benchmark 1 1 1 1 1

Lasso 0.01708 0.01690 0.01651 0.01485 0.01421
Ridge 0.16493 0.15828 0.15719 0.15798 0.15508
Elastic Net 0.02293 0.02321 0.02341 0.02309 0.02210
Relative MAE

Benchmark 1 1 1 1 1

Lasso 0.19054 0.19100 0.18811 0.17607 0.17197
Ridge 0.53807 0.53016 0.53287 0.52925 0.51732
Elastic Net 0.21986 0.22374 0.22300 0.22138 0.21563

Source: authors’ calculations
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Variable importance is calculated according to Kock et al. (2020). As there are a high
number of predictors, we group them. For each forecasting horizon, the Figures 22-24 display
the average estimated coefficient across the rolling windows for each group. Before averaging,
the coefficients are adjusted by multiplying them by the standard deviation of the variables to
ensure comparability. The resulting importance measures are then rescaled to sum up to one.
Since the number of variables in each group varies significantly, the importance measures are
further divided by the number of variables in the respective group for normalization. The best
models show remarkable simplicity, as expected. Both Lasso and Elastic Net place the highest
weight on the 32 variables from the category of industrial production, presented in Table Al.1.
This pattern is remarkably consistent over the different horizons, keeping the relative
importance of other variable groups at a low level. In contrast, Ridge places the highest weight
on the revenue category, which slightly increases with 4. It also places some weight on wages
and the current account, with the latter showing a decreasing tendency. While the other models

also incorporate variables from the revenue category, they do it to a much lesser extent.

Secondly, the relative MAE outcomes reinforce our prior deduction, showcasing smaller
errors compared to the benchmark model. This also signifies the higher performance of the
variable selection models, for in absolute terms, Ridge exhibits the largest difference between
relative MSE and MAE values, indicating its sensitivity to larger forecast errors. This signifies
that all RLS models outshine the benchmark, with errors notably smaller than those observed
in the pre-COVID dataset, presented in Table 3.

Figure 22: Variable importance of the Ridge model — IP — post-COVID
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Figure 23: Variable importance of the Elastic Net model — IP — post-COVID
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Figure 24: Variable importance of the Lasso model — IP — post-COVID
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The magnitude of outperformance, presented on Figure 25, shows remarkable

consistency similar to of Figure 12.

To shed further light on the precision of these methods, we compare the out-of-sample
actual and forecasted values on Figure 26 for # =1 and Figure 27 for # = 12. Regardless of time
horizon, both the Lasso and Elastic Net models demonstrate a remarkable match in terms of

both general direction and magnitude. This includes accurately capturing large spikes in the
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data. While the Ridge model correctly predicts the direction, it tends to underperform in terms

of magnitude, particularly evident in slightly overestimating the impact of large spikes.

Figure 25: Relative MSE of RLS models over time — IP — post-COVID
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Figure 26: Actual and forecasted values of RLS models on # =1 — IP — post-COVID

Value
bobooo
WN=0O=N

Value
bbbooo
WN =0 =N

Value

Comparison: Lasso vs Real

0 20 40 60
Period

Comparison: Ridge vs Real

__L..A_.._,.._,\\/’\‘MVW

0 20 40 60
Period

Comparison: Elastic Net vs Real
0.2
0.0
-0.2

0 20 40 60
Period

Source: authors’ calculations

79

= Lasso
~— Real

== Real
— Ridge

== Elastic Net
== Real



Figure 27: Actual and forecasted values of RLS models on 2 =12 — IP — post-COVID
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To add, Table 34 presents the DM statistic p-values, showcasing that all RLS models

significantly outperform the benchmark at the 5% level.

Table 34: DM test p-values of RLS methods — IP — post-COVID

h=1 h=3 h=6 h=9 h=12
Lasso 0.01547™ 0.01637™ 0.0167° 0.01672™ 0.01698™
Ridge 0.02481™ 0.02529™ 0.02625™ 0.02648™ 0.025917™
Elastic Net 0.00664™ 0.01321™ 0.01174™ 0.046617" 0.00935™

Source: authors’ calculations

Since the outperformance is statistically significant, we can express the magnitude of
outperformance in percentage terms. Table 35 illustrates that the Lasso model consistently
outperforms the benchmark by approximately 98.00% across all 4. Similarly, the Ridge model
generally surpasses the benchmark by 84.00%, while the Elastic Net model, not surprisingly,
exhibits a very close performance to Lasso, with an outperformance of about 97.00% across all
horizons. Notably, both Lasso and Elastic Net models achieve an increase in performance of
approximately 20 percentage points compared to the pre-COVID sample. Multiple reasons can
be given for this outperformance. Generally, the models have more data to learn with the
prolongation of the time series by 4 years. To add, the benchmark model’s performance can
deteriorate substantially as the simple model might not be able to capture an abrupt and
unexpected shock such as COVID. In conclusion, regardless of the model under consideration,
the improvement in percentage terms is substantial, highlighting the efficacy of the chosen

modeling approaches.
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Table 35: % improvement of RLS forecasts over the benchmark — IP — post-COVID

h=1 h=3 h=6 h=9 h=12
Lasso 98.29% 98.31% 98.35% 98.51% 98.58%
Ridge 83.51% 84.17% 84.28% 84.21% 84.49%
Elastic Net 97.71% 97.68% 97.66% 97.69% 97.79%

Source: authors’ calculations

To finish the analysis of the RLS model errors, DA values are presented in Table 36. Lasso

is the best performing with DA values between 93.87% and 94.52% compared to the

benchmark, which is accurate between 43.76% and 44.62% of the time. Elastic Net performs

slightly worse than Lasso, but still has relative MSE values between 85.45% and 90.00%, which

is a more than twofold increase compared to the benchmark, while Ridge is the weakest model

with DA values between 68.49% and 71.62%.

Table 36: Directional accuracy of RLS models — IP — post-COVID

h=1 h=3 h=6 h=9 h=12
Benchmark 43.84% 46.01% 44.12% 43.76% 44.62%
Lasso 94.52% 93.90% 93.87% 94.36% 94.09%
Ridge 68.49% 71.36% 71.32% 71.62% 71.37%
Elastic Net 90.00% 86.76% 87.44% 85.48% 85.45%

Source: authors’ calculations

Figure 28: Directional Accuracy of RLS models over time — IP — post-COVID
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Furthermore, the results are consistent irrespective of 4, as shown in Figure 28. In contrast

to the pre-COVID sample, this time the benchmark model is consistent as well.

We proceed by presenting the results of the EML models in Table 37.
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Table 37: Relative MSE and MAE of EML models — IP — post-COVID

Relative MSE h=1 h=3 h=6 h=9 h=12

Benchmark 1 1 1 1 1
Bagging 0.29142 0.29817 0.29136 0.28997 0.29515
Boosting 0.31343 0.32121 0.31778 0.31932 0.34098
Random Forest | 0.30690 0.31272 0.30703 0.59819 0.31621
Relative MAE

Benchmark 1 1 1 1 1
Bagging 0.41735 042114 0.43231 0.41821 0.42341
Boosting 0.46399 0.48096 0.47895 0.47221 0.48446
Random Forest | 0.48173 0.48949 0.49292 0.80020 0.49943

Source: authors’ calculations

Figure 29: Relative MSE of EML models over time — IP — post-COVID
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Firstly, in terms of MSE, every EML model outperforms the benchmark. Bagging
demonstrates an MSE of around 0.29, with Boosting ranging between 0.31 and 0.34, and
Random Forest between 0.30 and 0.32, except at 2= 9, where it increases to 0.60. This indicates
that Bagging performs best for every horizon, closely followed by both Random Forest and
Boosting. Random Forest performs better than Boosting at every horizon except for 2= 9. The
relative MAE values support this conclusion and Figure 29 shows the consistency of relative
MSE across different 4. For EML methods, variable importance is computed similarly than for
RLS methods, but it is averaged across horizons as well. Figure 30 presents the importance of
each category for Bagging. The rest of the EML models — as expected based on Table 37 —

assign virtually identical importances to variable categories, hence we only present Bagging.
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Figure 30: Variable importance in Bagging — IP — post-COVID
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In line with RLS models (with the exception of Ridge), Bagging assigns the highest
weight to the variables in Table Al.1. In contrast to Elastic Net and Lasso, it also weighs
variables from other categories, with revenue being the second most important category,
followed by employment and wages. Foreign trade and exchange rates play a bit larger, while
current account plays a bit smaller role. The effect of prices on the outcome of forecast is

minimal.

Figure 31: Actual and forecasted values of EML models on 2 =1 —IP — post-COVID
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Figure 32: Actual and forecasted values of EML models on 2 =12 —IP — post-COVID
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To provide additional insight into the accuracy of these methods, we compare the out-of-
sample actual and forecasted values in Figure 31 for 2 = 1 and Figure 32 for 7 = 12. Across
both time horizons, all three models closely align with the actual values, demonstrating a good
match in terms of both general direction and magnitude, at least when the data is smooth. The
models correctly capture the direction of the large spikes in the real data, but they cannot exactly

capture their magnitude.

To continue with, Table 38 shows that every model outperforms the benchmark

statistically significantly at the 5% level.

Table 38: DM test p-values of EML methods — IP — post-COVID

h=1 h=3 h=6 h=9 h=12
Bagging 0,01136** 0,01248** 0,01299** 0,01333%** 0,01385**
Boosting 0,01544** 0,01726** 0,01865** 0,01690** 0,01941**
Random Forest | 0,01311%** 0,01382%** 0,01533%** 0,04373** 0,01501**

Source: authors’ calculations

With the statistically significant outperformance established, we proceed to quantify the
magnitude of outperformance in percentage terms, stating them in Table 39. Table 39 reveals
that the outperformance of Bagging ranges between 70.18% and 71.00%, still impressive but
slightly less than the best RLS models. Boosting's outperformance ranges between 65.90% and
68.66%, and Random Forest's between 68.38% and 69.30%, except for 4 = 9. Generally,
Bagging emerges as the best-performing model, closely followed by both Boosting and

Random Forest. The outperformance remains consistent for every model, except for Random
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Forest at 4 = 9. In conclusion, while the improvement in percentage terms is substantial
regardless of the model considered, it is smaller when compared to the RLS methods. However,
the performance of the models has significantly improved compared to the pre-COVID sample,

by approximately 20 percentage points on average.

Table 39: % improvement of EML forecasts over the benchmark — IP — post-COVID

h=1 h=3 h=6 h=9 h=12
Bagging 70.86% 70.18% 70.86% 71.00% 70.48%
Boosting 68.66% 67.88% 68.22% 68.07% 65.90%
Random Forest | 69.31% 68.73% 69.30% 40.18% 68.38%

Source: authors’ calculations

Table 40: Directional accuracy of EML models — IP — post-COVID

h=1 h=3 h=6 h=9 h=12
Benchmark 43.84% 46.01% 44.12% 43.76% 44.62%
Bagging 93.15% 89.67% 88.24% 89.23% 89.25%
Boosting 86.30% 85.92% 84.56% 86.67% 84.95%
Random Forest | 86.30% 87.79% 87.99% 88.03% 87.50%

Source: authors’ calculations

Moving forward to DA, every EML model demonstrates a higher likelihood of capturing
the correct direction of change in the target variable compared to the benchmark model. The
results are presented in Table 40. Bagging achieves DA percentages between 88.24% and
93.15%, Boosting ranges from 84.56% to 86.67%, and Random Forest ranges from 86.30% to
88.03%. In contrast, the benchmark model exhibits a DA between 43.76% and 46.01%,

depending on the forecast horizon. Figure 33 outlines the consistency of DA at different h.

Figure 33: Directional accuracy of EML models over time — IP — post-COVID
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In Table 41, we exclusively present the results of the Support Vector Machine (SVM)
model. The Feedforward Neural Network and the Long-Short Term Memory Neural Network
are omitted due to their poor performance in the previous sample, which has not significantly
improved with the introduction of new data. SVM remains superior even in this new sample
post-COVID, with smaller errors compared to the pre-COVID sample. This observation is
corroborated by the relative MAE values. However, the DA values of the SVM model range

between 53% and 55%, lower than those of the other models.

Table 41: Forecasts with SMV, FFNN and LSTM — IP — post-COVID

Relative MSE h=1 h=3 h=6 h=9 h=12
Benchmark 1 1 1 1 1
Support Vector | 0.60012 0.600908 0.59867 0.31037 0.59862
Machine
Relative MAE
Benchmark 1 1 1 1 1
Support Vector | 0.80242 0.80509 0.80283 0.49318 0.80266
Machine

DA
Benchmark 43.84% 46.01% 44.12% 43.76% 44.62%
Support Vector | 54.79% 54.46% 54.17% 53.85% 53.36%
Machine

Source: authors’ calculations

Table 42: Combined RLS and EML methods — IP — post-COVID

h=1 h=3 h=26 h=9 h=12
Lasso + | 60.68% 59.74% 61.27% 63.24% 62.53%
Bagging
Lasso + 1 53.20% 55.63% 52.93% 51.00% 51.57%
Boosting
Lasso + | 65.38% 64.50% 64.52% 66.76% 66.40%
Random Forest
EN + Bagging | 59.54% 70.98% 63.46% 63.73% 60.12%
EN + Boosting | 51.10% 67.91% 51.34% 52.85% 52.39%
EN + Random | 68.17% 71.63% 65.20% 65.37% 63.06%
Forest
Ridge + | 70.94% 59.77% 71.72% 72.00% 72.14%
Bagging
Ridge + | 64.83% 52.44% 68.18% 65.90% 64.12%
Boosting
Ridge + 1 70.91% 66.64% 71.48% 70.67% 70.52%
Random Forest

Source: authors’ calculations

In addition to the previous analysis, we also explore the performance of combining
regularization and nonlinear methods, as summarized in Table 42. Similarly to the case of

inflation, where such combinations often lead to performance improvements, we observe that
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in the context of industrial production forecasting, combining regularization and nonlinear

methods improves the performance of nonlinear models. This might be due to the fact that k >

T, although EML methods should not be affected by this too much, as stated in Chapter 3.

To summarize, in this subchapter we forecast industrial production using hard

macroeconomic data. The machine learning models exhibit significant outperformance. The

models, sorted from best to worst in terms of % improvement over the benchmark, are presented

in Table 43.

Table 43: Forecasting models from best to worst — IP — post-COVID

h=1 h=3 h=6 h=9 h=12
1. Lasso Lasso Lasso Lasso Lasso
2. Elastic Net Elastic Net Elastic Net Elastic Net Elastic Net
3. Ridge Ridge Ridge Ridge Ridge
4. Ridge + | EN+RF Ridge + | Ridge + | Ridge +
Bagging Bagging Bagging Bagging
5. Ridge + RF | EN Ridge + RF | Bagging Ridge + RF
Boosting
6. Bagging Bagging Bagging Ridge + RF | Bagging
7. RF RF RF Boosting RF
8. Boosting Boosting Boosting Lasso + RF | Lasso + RF
0. EN + RF EN Ridge + | Ridge + | Boosting
Boosting Boosting Boosting
10. Lasso +RF | Ridge + RF | EN+RF EN + RF Ridge +
Boosting
11. Ridge + | Lasso+ RF | Lasso + RF EN + | EN+RF
Boosting Bagging
12. Lasso + | Ridge EN + | Lasso + | Lasso +
Bagging Bagging Bagging Bagging Bagging
13. SVM Lasso Lasso + | SVM EN +
Bagging Bagging Bagging
14. EN + | Lasso SVM EN +| SVM
Bagging Boosting Boosting
15. Lasso +| SVM Lasso + | Lasso + | EN +
Boosting Boosting Boosting Boosting
16. EN + | Ridge EN + | RF Lasso +
Boosting Boosting Boosting Boosting
17. FFNN FFNN FFNN LSTM LSTM
18. LSTM LSTM LSTM FFNN FFNN

Source: authors’ calculations

To start, the standout performers are the Lasso and Elastic Net models, showcasing

statistically significant outperformance of the benchmark model across all forecasting horizons

at a 5% significance level. Notably, both Lasso and Elastic Net models exhibit the highest

directional accuracy values among all models, maintaining consistent performance over time.
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Although the Ridge model's performance is slightly weaker, it consistently ranks as the third-
best model across all horizons. In contrast, the performance of EML models presents a less
clear picture. Neither of them outperforms their combination with either Ridge or Elastic Net,
positioning these latter models at the 4th and 5th places, respectively. This underscores the
effectiveness of our hybrid approach in substantially improving the forecasting performance of

nonlinear models by selecting appropriate variables or parameter values for training.

Looking ahead, we delve into exploring the forecasting performance of machine learning

models based on common factors in the next subchapter.

4.2.2 Forecasting industrial production using common factors — post-COVID

To commence, Table 44 presents the relative MSE values of the forecasts based on
common factors. This table reaffirms that forecasts derived from common factors continue to
outperform the benchmark model, with no relative MSE exceeding one. Firstly, focusing on
RLS methods, both Lasso and Elastic Net yield comparable results to each other. Additionally,
the performance of the Ridge model notably improves compared to the forecasts based on hard
data, emerging as the best-performing model among the three. Regarding EML methods,
Bagging demonstrates superior performance compared to both Boosting and Random Forest,
with the latter two yielding fairly similar results. The results of the SVM model remain largely
consistent with those in the previous subchapter, with a slight deterioration observed at # = 9.
Overall, these findings underscore the continued effectiveness of forecasts based on common

factors.

Table 44: Relative MSE of forecasts based on common factors — IP — post-COVID

h=1 h=3 h=6 h=9 h=12
Benchmark 1 1 1 1 1
Lasso 0.094219 0.091859 0.091085 0.088662 0.081859
Ridge 0.086534 0.080003 0.079782 0.08465 0.070691
Elastic Net 0.089579 0.086746 0.085341 0.080882 0.085165
Bagging 0.374125 0.374765 0.371353 0.374969 0.368122
Boosting 0.47972 0.472179 0.458188 0.443167 0.45353
Random Forest | 0.399788 0.367635 0.428995 0.416814 0.379344
SVM 0.599592 0.600849 0.598138 0.597554 0.597642

Source: authors’ calculations

Continuing, we present the percentage difference between the relative MSE values of the
forecasts based on hard macroeconomic data and common factors in Table 45. Positive values

indicate that the model based on hard data is more accurate than the model based on common
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factors, while negative values signify the opposite. Table 45 reveals that in most cases, the

models based on hard data exhibit greater accuracy. The only exceptions are the SVM model,

where the forecasts are nearly identical, and the Ridge model, which notably performs better

based on common factors.

Table 45: % difference between forecasts based on factors and hard data — IP — post-

COVID

h=1 h=3 h=6 h=9 h=12
Lasso 81.86% 81.59% 81.87% 83.24% 82.64%
Ridge -90.60% -97.85% -97.04% -86.58% -119.39%
Elastic Net 74.40% 73.24% 72.57% 71.45% 74.05%
Bagging 22.10% 20.44% 21.54% 22.67% 19.82%
Boosting 34.66% 31.97% 30.64% 27.94% 24.82%
Random Forest | 23.23% 14.94% 28.43% -43.52% 16.64%
SVM -0.09% -0.01% -0.09% 48.06% -0.16%

Source: authors’ calculations

To conclude, we present the directional accuracy of forecasts based on common factors

in Table 46. This table further corroborates our findings. Directional accuracy values derived

from common factors significantly surpass the benchmark, albeit they are lower compared to

the results based on hard macroeconomic data. Nevertheless, these values remain relatively

stable across multiple horizons.

Table 46: Directional accuracy of forecasts based on common factors — IP — post-COVID
h=1 h=3 h=6 h=9 h=12
Benchmark 43.84% 46.01% 44.12% 43.76% 44.62%
Lasso 79.45% 79.81% 81.62% 80.34% 79.17%
Ridge 79.45% 81.22% 82.84% 81.20% 81.59%
Elastic Net 78.08% 78.40% 77.70% 77.61% 77.15%
Bagging 60.27% 60.56% 62.01% 61.71% 61.02%
Boosting 58.90% 65.26% 64.46% 62.74% 64.52%
Random Forest | 64.38% 60.56% 61.52% 62.05% 59.81%
SVM 54.79% 54.46% 54.17% 53.85% 53.36%

Source: authors’ calculations

4.2.3 Forecasting industrial production using soft indicators — post-COVID

In this subchapter, we explore the potential of combining input data from the soft indicator

database of NBS and employing machine learning models for forecasting.

Table 47 presents the relative MSE values. Contrary to our initial expectations and the

results observed in our pre-COVID sample, we find that the relative MSE of indicator data is
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lower than that of the benchmark model. This unexpected outcome could potentially be
attributed to the larger sample size, as we have more data available to train the models. While
the results are compelling, they do not match the accuracy achieved by forecasts based on hard
macroeconomic data. However, it's important to note that indicators are more readily accessible
and do not entail a time lag, making them a valuable tool for providing a broad overview of the
direction of the economy. If these indicators can not only sketch the direction but also provide

insight into the magnitudes of change to some extent, then they offer even greater utility.

Table 47: Relative MSE of forecasts based on indicators — IP — post-COVID

h=1 h=3 h=6 h=9 h=12

Benchmark 1 1 1 1 1

Lasso 0.52173 0.48680 0.49512 0.51500 0.48728
Ridge 0.52504 0.52168 0.54900 0.55666 0.53364
Elastic Net 0.50156 0.48783 0.53762 0.53910 0.47824
Bagging 0.61925 0.61314 0.61790 0.61249 0.61285
Boosting 0.59182 0.59197 0.59054 0.58101 0.59214
Random Forest | 0.57262 0.60631 0.58691 0.60898 0.56609
SVM 0.59995 0.60063 0.59872 0.59778 0.59849

Source: authors’ calculations

Continuing our analysis, we turn our attention to DA. Table 48 reveals some notable
observations. Firstly, every machine learning model outperforms the benchmark model at every
horizon, with the exception of Ridge and Random Forest at # = 9, although the extent of
outperformance is smaller than in the pre-COVID sample. Nonetheless, this reaffirms our initial
assumptions. Secondly, while the outperformance is smaller compared to using hard
macroeconomic data, this outcome is anticipated. Forecasts based on indicator data typically
exhibit lower DA values than those based on hard macroeconomic data, but this compromise is
justified by the advantage of speed. Thirdly, this outperformance remains consistent across

every forecasting horizon.

Table 48: Directional accuracy of forecasts based on indicators — IP — post-COVID

h=1 h=3 h=6 h=9 h=12
Benchmark 43.84% 46.01% 44.12% 43.76% 44.62%
Lasso 54.79% 48.83% 50.49% 49.06% 48.66%
Ridge 43.84% 45.54% 44.85% 45.47% 43.41%
Elastic Net 45.21% 46.48% 44.85% 43.42% 43.68%
Bagging 53.42% 48.83% 50.00% 52.14% 51.08%
Boosting 56.16% 51.17% 50.98% 48.03% 50.54%
Random Forest | 58.90% 48.83% 50.49% 5.81% 49.46%
SVYM 54.79% 54.46% 54.17% 53.85% 53.36%

Source: authors’ calculations
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4.2.4 Composite forecasts of industrial production — post-COVID

In this thesis, we explore the use of ML models not only as individual forecasters but
also as tools for combining forecasts, specifically focusing on data from Slovakia. This
methodology is relatively novel in existing research, with only Araujo and Gaglianone (2023)
briefly employing it. We generate composite forecasts by employing outputs from individual

ML models as inputs (regressors) in subsequent applications of these models.

Table 49: Composite forecasts including all models — IP — post-COVID

h=1 h=3 h=6 h=9 h=12
Benchmark 43.84% 46.01% 44.12% 43.76% 44.62%
Lasso 89,31% 90,56% 86,04% 94,09% 93,18%
Ridge 76,23% 76,61% 71,68% 82,90% 83,30%
Elastic Net 90,04% 90,65% 86,86% 92,91% 91,25%
Bagging 88,94% 70,38% 35,44% 66,16% 90,19%
Boosting 51,74% 47,45% 13,73% 45,56% 50,98%
SVM 28,00% 27,63% 11,10% 34,86% 30,32%

Source: authors’ calculations

We conduct composite forecasts across two different categories. For the first composite
forecast, we incorporate all model types: individual and combined models utilizing hard data,
models based on soft indicators, and models derived from common factors. Additionally, a final
composite includes all combined model forecasts from each category as regressors. In this
chapter, to conserve space, we present only the percentage improvement of the composite

forecasts compared to a benchmark model.

To start, we discuss the results of the composite forecasts for industrial production using
all available models, as shown in Table 49. This table presents intriguing findings. On one hand,
the performance of individual models such as Lasso and Elastic Net decreases. On the other
hand, the performance of Ridge increases slightly. More notably, Bagging exhibits a significant

improvement in forecast accuracy, achieving an outperformance of over 90.00% at & = 12.

Table 50: Composite forecasts including combined models — IP — post-COVID

h=1 h=3 h=6 h=9 h=12
Benchmark 43.84% 46.01% 44.12% 43.76% 44.62%
Lasso 76,18% 91,01% 87,08% 93,68% 92,11%
Ridge 72,39% 92,21% 80,62% 92,82% 93,55%
Elastic Net 79,06% 90,99% 87,08% 94,03% 93,20%
Bagging 63,58% 50,10% 13,22% 29,14% 90,97%
Boosting 25,60% 43,40% 27.27% 64,24% 73,82%
SVM 27,62% 35,10% 11,77% 34,34% 35,49%

Source: authors’ calculations
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The composite forecasts that rely solely on the combined models are detailed in Table 50.
From Table 50, it is evident that only the results from the Ridge model show improvement

through the second composite forecast setup compared to the previous one.

4.2.5 Forecasting inflation using hard macroeconomic data — post-COVID

Table 51 presents the relative MSE and MAE values of inflation forecasts of the RLS

models.

Table 51: Relative MSE and MAE of RLS models - inf

Relative MSE h=1 h=3 h=6 h=9 h=12
Benchmark 1 1 1 1 1

Lasso 0.545497 0.545653 0.663038 0.669495 0.740914
Ridge 0.727910 0.710609 0.879189 0.868040 0.972999
Elastic Net 0.126798 0.123258 0.152947 0.148391 0.175345
Relative MAE

Benchmark 1 1 1 1 1

Lasso 0.766725 0.768022 0.851964 0.853420 0.898265
Ridge 0.912467 0.887733 0.993053 0.975330 1.002049
Elastic Net 0.389653 0.379065 0.423948 0.411235 0.438947

Source: authors’ calculations

Firstly, concerning relative MSE, every RLS model surpasses the benchmark. The Lasso
and Elastic Net models show slight and substantial improvements, respectively. Contrary to the
results in Table 18, the relative MSE for Lasso ranges from 0.54 to 0.74, while for Elastic Net
it is between 0.12 and 0.18—indicating a significant enhancement when compared to the
previous dataset. However, the performance of the Ridge model deteriorates. Although it still
outperforms the benchmark, it does so marginally, and the relative MAE values indicate that
the results lack robustness, leading us to deem the Ridge model's superiority as unreliable.
Ridge has a similarly high difference between MAE and MSE values when forecasting
industrial production, but the problem is greatly magnified here. The Elastic Net model, which
effectively incorporates aspects of both Lasso and Ridge, emerges as the most reliable,
confirming that in this scenario, a strategy combining variable selection (zero coefficients) and
coefficient shrinkage is more effective than focusing solely on shrinkage as in the Ridge model.
Considering the relative MAE values, the superior performance of the Lasso and Elastic Net
models is consistent and not skewed by a few large forecast errors. While the magnitude of
Lasso's outperformance diminishes over /4, the Elastic Net's remains relatively steady across all

forecast horizons. We present this on Figure 34.
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Figure 34: Relative MSE of RLS models over time — Inf- Post-COVID
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The results indicate that variable selection plays a pivotal role, proving more crucial than

coefficient shrinkage. To illustrate the differences between shrinkage and selection more

clearly, we present the variables selected by each model in Figures 35 to 37, which are based

on the data from Tables Al.1 to A1.8. Variable importance is calculated according to Kock et

al. (2020), expanded on in Subchapter 4.2.1. These figures highlight the specific variable

categories that each model prioritizes, helping to understand their impact on the forecast

accuracy and the effectiveness of each approach.

Figure 35: Variable importance of the Ridge model — Inf — post-COVID
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Figure 36: Variable importance of the Elastic Net model — Inf — post-COVID
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Figure 37: Variable importance of the Lasso model — Inf — post-COVID
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In this analysis, both Ridge and Elastic Net models emphasize the significance of inflation
and open economy variables in forecasting inflation. Ridge, unable to perform variable
selection and only capable of shrinking coefficients, places greater emphasis on variables like
the current account and the exchange rate. Conversely, Elastic Net tends to prioritize various
price indexes while assigning a limited effect to exchange rates on inflation. Lasso takes the
most selective approach, effectively reducing every coefficient to zero except those within the

price category.
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Given that Elastic Net yields the best performance, we infer that its strategy—
incorporating a broad array of variables like Ridge, while focusing tightly on the price category
like Lasso—represents the most effective general approach for inflation forecasting. Thus, we
conclude that both domestic price factors and open economy variables are critical in accurately
forecasting inflation. Elastic Net’s balanced methodology particularly demonstrates the

importance of integrating comprehensive variable inclusion with focused selection.

To shed further light on the precision of these methods, we compare the out-of-sample
actual and forecasted values on Figure 38 for # = 1 and Figure 39 for # = 12. Figures 38 and 39
provide crucial insights into the performance of our models over different forecast horizons.
Initially, at 2 = 1, the models closely match the actual inflation values until the onset of COVID.
Although the models continue to capture the general pattern of inflation post-COVID, they
underpredict the volatility and the magnitudes of change. The notable exception is the Elastic
Net model, which not only accurately predicts the direction of changes but also the magnitudes,
fitting almost perfectly with the actual data. This high level of accuracy leads us to conclude
that in our case the Elastic Net model is the most precise predictor of inflation, even in highly

volatile environments.

Figure 38: Actual and forecasted values of RLS models on # =1 — Inf — post-COVID
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While the model's performance in capturing the magnitudes of change slightly
deteriorates at 4 = 12, the ability to forecast inflation with such precision for one and three

months ahead remains an exceptional achievement. Given that the values in Table 51 for 4 =1
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and & = 3 are nearly identical, the results displayed in Figures 38 and 39 would effectively be
the same for these two horizons, illustrating the robustness and reliability of the Elastic Net

model across short-term forecasts.

Figure 39: Actual and forecasted values of RLS models on /2 =12 — Inf— post-COVID
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To add, Table 52 presents the DM statistic p-values. It reveals some variations in the
results when comparing the current dataset, which includes COVID, to the previous sample that
excluded it. Firstly, the Elastic Net model demonstrates robust performance, being highly
statistically significant at every forecast horizon and maintaining significance at the 5% level
throughout. This indicates strong and consistent predictive power across various forecasting
periods. On the other hand, the Lasso model starts strong, showing statistical significance for
the initial four horizons, but its significance wanes by # = 12. This suggests that while the Lasso
model can effectively predict inflation in the short to medium term, its reliability decreases as

the forecast horizon extends to a year.

Table 52: DM test p-values of RLS methods — Inf — post-COVID

Lasso
Real

Real
Ridge

Elastic Net

h=1 h=3 h=6 h=9 h=12
Lasso 0,01657** 0,01664** 0,04022%* 0,04660** 0,122705
Ridge 0,13071 0,11557 0,303495 0,292095 0,456085
Elastic Net 0,0029°** 0,00281** 0,00675** 0,00822%** 0,02141**

Source: authors’ calculations

Table 53 provides a detailed comparison of model performances, highlighting the

differences brought about by including COVID data in the dataset. For the Lasso model, there
is a notable improvement in its outperformance, ranging from 25.91% to 45.45% over the
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benchmark, which represents an almost two-fold increase from previous data, particularly at
shorter horizons. However, this outperformance diminishes as 4 extends. The Ridge model
consistently outperforms the benchmark across various horizons, although never reaching
statistical significance. Its performance, similar to that of the Lasso model, tends to deteriorate
as h increases, suggesting a weakening in predictive power over longer durations. The Elastic
Net model stands out with the highest degree of outperformance, ranging from 82.47% to
87.32%. This is a significant enhancement, nearly doubling its relative performance compared
to the previous sample without COVID data. This consistent outperformance across horizons
underscores the robustness of the Elastic Net model, especially in handling the complexities

introduced by the volatile economic environment during the COVID era.

Table 53: % improvement of RLS forecasts over the benchmark — Inf — post-COVID

h=1 h=3 h=6 h=9 h=12
Lasso 45.45% 45.43% 33.70% 33.05% 25.91%
Ridge 27.21% 28.94% 12.08% 13.20% 2.70%
Elastic Net 87.32% 87.67% 84.71% 85.16% 82.47%

Source: authors’ calculations

Figure 40: Directional Accuracy of RLS models over time — Inf — post-COVID
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Table 54 focuses on the DA of RLS models. The results show that all RLS models
consistently predict the direction of change more accurately than the benchmark. Specifically,
the DA of the Lasso model ranges from 92.89% to 93.41%, indicating a high level of
consistency in predicting the correct direction. The Elastic Net model performs even better,

with DA ranging from 93.85% to 94.52%. In contrast, the benchmark model's DA ranges from
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86.84% to 87.67% across different horizons, significantly lower than both the Lasso and Elastic
Net models. This superior performance in directional accuracy is not only an improvement over
the benchmark but also represents an enhancement compared to the previous data, as shown in
Table 21. Figure 40 shows that the results are consistent irrespective of 4. In contrast to the pre-

COVID sample, this time the benchmark model is consistent as well.

Table 54: Directional accuracy of RLS models — Inf — post-COVID

h=1 h=3 h=6 h=9 h=12
Benchmark 87,67% 87,32% 87,01% 86,84% 86,96%
Lasso 93,15% 92,96% 92,89% 92,99% 93,41%
Ridge 89,04% 88,73% 88,48% 87,86% 88,17%
Elastic Net 94,52% 94,37% 94,12% 93,85% 94,09%

Source: authors’ calculations

We proceed by presenting the results of the EML models in Table 55. In this analysis,
every EML model surpasses the benchmark when assessed using relative MSE. Specifically,
Bagging achieves a relative MSE between 0.57 and 0.73, Boosting ranges from 0.54 to 0.75,
and Random Forest varies between 0.66 and 0.92. The most effective model is Boosting from
h =1to h =9, and Bagging takes the lead at # = 12, although the performance differences
between these two are minimal. Their results are notably consistent with their performances in
the pre-COVID sample. In contrast, the performance of the Random Forest model shows a
decline compared to the previous sample but still manages to outperform the benchmark.
Secondly, the relative MAE results corroborate our earlier observations, as they too are smaller
than the benchmark, not to mention that the relative MSE and MAE values are relatively similar,
showcasing a greater robustness that those of the RLS models. Bagging and Boosting maintain
stable performances over time, similar to those observed in previous samples, while the

performance of Random Forest declines slightly as / increases.

Table 55: Relative MSE and MAE of EML models — Inf — post-COVID

Relative MSE h=1 h=3 h=6 h=9 h=12
Benchmark 1 1 1 1 1
Bagging 0.57115 0.57272 0.68839 0.70001 0.72526
Boosting 0.54712 0.53020 0.66037 0.67262 0.74603
Random Forest | 0.66392 0.67879 0.82230 0.83953 0.91612
Relative MAE
Benchmark 1 1 1 1 1
Bagging 0.655411 0.648945 0.698539 0.704609 0.697229
Boosting 0.679309 0.667017 0.766165 0.753878 0.786163
Random Forest | 0.76334 0.76933 0.838285 0.837562 0.87526

Source: authors’ calculations
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Figure 41: Relative MSE of EML models over time — Inf — post-COVID
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Figure 42: Variable importance in Bagging — Inf — post-COVID
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Like RLS models, Bagging places significant emphasis on the variables listed in Table

Al1.2. Unlike the Lasso model, which primarily focuses on a specific category of variables,

Bagging also considers variables from other categories. It assigns substantial weight to open

economy variables including exchange rates, indicating their perceived importance in the

forecasting model. Additionally, industrial production and employment variables are notably

represented, suggesting their relevance in the model's predictive accuracy. However, variables

such as wages, revenue, and foreign trade are given lesser weight in the Bagging model's
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forecast preparations. This distribution of weights suggests that while these factors are
considered, they are deemed less critical to the forecast outcome compared to the primary
variables like prices. This strategic allocation of variable importance helps tailor the Bagging

model's predictions to the most influential economic indicators.

To further evaluate the accuracy of these forecasting methods, we examine the out-of-
sample actual versus forecasted values presented in Figure 43 for 2 = 1 and Figure 44 for h =
12. At h = 1, while the models successfully predict the direction of change, they fail to
accurately capture the magnitudes of these changes. This indicates a limitation in their short-
term predictive precision regarding the scale of economic shifts. For longer-term forecasts at /
= 12, the models tend to predict a smoother inflation trajectory than what is observed in reality.
This smoother prediction suggests that the models may be underestimating the volatility or the
extremes of inflation changes over longer periods. In conclusion, when compared to the
performance of RLS models, particularly the Elastic Net model, these methods exhibit weaker
performance. The Elastic Net model, with its ability to accurately capture both the direction and
magnitude of changes, outperforms these other methods, especially in terms of capturing more
complex economic dynamics over varying time horizons.

Figure 43: Actual and forecasted values of EML models on 2 =1 — Inf — post-COVID
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Figure 44: Actual and forecasted values of EML models on # = 12 — Inf — post-
COVID
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To continue with, Table 55 shows that Both Bagging and Boosting demonstrate
statistically significant outperformance over the benchmark at the 5% level across all forecast
horizons, indicating strong and consistent effectiveness in their predictions. On the other hand,
the performance of the Random Forest model shows a slight deterioration but remains

statistically significant at shorter horizons 2 =1 and /4 = 3.

Table 56: DM test p-values of EML methods — Inf — post-COVID

h=1 h=3 h=6 h=9 h=12
Bagging 0,00767** 0,00812%* 0,00668** 0,00563** 0,03183**
Boosting 0,00537** 0,00584** 0,00352%* 0,00564** 0,01953**
Random Forest | 0,03415%* 0,04004** 0,10103 0,13071 0,29610

Source: authors’ calculations

With the statistically significant outperformance established, we proceed to quantify the
magnitude of outperformance in percentage terms, stating them in Table 57. The Bagging model
shows an outperformance ranging from 27.34% to 42.88% and the Boosting model ranges from
25.40% to 45.29%. These models not only perform similarly to the Lasso model in terms of
percentage improvement but also maintain statistical significance at the 5% level across all
horizons. Notably, only the Elastic Net model surpasses these two in terms of percentage
improvement over the benchmark. The performance of the Random Forest model is
comparatively weaker, with outperformance declining from 33% to 8% as the forecast horizon

increases. This trend indicates a clear drop in effectiveness over longer horizons.
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Table 57: % improvement of EML forecasts over the benchmark — Inf — post-COVID

h=1 h=3 h=6 h=9 h=12
Bagging 42.88% 42.73% 31.16% 30.00% 27.47%
Boosting 45.29% 46.98% 33.96% 32.74% 25.40%
Random Forest | 33.61% 32.12% 17.77% 16.05% 8.39%

Source: authors’ calculations
Table 58: Directional accuracy of EML models — Inf — post-COVID

h=1 h=3 h=6 h=9 h=12
Benchmark 87.67% 87.32% 87.01% 86.84% 86.96%
Bagging 94.52% 94.37% 93.63% 93.33% 93.55%
Boosting 90.41% 92.02% 90.93% 89.57% 90.73%
Random Forest | 89.04% 89.20% 89.22% 90.09% 90.32%

Source: authors’ calculations

Moving on to DA, every EML model more accurately predicts the direction of change in

the target variable compared to the benchmark model. The details are presented in Table 58.

When compared to the pre-COVID sample, the DA for each model has significantly increased.

These models perform on par with RLS models, including the Elastic Net model. The DA for

the Bagging model ranges between 93.33% and 94.52%. For the Boosting model, it ranges from
87.57% t0 92.02%, while for the Random Forest model, it is between 89.04% and 90.32%. This

is in contrast to the benchmark model, which shows a DA between 86.96% and 87.67%,

depending on the forecast horizon. In conclusion, the EML models enhance DA, with a

particular focus on the Bagging model, which achieves the highest DA, surpassing even the

Boosting model. Figure 45 shows that this improvement is consistent over time.

Figure 45: Directional accuracy of EML models over time — Inf — post-COVID
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In Table 59, we present the results for the SVM model. We observe a significant
deterioration in its performance in the new sample post-COVID compared to the pre-COVID
sample. The model reports higher relative MSE values than the benchmark across all forecast
horizons. The relative MAE values support this finding, and the DM test results confirm the
benchmark model's superiority. DA values for the SVM model are the lowest among all models

and worsen with increasing h.

Table 59: Forecasts with SMV, FFNN and LSTM — IP — post-COVID

Relative MSE h=1 h=3 h=6 h=9 h=12
Benchmark 1 1 1 1 1
Support Vector | 1.81410 1.81913 2.19781 2.14399 2.22832
Machine
Relative MAE
Benchmark 1 1 1 1 1
Support Vector | 1.39671 1.38662 1.54470 1.49922 1.53964
Machine

DA
Benchmark 43.84% 46.01% 44.12% 43.76% 44.62%
Support Vector | 87.67% 29.11% 14.46% 9.57% 7.39%
Machine

Source: authors’ calculations

As with industrial production, we are also interested in exploring how the combination of
regularization and nonlinear methods performs. Given that the Elastic Net is the clear
frontrunner among the three regularization methods, we use it for variable selection and apply
nonlinear methods to these selected variables at each stage of the process. We aim to determine
if the performance of nonlinear methods improves when applied to a more parsimonious
sample. To the best of the authors' knowledge, no published study has combined these two
approaches before. This absence may be due to other studies, which work with much larger
datasets and longer time series from the world's largest economies, not needing to address the
issue of limited degrees of freedom. Although nonlinear methods can effectively handle models
with even negative degrees of freedom, their performance might be enhanced by a more

parsimonious approach. Several notable results are highlighted in Table 59 below.

Table 59: Combined RLS and EML methods — Inf — post-COVID

h=1 h=3 h=6 h=9 h=12
EN + Bagging | 39.83% 45.08% 24.19% 26.01% 17.63%
EN + Boosting | 49.82% 47.72% 38.38% 39.58% 27.47%
EN + Random | 46.31% 48.94% 36.62% 34.77% 30.23%
Forest

Source: authors’ calculations

We leave out the Lasso and Ridge combinations from Table 59 intentionally, as they
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produce either equal or inferior results to the Elastic Net combinations. To start, combining
Elastic Net with Bagging does not lead to any improvement. In fact, the performance of
Bagging slightly worsens when compared to its performance using the entire sample. Thus, this
change is not statistically significant. However, when Boosting is combined with EN, there is
a modest improvement—about 7% in some instances. The most notable improvement occurs
with the Random Forest model, which, when combined with the Elastic Net, significantly

exceeds its performance without variable selection.

To summarize, in this subchapter we forecast inflation using hard macroeconomic data.
The machine learning models exhibit significant outperformance in most cases. The models,
sorted from best to worst in terms of % improvement over the benchmark, are presented in
Table 60.

To begin, the Elastic Net model stands out as the top performer. Lasso ranks in the middle,
while Ridge is fourth to last, only outperforming the SVM and neural networks. The
performance of EML models is more ambiguous. None of them surpass their combination with
the Elastic Net model, but these combined models do outperform both the standalone nonlinear
and linear methods, except for the Elastic Net itself. These hybrid models hold the 2nd and 3rd
positions, respectively. This highlights the effectiveness of our hybrid approach in significantly
enhancing the forecasting performance of nonlinear models by selecting the most suitable

variables or parameter values for training.

Table 60: Forecasting models from best to worst — Inf — post-COVID

h=1 h=3 h=6 h=9 h=12
1. Elastic Net Elastic Net Elastic Net Elastic Net Elastic Net
EN + | EN + RF EN + | EN + | EN+ RF
Boosting Boosting Boosting
3. EN + RF EN EN + RF EN + RF EN +
Boosting Boosting
4. Lasso Boosting Boosting Lasso Bagging
5. Boosting Lasso Lasso Boosting Boosting
6. Bagging EN Bagging Bagging Lasso
Bagging
7. RF Bagging EN + | EN + | EN +
Bagging Bagging Bagging
8. EN + | RF RF RF RF
Bagging
0. Ridge Ridge Ridge Ridge Ridge
16. SVM SVM SVM SVM SVM
17. FFNN FFNN FFNN LSTM LSTM
18. LSTM LSTM LSTM FFNN FFNN

Source: authors’ calculations
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4.2.6 Forecasting inflation using common factors — post-COVID

Table 61 indicates that forecasts based on common factors perform worse in the post-
COVID sample compared to the pre-COVID period. Most models no longer outperform the
benchmark. The performance of the Ridge and SVM models improve, and the Elastic Net
model also remains a notable exception; it still significantly outperforms the benchmark by a
large margin. In contrast, other RLS and EML methods show poor performance relative to the

benchmark.

Continuing, we analyze the percentage difference between the relative MSE values of
forecasts based on hard macroeconomic data and those based on common factors, as shown in
Table 62. In most cases, models relying on hard data are more accurate. The performance of the
Ridge model is almost identical to its counterpart, while the Support Vector Machine (SVM)
model outperforms the version based on hard macroeconomic data, though it is generally the

least effective model overall.

Table 61: Relative MSE of forecasts based on common factors — Inf — post-COVID

h=1 h=3 h=6 h=9 h=12
Benchmark 1 1 1 1 1
Lasso 1.623955 1.622663 2.018820 2.003048 1.987983
Ridge 0.726089 0.712190 0.869869 0.887938 0.894660
Elastic Net 0.685868 0.678498 0.833812 0.828000 0.884142
Bagging 1.091421 1.104612 1.357364 1.352660 1.430018
Boosting 1.069080 1.128786 1.400039 1.345368 1.386928
Random Forest | 1.623955 1.622663 2.018820 2.003048 1.987983
SVM 0.726089 0.712190 0.869869 0.887938 0.894660

Source: authors’ calculations

Table 62: % difference between forecasts based on factors and hard data — Inf — post-

COVID
h=1 h=3 h=6 h=9 h=12
Lasso 66.41% 66.37% 67.16% 66.58% 62.73%
Ridge -0.25% 0.22% -1.07% 2.24% -8.76%
Elastic Net 81.51% 81.83% 81.66% 82.08% 80.17%
Bagging 47.67% 48.15% 49.28% 48.25% 49.28%
Boosting 48.82% 53.03% 52.83% 50.00% 46.21%
Random Forest | 41.15% 37.67% 42.24% 39.04% 37.90%
SVM -3.68% -4.18% -2.49% -2.91% -4.54%

Source: authors’ calculations

To conclude, we examine the DA of forecasts based on common factors as presented in

Table 63. This table corroborates our previous findings that hard macroeconomic data should
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be preferred. The directional accuracy values for models based on common factors are, in some
cases, effectively identical to those of the benchmark, with none of the models managing to
confidently outperform the benchmark. This evidence further supports our conclusion that in
situations characterized by uncertainty and volatility, forecasts based on hard macroeconomic

data are more reliable and should be utilized.

Table 63: Directional accuracy of forecasts based on common factors — Inf — post-COVID
h=1 h=3 h=6 h=9 h=12
Benchmark 87.67% 87.32% 87.01% 86.84% 86.96%
Lasso 87.67% 87.32% 87.01% 86.84% 86.96%
Ridge 86.30% 87.32% 87.01% 86.84% 86.96%
Elastic Net 87.67% 87.32% 87.01% 86.84% 86.96%
Bagging 87.67% 84.04% 83.82% 83.42% 83.47%
Boosting 86.30% 86.38% 86.27% 85.47% 86.96%
Random Forest | 89.04% 87.32% 87.01% 86.84% 86.96%
SVM 87.67% 87.32% 87.01% 86.84% 86.96%

Source: authors’ calculations

4.2.7 Forecasting inflation using soft indicators — post-COVID

The outcomes of machine learning and benchmark model forecasts based on soft
indicators are displayed in Table 64. As anticipated, Table 64 indicates that soft indicators are
not the most suitable source of information when the focus is on the magnitude of changes in

macroeconomic variables, particularly in the case of inflation.

Table 64: Relative MSE of forecasts based on indicators — Inf — post-COVID

h=1 h=3 h=6 h=9 h=12

Benchmark 1 1 1 1 1

Lasso 1.76030 1.75710 2.15862 2.08513 2.11772
Ridge 1.76850 1.76980 2.17129 2.09983 2.16164
Elastic Net 1.70017 1.69383 2.09359 2.00069 1.99589
Bagging 1.71610 1.71215 2.10642 2.01600 2.00236
Boosting 1.72136 1.71904 2.14139 1.99844 1.98146
Random Forest | 1.73032 1.66970 2.08791 1.96987 1.99995
SVM 1.81310 1.79238 2.21362 2.14523 2.18999

Source: authors’ calculations

Continuing our analysis, we focus DA, which is our main measure of interest when
evaluating indicator data. The DA values are presented in Table 65. Unlike the pre-COVID
sample, the DA values for models based on indicators, similar to those using common factors,

align closely with those of the benchmark model in the current sample.
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This similarity suggests that while indicator-based models do not necessarily improve
accuracy in terms of the magnitude of changes, they can still match the benchmark model's
ability to predict the direction of changes in macroeconomic variables, even slightly

outperforming it, under the conditions examined.

Table 65: Directional accuracy of forecasts based on indicators — Inf — post-COVID

h=1 h=3 h=6 h=9 h=12
Benchmark 87.67% 87.32% 87.01% 86.84% 86.96%
Lasso 87.67% 85.92% 86.03% 85.47% 85.89%
Ridge 87.67% 85.45% 86.76% 87.18% 88.44%
Elastic Net 87.67% 87.32% 87.50% 88.72% 88.58%
Bagging 83.56% 87.32% 87.50% 87.18% 87.10%
Boosting 86.30% 84.98% 83.82% 85.30% 85.89%
Random Forest | 87.67% 87.79% 86.76% 87.18% 86.96%
SVM 87.67% 87.32% 87.01% 86.84% 86.96%

Source: authors’ calculations

4.2.8 Composite forecasts of inflation — post-COVID

In this subchapter, we explore the composite forecast methods that have been previously
introduced. We begin by presenting the results of composite forecasts for inflation, utilizing all
available models, as detailed in Table 66. Table 66 present the outperformance, in percentage
terms, as measured by the relative MSE values. Initially, there is a significant improvement in
the performance of the Lasso model in terms of error reduction and consistency. The composite
Lasso model is approximately twice as accurate as the individual model in the short term, and
this advantage becomes even more pronounced as the forecast horizon 4 increases. Similarly,
the composite Ridge model shows substantial improvement over its individual counterpart,
although its performance drops dramatically at # = 12. The performance of the Bagging model
also sees considerable enhancement, with the exception of # = 12. This pattern indicates that
while composite methods generally enhance forecasting accuracy, their efficacy can vary

significantly across different time horizons.

Table 66: Composite forecasts including all models — Inf — post-COVID

h=1 h=3 h=6 h=9 h=12
Lasso 83.20% 82.49% 77.70% 62.16% 70.66%
Ridge 74.11% 80.44% 59.57% 73.38% 24.39%
Elastic Net 78.98% 82.82% 78.66% 65.19% 70.76%
Bagging 62.17% 62.71% 53.89% 62.67% 25.00%
Boosting 34.63% 51.36% 7.56% 24.31% 36.40%
SVYM -51.97% -52.07% -83.48% -149.77% -107.42%

Source: authors’ calculations
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Continuing our discussion, we present the results of the composite forecasts of inflation
based on individual models using hard macroeconomic data, as detailed in Table 67. Comparing
these results to those previously discussed, we find that the Lasso composite model produces
forecasts that are almost identical to those in the prior case, suggesting consistent performance
across different data scenarios. Interestingly, the Ridge model shows improvement at the longer
forecast horizon of 4 = 12, contrasting with its earlier performance drop at the same horizon.
This suggests that the Ridge model may be more effective when utilizing hard macroeconomic
data for longer-term forecasts. The performance of the Bagging model remains similar to its
previous version, indicating a stable forecasting ability regardless of the specific data set used.
These findings underscore the nuanced effects that different types of macroeconomic data can
have on the performance of composite forecasting models.

Table 67: Composite forecasts of individual models based on hard macroeconomic data —
Inf — post-COVID

h=1 h=3 h=6 h=9 h=12
Benchmark 83.13% 82.35% 77.43% 62.42% 70.66%
Lasso 80.79% 85.36% 78.34% 58.49% 73.36%
Ridge 83.32% 85.39% 80.18% 62.69% 72.53%
Elastic Net 63.99% 61.92% 51.46% 63.75% 18.79%
Bagging 34.86% 52.15% 7.61% 28.72% 44.45%
Boosting -46.59% -44.32% -72.86% -138.23% -98.03%
SVYM 83.13% 82.35% 77.43% 62.42% 70.66%

Source: authors’ calculations

To conclude, the results from the composite forecasts based on combined models
generally mirror the performance of the individual models themselves; therefore, we do not
include them here. Additionally, the performance of composites based on indicators is weak,

reflecting the limited effectiveness of individual models that use these indicators.

Table 68: Composite forecasts of individual models based on factors — Inf — post-COVID

h=1 h=3 h=6 h=9 h=12
Benchmark 49.68% 50.89% 35.80% 29.24% -27.78%
Lasso 44.67% 50.96% 45.88% 26.91% 6.88%
Ridge 46.10% 58.76% 55.55% 30.09% -12.06%
Elastic Net 30.50% 46.31% 23.89% 0.27% -26.68%
Bagging 34.97% 58.28% 24.27% 31.44% 30.73%
Boosting -60.31% -59.21% -83.25% -170.52% -119.89%
SVM 49.68% 50.89% 35.80% 29.24% -27.78%

Source: authors’ calculations

However, what is more striking is the performance of composites based on common

factors, as shown in Table 68. It is clear from this table that common factor-based composites
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outperform the benchmark model in most cases, with the exceptions of the SVM model and at
the forecast horizon of 4 = 12. This outcome suggests that although individual models based on
common factors may perform poorly, leveraging the aggregated information from each of these

models through machine learning techniques can lead to more accurate forecasts.
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5 Discussion

This chapter summarizes the main findings of our study. Our principal aim is to rigorously
evaluate the forecasting performance of various selected machine learning models and compare
these results against an econometric benchmark model. We forecast industrial production and
inflation for both pre-COVID and post-COVID periods. Our contributions to the literature are

both methodological and empirical.

To begin with, we outline our methodological contributions, which introduce three
approaches not widely discussed in current literature, or where evidence remains limited. First,
we evaluate the effectiveness of dimensionality reduction techniques, drawing parallels to the
work by Maehashi and Shintani (2020). PCA is considered one of the best ways for reducing
the dimension of a dataset. Our findings suggest that, in general, regularization techniques are
preferable to PCA reduction in Slovakia. The observed underperformance of forecasts based on
common factors compared to those based on hard data suggests a potential avenue for
exploration in the empirical transition from factor-based dimensionality reduction techniques
to regularization methods using hard data in Slovakia. Both strategies are designed to distill
essential information while minimizing the number of predictors; however, regularization using

hard data shows greater accuracy in our sample.

Secondly, we explore the combination of regularization and nonlinear methods, inspired
by Medeiros et al. (2019). However, our approach differs as we use alternative methods and
conduct a more thorough performance evaluation. Medeiros et al. (2019) find that combination
is not particularly beneficial. In contrast, our analysis reveals that in Slovakia, hybrid models
are more accurate than simple nonlinear models, as shown in Tables 43 and 60. We enhance the
performance of nonlinear methods by first applying regularization to streamline the information
set, followed by the nonlinear estimation and prediction. This efficiency likely stems from the
reduction in the number of variables, which allows for achieving comprehensive coverage of
critical nonlinearities and variable interactions with fewer trees. Furthermore, as noted by
Medeiros et al. (2019), when the Random Forest model is applied to a set of regularized
variables, its capacity to discern important variable interactions is notably amplified, but it
becomes harder to capture nonlinear relationships. In such case, if the goal is to explore the
effects of nonlinearities further, one might consider other nonlinear methods like Boosting,

which are specifically designed to handle such complexities effectively.
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Thirdly, forecast combination is a critical topic in forecasting literature. Machine learning
methods are inherently suitable for combining forecasts, yet there is a notable absence of studies
testing this approach, aside from Araujo and Gaglianone (2023). We address this gap by
demonstrating that using individual ML models as tools for combining forecasts can
significantly enhance the performance of certain models. We find that some composite models,
which integrate outputs from multiple individual models, can be twice as accurate as their
counterparts that solely rely on hard macroeconomic data. This improvement is particularly

evident in forecasting inflation and, to a lesser extent, in forecasting industrial production.

We now proceed to discuss our empirical contributions, beginning with the industrial

production and inflation forecasts using the pre-COVID sample.

Firstly, every RLS model consistently outperforms the benchmark, with statistical
significance at the 5% level. Only in two instances, relating to industrial production, is the
outperformance significant at the 10% level. In the case of inflation, every outperformance is
significant at the 5% level. Moreover, every RLS forecast model achieves a substantially higher
DA than the benchmark for industrial production. Although the DA for machine learning
models is somewhat lower for inflation, they still outperform the benchmark. These results
identify the Elastic Net model as the most effective in this category. Furthermore, for industrial
production, variable selection by Lasso plays a more crucial role than the coefficient shrinkage
by Ridge. This situation is reversed for inflation forecasts. To summarize, the RLS models
consistently outperform the benchmark across every horizon. This robust performance is
expected due to the presence of numerous correlated variables in the dataset, which tend to
convey similar information. Additionally, the shorter time series used in our study compared to
other machine learning research might prompt Lasso and Elastic Net methods to disregard less

critical variables due to the limited number of observations available.

Secondly, regarding the accuracy of the EML models, each model significantly surpasses
the benchmark for predicting both industrial production and inflation at a 5% significance level,
except for the Boosting and Random Forest models for industrial production at 2 = 1, which
achieve significance only at the 10% level. Furthermore, all EML forecast models display
higher DA values than the benchmark model. Except for Boosting, these DA values remain
stable over time. Bagging emerges as the most effective overall. Given its significant
performance for both targets across all horizons at the 5% level and generally the lowest

forecast errors, it is the optimal choice for capturing nonlinearities in Slovakia's data. This
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finding is particularly relevant as there are no other published studies addressing potential

nonlinearities in Slovakia’s data in their data driven forecasting models.

Thirdly, we examine three additional model types outside the main categories. The
Support Vector Machine (SVM) model surpasses the benchmark at every forecast horizon for
both variables, showing compelling DA values. However, its performance for industrial
production is inconsistent, generally ranking it among the weaker models in our suite, not
counting neural networks. Concerning neural network models, our computational resources
were limited, preventing us from fine-tuning these models effectively. As a result, the outcomes

from the neural networks are not reliable for our analysis.

Continuing our analysis, we evaluate the forecasting ability of the models using common
factors for both industrial production and inflation. Each model surpasses its benchmark;
however, they demonstrate significantly better performance in terms of relative MSE and DA

values when forecasts are grounded in hard macroeconomic data.

Moreover, we assess the performance of machine learning models trained on soft
indicator data. We anticipate that forecasts based on soft indicators would not yield lower errors
than those based on hard macroeconomic data. However, we expect them to surpass the
benchmark in predicting the direction of change in the target variable, and our assumption is
confirmed. In our conclusion, indicators serve their intended purpose effectively. By leveraging
an extensive dataset of soft indicators and employing machine learning models, we can predict
the direction of change with a higher likelihood than if we solely relied on the benchmark

model.

We continue with by summarizing the results involving the post-COVID sample. In our
exploration of post-COVID results, we find patterns somewhat similar to earlier findings. In
addition, the introduction of COVID-19 data into the sample enhances the performance of
machine learning models. Notably, in the case of industrial production, both Lasso and Elastic
Net models achieve an increase in performance of approximately 20 percentage points
compared to the pre-COVID sample. In the case of inflation forecasting, the Elastic Net model
stands out with the highest degree of outperformance. This is a significant enhancement, nearly

doubling its relative performance compared to the previous sample without COVID data.

Moreover, the performance of EML models presents a less clear picture. They perform
better compared to the pre-COVID sample. On the other hand, neither of them outperforms

their combination with either Ridge or Elastic Net. This underscores the effectiveness of our
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hybrid approach in substantially improving the forecasting performance of nonlinear models

by selecting appropriate variables or optimizing parameter values for training.

The results of models based on common factors is similar to the pre-COVID sample.
Additionally, soft indicators demonstrate similar or greater forecasting accuracy than the
benchmark model during this period. In the case of industrial production, they outperform the

benchmark even in terms of errors.

In this sample, we also evaluate the efficacy of machine learning models as tools for
forecast combination. We find that some composite models, which integrate outputs from
multiple individual models, can be twice as accurate as their counterparts that solely rely on
hard macroeconomic data. This advantage is consistent and becomes even more pronounced as
h increases. Moreover, the performance of composite models based on common factors is
notably impressive. These common factor-based composites generally outperform the
benchmark model in most scenarios. This finding indicates that while individual models relying
on common factors might underperform on their own, aggregating information from each
through machine learning techniques can significantly enhance overall forecast accuracy. This
approach effectively harnesses the collective strength of various models, demonstrating the

power of composite forecasting in machine learning applications.

In the post-COVID sample, we also present how each category from Tables A1.1-A1.8
affects the forecasts. Additionally, we show that RLS forecasts almost perfectly match the out-
of-sample trajectory of the actual values of the forecasted series. The best performance is
delivered by the Elastic Net model, which not only accurately predicts the direction of changes
but also the magnitudes, fitting almost perfectly with the actual data. This high level of accuracy
leads us to conclude that in our case the Elastic Net model is the most precise predictor of
inflation, even in highly volatile environments. While the model's performance in capturing the
magnitudes of change slightly deteriorates at # = 12, the ability to forecast inflation in a highly
uncertain and volatile period with such precision for one and three months ahead remains an

exceptional achievement.

To conclude, most of the machine learning models outperform the benchmark model by
a huge margin, and they perform substantially better than when using the pre-COVID sample.
Multiple reasons can be given for this outperformance. Generally, the models have more data

to learn with the prolongation of the time series by 4 years. To add, the benchmark model’s
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performance can deteriorate substantially as the simple model might not be able to capture an

abrupt and unexpected shock such as COVID.

After summarizing our results, it is clear that none of the scientific hypotheses from

Chapter 2 can be rejected.

Nonlinearities play a statistically significant role in the data generating
H1 eI . \/
process of the Slovak macroeconomic time series.
Regularization can statistically significantly improve the quality of the
H2 . . V
macroeconomic forecasts of our target variables.
H3 Hybrid models can enhance the forecast accuracy of nonlinear methods. V
When using indicator data, forecasting models based on machine learning are
H4 | ‘more likely to forecast the correct direction of the change in the variable than V

the benchmark model.

H5 | Regularization based methods based on hard macroeconomic data deliver
better performance than dimensional reduction based on PCA.

{

To end this chapter with, we formulate recommendations based on our results. First of
all, it is important to acknowledge that machine learning methods at present largely remain
"black boxes", as highlighted by Masini et al. (2021). Masini et al. (2021) also state that
although various interpretative techniques are available, there is no consensus within the
academic community on their adequacy, especially when compared to more traditional models
like VAR, which allow for straightforward interpretation through impulse responses or variance
decompositions. Masini et al. (2021), however, highlight that this area of research is booming
at the time of writing this thesis. It is important to note, therefore, that the main contributions

are not in the field of inference but on the field of forecasting capacity.

Firstly, the general high statistical significance at the 5% level across these models
indicates that regularization significantly enhances forecast accuracy, by more than 90% in
some cases involving Lasso and Elastic Net, despite their previous non-utilization in Slovakia.
Regularization thus provides more accurate and robust estimates during both pre- and post-
COVID periods. As such, it seems advantageous to explore further the implementation of
regularization techniques in macroeconomic forecasting by applied macroeconomists. This

shift could potentially improve the precision of economic forecasts by leveraging the detailed
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and direct measurements of economic activity provided by hard data, thus enhancing the overall

reliability of the forecasting models in various economic conditions.

Secondly, the robust performance of various models highlights the importance of
nonlinear relationships, briefly discussed in Chapter 1, in the Slovakian data generating process.
These factors should be taken into account by macroeconomists when preparing forecasts. The
significance of nonlinearities and interactions among variables is further emphasized by the
successful use of nonlinear machine learning methods. For instance, the relative Mean Squared
Error (MSE) values for the Boosting model in the case of inflation are comparable to those of
the Lasso model in the case of inflation. This similarity suggests that even in smaller datasets,
typical of smaller economies, the lack of regularization does not hinder these methods from
identifying crucial relationships within the data. Our findings strongly support the inclusion of
nonlinear data-driven models in forecasting frameworks, given their demonstrated capability to
effectively capture significant nonlinear effects. This approach could enhance the accuracy and
relevance of economic forecasts by incorporating the complex dynamics often present in real-
world data. To further improve these nonlinear methods, one should apply regularization first

and then use EML techniques on the regularized inputs.

Finally, it is advisable for policymakers to have machine learning models set up in
advance. When soft indicator data becomes available, it can be quickly fed into these models
to more reliably predict the direction of the economy. This approach provides policymakers
with a proactive tool to effectively gauge future economic trends. By utilizing real-time data
inputs, these models can offer timely insights, allowing for more informed and responsive
economic decision-making. This method underscores the importance of readiness and the

strategic use of technology in economic forecasting.

In summary, our principal recommendation is that macroeconomists in Slovakia should
begin to utilize the models in the two main categories, which demonstrate strong performance
in forecasting. These models are effective at capturing nonlinearities in the data generating
process, and also highlight the critical role of regularization. As evidenced in our analysis, both
elements — nonlinearities and regularization — are crucial for accurately predicting economic
trends. This approach ensures that macroeconomic forecasts are not only robust but also

reflective of the complex dynamics that characterize the economic landscape.
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Conclusion

In this thesis, we use machine learning (ML) methods to forecast industrial production
and inflation in Slovakia. Our study is the first to apply machine learning (ML) methods for
macroeconomic forecasting in Slovakia, and more broadly, in any small open industrialized
economy in a monetary union. We utilize a comprehensive dataset from the National Bank of
Slovakia, which is publicly available. This dataset is divided into pre-COVID and post-COVID
periods and we apply a rolling window scheme, allowing us to account for time-variance in

parameter estimates and enhance the robustness of our results.

We focus on two categories of ML models, one to address nonlinearities in the data, and
one to examine the impact of regularization on macroeconomic forecast outcomes. Specifically,
we also employ Support Vector Machine models to counter the generalized critique by
Makridakis et al. (2018), as discussed in Chapter 1, demonstrating that their criticisms do not

hold for Slovakia.

Our contributions to macroeconomic forecasting are both diverse and impactful. First, we
introduce a hybrid method, inspired by Medeiros et al. (2019), which is adept at capturing
nonlinearities and variable interactions. This approach is especially beneficial in post-socialist
Eastern European economies where datasets tend to be limited in length. By regularizing these
datasets prior to applying nonlinear methods, we significantly boost the performance of these
models. Second, we assess the efficacy of regularization versus principal component analysis
(PCA) in managing datasets with reduced dimensions. Our results show that regularization, a
machine learning (ML) technique, provides more accurate forecasts. Third, we investigate the
utility of ML methods in combining forecasts, finding that they improve the accuracy of
individual predictions. Fourth, we show that regularization markedly improves forecasting
capabilities when compared to conventional benchmarks. Fifth, we use Ensemble ML models
to identify and model nonlinearities in the data. To our knowledge, this marks the first time
these techniques have been applied using ML in a small, open industrialized economy within a
monetary union, characterized by a brief dataset. Sixth, we break new ground by evaluating the
directional accuracy of ML models, a vital aspect often overlooked in favor of focusing solely
on the magnitude of errors. Seventh, we provide an exhaustive analysis of ML model
performance across both pre-COVID and post-COVID periods, noting superior performance
during times of heightened economic uncertainty and volatility. Despite a dataset spanning only

16 years with crises at both ends, one model notably forecasts inflation one to three months
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ahead with complete accuracy. Eighth, we illustrate how ML methods more effectively discern
trends from soft indicators. Ninth, our findings collectively address and counter the criticisms
posed by Makridakis et al. (2018), which we discuss in detail in Chapter 1. We show that simple
methods, such as the SVM do not perform well, but complex methods are capable of delivering

statistically significant outperformance.

In conclusion, institutions responsible for official macroeconomic forecasts in Slovakia
should start testing the practical applications of ML models to integrate new information into
their forecasts. Additionally, researchers need to focus more on combining linear and nonlinear
machine learning approaches, directional accuracy measures, the use of soft indicators, the
potential of ML for creating composite forecasts, and favoring regularization over PCA. Further
exploration into demystifying the ML black box and conducting inference should also be a

priority for future research.
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Resume

Prognozovanie zohrava kl'acovu ulohu pri hodnoteni ekonomického stavu a usmeriiovani
ekonomickej politiky. Je zakladom pre tvorbu vladnych rozpoctov a je nevyhnutné pre tvorcov
politiky, ako su centralne banky, aby mohli nacasovat’ intervencie na zaklade predpovedi
kl'acovych ekonomickych ukazovatelov, ako st hruby domaci produkt (HDP), inflicia a
nezamestnanost. Sucasné modely vSak Casto nedokazu zachytit' skutocni dynamiku medzi
ekonomickymi premennymi. Napriklad Medeiros et al. (2019) ukazuju, ako vlady a
medzinarodné organy, najyma ECB, maju tendenciu neustale nadhodnocovat projekcie inflacie.
Takéto rozdiely mozu viest’ k vyznamnym stratam v oblasti blahobytu a skreslit’ o¢akavania

inflacie, ¢o podciarkuje potrebu presnejSich predikénych modelov.

S prichodom big data, vylepSenych vypoctovych schopnosti a pokrokov v oblasti
Statistick€ého ucenia maju ekondémovia teraz pristup k réznym novym metédam, vratane tych
zaloZzenych na strojovom uceni. Tieto metddy sa stali v poslednom desatroci Coraz
popularnejSimi v makroekonomickych aplikacidch, najma v poslednych piatich az Siestich

rokoch.

V tejto praci pouzivame metddy strojového ucenia (ML) na progndézovanie priemyselnej
vyroby a inflacie na Slovensku. Nasa Studia je prvou, ktord aplikuje metody strojového ucenia
(ML) na makroekonomické progndzy na Slovensku a vSeobecnejSie, v akejkol'vek malej
otvorenej industrializovanej ekonomike v menovej unii. Vyuzivame komplexni databazu
Narodnej banky Slovenska, ktora je verejne dostupna. Nasa vzorka je rozdelena na pre-COVID
a post-COVID obdobia, na ktoré aplikujeme schému posuvného okna, ¢o ndm umoziuje

zohl'adnit’ ¢asovu variabilitu v odhadoch parametrov a zvysit’ robustnost’ nasich vysledkov.

Zameriavame sa na dve kategorie ML modelov: jednu na rieSenie nelinearit v datach a
druhti na skiimanie vplyvu regularizdcie na vysledky makroekonomickych prognédz. Tiez
pouzivame model Support Vector Machine, aby sme vyvratili v§eobecntl kritiku Makridakisa

et al. (2018), a ukazali, Ze ich kritika neplati pre Slovensko.

Praca je usporiadana nasledovne. Prva kapitola sa venuje prehl'adu existujuce;j literatury
o makroekonomickom prognézovani pomocou metdd strojového ucenia. Poskytuje v§eobecny
prehlad, zdoraziuje kIGCové =zistenia v tejto oblasti a odovodiluje pouZitie nasho
vychodiskového modelu (benchmark). Druhd kapitola uvadza naSe hlavné a Ciastkové ciele

spolu s vedeckymi hypotézami. Tretia kapitola poskytuje vycCerpavajuci prehlad nasej
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metodologie, vratane matematického formulovania modelov, kodov, ktoré pouzivame, procesu
hodnotenia predpovedi a krokov predspracovania udajov. Stvrta kapitola predstavuje vysledky
pre vzorky pred a po COVIDe. Piata kapitola sumarizuje a interpretuje vysledky a zaroven

poskytuje odporucania. Posledna kapitola obsahuje zaver.

Nasim hlavnym cielom je komplexne zhodnotit predikéni vykonnost' rdznych
vybranych modelov strojového ucenia a porovnat’ tieto vysledky s ekonometrickym benchmark
modelom. Prognézujeme priemyselnt produkciu a inflaciu pre obdobia pred a po COVIDe.

NaSe prinosy k literatire su metodologické aj empirické.

Najprv predstavime naSe metodologické prinosy, ktoré zavadzaja tri pristupy, ktoré nie
st v stcasnej literature Siroko diskutované, alebo kde je dokazov obmedzené mnozstvo. Po
prvé, hodnotime ucinnost’ technik redukcie dimenzionality, pricom sa inSpirujeme pracou
Macehashiho a Shintaniho (2020). Principal Component Analysis (PCA) sa povazuje za jeden z
najlepsich spdsobov na redukciu dimenzie datovej sady. Nase zistenia naznacujl, Ze vSeobecne
st regularizacné techniky na Slovensku preferované pred PCA redukciou. Pozorovana slabsia
vykonnost predpovedi zalozenych na spolo¢nych faktoroch v porovnani s tymi, ktoré su
zalozené na tvrdych datach, naznacuje mozny prechod v prognézovani od technik redukcie
dimenzii zalozenych na faktoroch k regularizacnym metédam vyuzivajicim tvrdé data na
Slovensku. Obe stratégie si navrhnuté tak, aby extrahovali esencialne informacie pri
minimalizovani poc¢tu prediktorov; avSak regularizécia pouzivajuca tvrdé data ukazuje v nase;j

vzorke vacsiu presnost’.

Po druhé, skimame kombinaciu regularizacie a nelinedrnych metod, inSpirovant
Medeirosom et al. (2019). Nasa metdda sa vsak lisi, pretoze pouzivame alternativne metody a
vykonavame dokladnejSie hodnotenie vykonnosti. Medeiros et al. (2019) zistili, Ze kombinacia
nie je obzvlast prospesna. Naopak, nasa analyza odhal’'uje, Ze na Slovensku st hybridné modely
presnejSie ako jednoduché nelinedrne modely, ¢o je zobrazené v tabul’kach 43 a 60. Vykonnost’
nelinedrnych metod zlepSujeme tym, Ze najprv aplikujeme regularizdciu na zjednodusenie
informa¢nej sady, nasledovanu nelinearnym odhadom a predikciou. Tato efektivita
pravdepodobne vyplyva zo znizenia po¢tu premennych, ¢o umoznuje dosiahnut’ komplexné
pokrytie kI'i€ovych nelinearit a interakcii premennych s mensim po¢tom stromov. Navyse, ako
poznamenavaju Medeiros et al. (2019), ked’ je model Random Forest aplikovany na sadu
regularizovanych premennych, jeho schopnost’ rozpoznat’ dolezité interakcie premennych je

vyrazne zosilnend, ale stava sa tazS§im zachytit' nelinedrne vztahy. V takom pripade, ak je
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cielom skumat’ vplyvy nelinearit podrobnejSie, mozno zvazit' iné nelinearne metody ako

Boosting, ktoré st Specificky navrhnuté na efektivne zvladnutie takychto komplexit.

Po tretie, kombinacia prognéz je kIi¢ovou témou v literatire o progndézovani. Metoédy
strojového ucenia su prirodzene vhodné na kombinovanie prognéz, napriek tomu je vyrazny
nedostatok studii testujucich tento pristup, okrem Arauja a Gaglianone (2023). RieSime tuto
medzeru tym, ze ukazujeme, Ze pouzitie individudlnych modelov strojového ucéenia ako
nastrojov na kombinovanie predpovedi mdéze vyrazne zlepsit’ vykonnost’ niektorych modelov.
Zistili sme, ze niektoré kombinované modely, ktoré integruji vystupy z viacerych
individualnych modelov, mézu byt’ dvakrat presnejSie ako ich naprotivky, ktoré sa spoliehaju
iba na tvrdé makroekonomické tidaje. Toto zlepSenie je obzvlast zrejmé pri predpovedani

inflacie a v mensej miere pri predpovedani priemyselnej produkcie.

Teraz prejdeme k diskusii o naSich empirickych prinosoch, po¢nic prognézami

priemyselnej produkcie a inflacie pomocou vzorky pred COVIDom.

Po prvé, kazdy RLS model neustdle prekondva benchmark model, so Statistickou
vyznamnostou na 5%-nej hladine vyznamnosti. Len v dvoch pripadoch, tykajucich sa
priemyselnej produkcie, je tento rozdiel vyznamny na 10%-nej hladine vyznamnosti. V pripade
inflacie je kazdy rozdiel vyznamny na 5%-nej hladine vyznamnosti. NavySe, kazdy RLS
predikény model dosahuje podstatne vyssie DA hodnoty ako benchmark model pre priemyselnt
produkciu. Hoci je DA pre modely strojového ucenia o nieCo nizSia pre inflaciu, stale
prekonavaju benchmark. Tieto vysledky identifikuju model Elastic Net ako najefektivnejsi v
tejto kategorii. Dalej, pre priemyselnti produkciu zohrava vyber premennych pomocou Lasso
doélezitejSiu tlohu ako zmenSovanie koeficientov pomocou Ridge. Tato situacia je obratena pri
predikciach inflacie. Zhrnuté, RLS modely neustale prekonavajo benchmark model v kazdom
horizonte. Tento robustny vykon je ocakdvany kvoli pritomnosti mnohych korelovanych
premennych v datovej sade, ktoré maji tendenciu poskytnut’ podobné informécie pre odhad.
Navyse, kratSie ¢asové rady pouzité v naSej §tidii v porovnani s inym vyskumom strojového
ucenia moZu viest’ k tomu, Ze metddy Lasso a Elastic Net ignoruju menej dolezité premenné

kvoli obmedzenému poctu dostupnych pozorovani.

Po druhé, ¢o sa tyka presnosti EML modelov, kazdy model vyrazne prekondva benchmark
model pri prognézovani priemyselnej produkcie aj inflacie na 5%-nej hladine vyznamnosti s
vynimkou modelov Boosting a Random Forest pre priemyselni produkciu pri 2 = 1, kde

dosahuju Statisticki vyznamnost’ len na 10%-nej hladine vyznamnosti. Navyse, vSetky EML
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predikéné modely vykazuju vyssie hodnoty DA ako benchmark. S vynimkou Boosting, tieto
hodnoty DA zostavaju stabilné v Case. Bagging sa ukazuje ako celkovo najucinnejsi. Vzhl'adom
na jeho vyznamny vykon pre oba ciele naprie¢ vSetkymi horizontmi na Grovni 5 % a vSeobecne
Tento nalez je obzvlast relevantny, pretoze neexistuji iné publikované studie, ktoré by riesili

potencialne nelinearity na slovenskych datach.

Po tretie, skimame tri d’alSie typy modelov mimo hlavnych kategérii. Model Support
Vector Machine (SVM), ktory prekonava benchmark model v kazdom predikénom horizonte
pre obe premenné, pricom vykazuje presvedcivé hodnoty DA. Jeho vykon pre priemyselna
produkciu je vSak nekonzistentny, co ho zarad’uje medzi slabSie modely v naSom subore,
nebertic do uvahy neurénové siete. Co sa tyka modelov neurénovych sieti, nase vypoétové
moznosti boli obmedzené, ¢o nam branilo efektivne doladit’ tieto modely. Vysledkom je, ze

vysledky z neurénovych sieti nie su spolahlivé pre nasu analyzu.

Pokracujuc v naSej analyze, hodnotime predik¢ni schopnost modelov pomocou
spolo¢nych faktorov pre priemyselnt produkciu a inflaiciu. Kazdy model prekonava svoj
benchmark model; av§ak modely vykazuja vyrazne lepSiu vykonnost' z hl'adiska relativneho

MSE a hodnét DA, ked’ st predikcie zalozené na tvrdych makroekonomickych datach.

Dalej posudzujeme vykonnost modelov strojového udenia, ktoré boli trénované na
mikkych indikatorovych datach. Ocakavame, ze predikcie zaloZzené na mékkych indikatoroch
nebudu mat’ nizsie chyby ako tie, ktoré su zalozené na tvrdych makroekonomickych datach.
Avsak predpokladame, Ze prekonaju benchmark model v progndézovani smeru zmeny cielovej
premennej, co sa potvrdzuje. Na zaver mdézeme povedat, ze indikatory efektivne plnia svoj
zamySlany ucel. Vyuzitim rozsiahlej datovej sady mikkych indikatorov a pouzitim modelov
strojového ucenia mézeme predpovedat’ smer zmeny s vy$Sou pravdepodobnostou, ako keby

sme sa spoliehali len na benchmark model.

Pokracujeme so sumarizaciou vysledkov tykajicich sa post-COVID obdobia. Pri
skimani post-COVID vysledkov nachddzame vzory ciastocne podobné skor§im zisteniam.
Okrem toho, zahrnutie COVID-19 udajov do vzorky zlepSuje vykon modelov strojového
ucenia. Vyznamné je, ze v pripade priemyselnej vyroby dosahuji modely Lasso a Elastic Net
zvySenie vykonu priblizne o 20 percentudlnych bodov v porovnani s pre-COVID vzorkou. V

pripade predikcie inflacie vynikd model Elastic Net s najlepSimi vysledkami. Toto je vyznamné
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zlepsenie, ktoré takmer zdvojnasobuje jeho relativny vykon v porovnani s predchadzajicou

vzorkou bez COVID udajov.

Navyse, vykon EML modelov predstavuje menej jasny obraz. Dosahuju lepsi vykon v
porovnani s pre-COVID vzorkou. Na druhej strane, ziadny z nich neprekonava svoju
kombindaciu s Ridge alebo Elastic Net. Toto pod¢iarkuje efektivnost’ nasho hybridného pristupu
pri podstatnom zlepSeni predikéného vykonu nelinedrnych modelov vyberom vhodnych

premennych alebo optimalizdciou hodndt parametrov pre tréning.

Vysledky modelov zaloZenych na spolo¢nych faktoroch su podobné ako pri pre-COVID
vzorke. Okrem toho, soft indikatory vykazuji podobnu alebo vysSiu presnost’ predikcii ako
benchmark model pocas tohto obdobia. V pripade priemyselnej vyroby prekonavaju benchmark

aj z hladiska chyb.

V tejto vzorke tiez hodnotime uc¢innost” modelov strojového ucenia ako nastrojov na
kombinaciu predikcii. Zistili sme, Ze niektoré kompozitné modely, ktoré integruja vystupy z
viacerych individudlnych modelov, mézu byt dvakrat tak presné ako ich néaprotivky, ktoré sa
spoliehaju vylu¢ne na tvrdé makroekonomické tidaje. Tato vyhoda je konzistentna a stdva sa
eSte vyraznejSou s rasticim 4. NavySe, vykon kompozitnych modelov zalozenych na
spolo¢nych faktoroch je pozoruhodne poOsobivy. Tieto modely zalozené na spolo¢nych
faktoroch vo vSeobecnosti prekonavaju benchmark model vo viacSine scenarov. Toto zistenie
naznacuje, ze zatial ¢o individudlne modely spolichajuce sa na spolo¢né faktory mozu
samostatne dosahovat horSie vysledky, agregacia informacii z kazdého modelu
prostrednictvom technik strojového ucenia moze vyrazne zvysit' celkovu presnost’ predikecii.
Tento pristup efektivne vyuziva kolektivnu silu r6znych modelov, ¢im demonstruje silu

kompozitného predikovania v aplikaciach strojového ucenia.

Vo vzorke post-COVID tiez uvadzame, ako kazda kategoéria z tabuliek Al.1-A1.8
ovplyviiuje predikcie. Okrem toho ukazujeme, Ze predikcie RLS takmer dokonale zodpovedajt
trajektorii skutonych hodndt predikovanych radov. Najlepsi vykon dosahuje model Elastic
Net, ktory nielen presne predpovedd smer zmien, ale aj ich rozsah, priCom takmer dokonale
zodpoveda skuto¢nym udajom. Téato vysoka uroven presnosti nas vedie k zaveru, Ze v naSom
pripade je model Elastic Net najpresnejSou metddou predikcie inflacie, dokonca aj v prostredi
s vysokou volatilitou. Hoci vykon modelu pri zachytdvani rozsahu zmien mierne klesa pri 4 =
12, schopnost’ predpovedat’ inflaciu v obdobi vysokej neistoty a volatility s takou presnost'ou

na jeden a tri mesiace dopredu zostdva vynimocnym uspechom.
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Na zéver, vac¢sina modelov strojového ucenia prekonava benchmark model o velky
rozdiel a dosahuji podstatne lepSie vysledky ako pri pouziti pre-COVID vzorky. Pre tato
vykonnost’ mozno uviest’ viacero dovodov. Vo vSeobecnosti maji modely viac udajov na ucenie
vd’aka prediZeniu ¢asovej rady o 4 roky. Navyse, vykon benchmark modelu méZe vyrazne
klesnut’, pretoze jednoduchy model nemusi byt’ schopny zachytit’ nahly a neo¢akavany Sok, ako

je COVID.

Na zéver formulujeme odportcania na zaklade naSich vysledkov. V prvom rade je
dolezité¢ spomenut, ze metddy strojového ucenia v suCasnosti zostavaji vo velkej miere
,clernymi skrinkami®, ako zdoraziuji Masini et al. (2021). Masini et al. (2021) tiez uvadzaju,
ze hoci su dostupné rozne interpretacné techniky, neexistuje konsenzus v ramci akademickej
obce o ich primeranosti, najmi v porovnani s tradi¢nejSimi modelmi ako VAR, ktoré umoziuju
priamociaru interpretaciu. Masini et al. (2021) vSak zdoraznujt, Ze tato oblast’ vyskumu v Case
pisania tejto prace prudko rastie. Preto je dolezité poznamenat’, Ze hlavné prinosy nie su v

oblasti identifikacie Strukturalnych suvislosti, ale v oblasti predik¢nej kapacity.

Po prvé, vSeobecne vysoka Statistickd vyznamnost’ na urovni 5 % naprie€ tymito modelmi
naznacuje, Ze regularizdcia vyrazne zvySuje presnost predikcii, a to o viac ako 90 % v
niektorych pripadoch zahfiiajicich Lasso a Elastic Net, napriek ich predchddzajicemu
nevyuzivaniu na Slovensku. Regularizacia tak poskytuje presnejsie a robustnejSie odhady pocas
pre-COVID aj post-COVID obdobi. Preto sa zda byt vyhodné d’alej skimat’ implementaciu
regularizacnych technik v makroekonomickych predikcidch aplikovanymi makroekonémami.
Tento posun by mohol potencidlne zlepSit presnost’ ekonomickych progndéz vyuzitim
podrobnych a priamych merani ekonomickej aktivity poskytovanych tvrdymi datami, ¢im by

sa zvysila celkova spol'ahlivost’ predikénych modelov v r6znych ekonomickych podmienkach.

Po druhé, robustny vykon r6znych modelov zddraziuje vyznam nelinedrnych vztahov,
stru¢ne diskutovanych v Kapitole 1. Tieto faktory by mali brat’ makroekonémovia do uvahy pri
priprave predikcii. Vyznam nelinearit a interakcii medzi premennymi je d’alej zdérazneny
uspesnym pouzitim nelinedrnych metod strojového ucenia. Napriklad relativne hodnoty MSE
pre model Boosting st porovnatelné s hodnotami modelu Lasso v pripade inflacie. Tato
podobnost’ naznacuje, ze aj pri mensich datovych vyberovych suboroch, typickych pre mensie
ekonomiky, nedostatok regularizdcie nebrani tymto metédam v identifikacii kl'icovych
vztahov v ramci dat. NaSe zistenia silne podporuju zahrnutie nelinearnych datovo riadenych
modelov do predikénych ramcov, vzhl'adom na ich preukdzant schopnost’ efektivne zachytit’
vyznamné nelinedrne efekty. Tento pristup by mohol zvySit presnost a relevantnost’
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ekonomickych prognoz tym, ze by do nich zahrnul komplexni dynamiku, ¢asto pritomna v
realnych datach. Na d’alSie zlepSenie tychto nelinearnych metdd by sa mala najprv aplikovat

regularizacia a potom pouzit’ techniky EML na regularizované vstupy.

Nakoniec je vhodné, aby mali tvorcovia politik vopred pripravené modely strojového
ucenia. Ked’ sa spristupnia tidaje o mikkych indikatoroch, mézu byt rychlo zadané do tychto
modelov na spol’ahlivejsie predpovedanie smeru ekonomiky. Tento pristup poskytuje tvorcom
politik proaktivny nastroj na efektivne hodnotenie budtcich ekonomickych trendov. Vyuzitim
vstupov v realnom case mozu tieto modely ponuknut v€asné postrehy, o umoziuje
informovanejSie a pruznejSie ekonomické rozhodovanie. Tento sposob zdoraznuje dolezitost’

pripravenosti a strategického vyuZitia technologii v ekonomickych predikciach.

Zhrnutim je naSe hlavné odporucanie, aby makroekondémovia na Slovensku zacali
vyuzivat modely v dvoch hlavnych kategoriach, ktoré preukazuju silny vykon v predikciach.
Tieto modely st u¢inné pri zachytavani nelinearit v procese generovania dat a tiez zdoraziuju
kl'a¢ovu ulohu regularizacie. Ako sme ukdzali v naSej analyze, oba prvky — nelinearity a
regularizécia — si rozhodujuce pre presné predpovedanie ekonomickych trendov. Tento pristup
zaistuje, ze makroekonomické predpovede s nielen robustné, ale aj odrazaji komplexnu

dynamiku, ktoré charakterizuje ekonomiku krajiny.

Aby sme to zhrnuli, naSe prinosy k makroekonomickému prognézovaniu st viaceré a su
zéaroven dolezité. Po prvé, zavadzame hybridni metédu inSpirovani Medeirosom et al. (2019),
ktora je uspesnd v zachytdvani nelinearit a interakcii premennych. Tento pristup je obzvlast
prospesny v postsocialistickych vychodoeuropskych ekonomikach, kde su datové subory
obvykle kratke. Regularizaciou tychto datovych suborov pred aplikovanim nelinearnych metod
vyrazne zvySujeme vykon tychto modelov. Po druhé, hodnotime ucinnost’ regularizacie v
porovnani s analyzou hlavnych komponentov (PCA). Nase vysledky ukazuju, Ze regularizécia,
technika strojového ucenia (ML), poskytuje presnejSie prognozy. Po tretie, skiimame
uzitocnost’ ML metdd pri kombinovani progndz a zistime, Ze zlepSuju presnost’ individudlnych
modelov. Po Stvrté, ukazujeme, ze regularizacia vyrazne zlepSuje predikéné schopnosti v
porovnani s konvenénymi benchmark modelmi. Po piate, pouzivame Ensemble ML modely na
identifikaciu a modelovanie nelinearit v datach. Pokial’ je ndAm zndme, toto je prvykrat, o boli
tieto techniky aplikované pomocou ML v malej otvorenej industrializovanej ekonomike v
menovej Unii. Po Sieste, prichddzame s novym pristupom hodnotenia smerovej presnosti ML
modelov, ¢o je dolezity aspekt, ktory sa Casto prehliada v prospech zamerania sa iba na vel'kost’
chyb. Po siedme, poskytujeme vyCerpavajucu analyzu vykonu ML modelov v pre-COVID a
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post-COVID obdobiach, pricom zaznamenavame lepsi vykon pocas obdobi zvySenej
ekonomickej neistoty a volatility. Napriek kratkemu obdobiu, ktoré pokryva iba 16 rokov s
krizami na oboch koncoch, jeden model progndzuje inflaciu na jeden az tri mesiace dopredu s
uplnou presnost'ou. Po 6sme, ilustrujeme, ako ML metddy efektivnejsie rozlisuju trendy z
mékkych indikatorov. Po deviate, nasSe zistenia kolektivne adresuju a vyvracaju kritiku
Makridakisa et al. (2018), ktor podrobne diskutujeme v Kapitole 1. Ukazujeme, ze jednoduché
metddy, ako napriklad SVM, nefunguji dobre, ale komplexné metddy su schopné dosiahnut’

Statisticky vyznamnua vykonnost'.
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Appendix

Appendix 1: List of variables

Table Al.1: Industrial production

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Industrial
manufacturing

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production
of food, beverages, and tobacco products

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production
of textiles, clothing, leather, and leather products

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production
of wood and paper products, printing

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production
of coke and refined petroleum products

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production
of chemicals and chemical products

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production
of basic pharmaceutical products and pharmaceutical preparations

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production
of rubber and plastic products and other non-metallic mineral products

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production
of metals and metal structures excluding machinery and equipment

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production
of computers, electronic, and optical products

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production
of electrical equipment

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production
of machinery and equipment n.e.c.

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production
of transport equipment

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Other
manufacturing, repair, and installation of machinery and equipment

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Supply of
electricity, gas, steam, and air conditioning

Industrial production, Construction production, constant prices, seasonally unadjusted,
Construction production

Industrial production, Construction production, constant prices, seasonally unadjusted,
Domestic construction production

Industrial production, Construction production, constant prices, seasonally unadjusted, New
construction, reconstruction, and modernization

Industrial production, Construction production, constant prices, seasonally unadjusted,
Repairs and maintenance

Industrial production, Construction production, constant prices, seasonally unadjusted,
Construction production abroad

Industrial production, Construction production, constant prices, seasonally unadjusted, New
construction, reconstruction, and modernization - residential buildings

Industrial production, Construction production, constant prices, seasonally unadjusted, New
construction, reconstruction, and modernization - non-residential buildings
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Industrial production, Construction production, constant prices, seasonally unadjusted, New
construction, reconstruction, and modernization - civil engineering works

Industrial production, Construction production, constant prices, seasonally unadjusted,
Repairs and maintenance - residential buildings

Industrial production, Construction production, constant prices, seasonally unadjusted,
Repairs and maintenance - non-residential buildings

Industrial production, Construction production, constant prices, seasonally unadjusted,
Repairs and maintenance - civil engineering works

Industrial production, Construction production, constant prices, seasonally unadjusted, Other
works - domestic

Industrial production, Construction production, constant prices, seasonally unadjusted,
Domestic construction production - residential buildings

Industrial production, Construction production, constant prices, seasonally unadjusted,
Domestic construction production - non-residential buildings

Industrial production, Construction production, constant prices, seasonally unadjusted,
Domestic construction production - civil engineering works

Industrial production, Construction production, constant prices, seasonally unadjusted,
Domestic construction production - buildings

Source: NBS macroeconomic database

Table A1.2: Prices

HICP, HICP - basic structure of NBS, seasonally adjusted, All items HICP

HICP, HICP - basic structure of NBS, seasonally adjusted, Net inflation excluding fuels

HICP, HICP - basic structure of NBS, seasonally adjusted, Energy

HICP, HICP - basic structure of NBS, seasonally adjusted, Food

HICP, HICP - basic structure of NBS, seasonally adjusted, Administered prices excluding
energy prices

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Total industry

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Mining and quarrying

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Industrial production

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of food, beverages, and tobacco

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of textiles, clothing, leather, and leather products

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of wood and paper products, printing

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of coke and refined petroleum products

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of chemicals and chemical products

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of basic pharmaceutical products and pharmaceutical preparations

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of rubber and plastic products and other non-metallic mineral products

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of metals and metal structures excluding machinery and equipment
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Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of computers, electronic, and optical products

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of electrical equipment

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of machinery and equipment n.e.c.

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of transport equipment

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Other manufacturing, repair, and installation of machinery and equipment

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Supply of electricity, gas, and cold air

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of electricity, transmission, and distribution

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Production of gas: distribution of gas fuels by pipeline

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Steam supply and distribution of cold air

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Water supply, cleaning, and waste water disposal, waste

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Collection, treatment, and supply of water

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE
Rev. 2, Cleaning and waste water disposal

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Total industry

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Mining and quarrying

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Industrial production

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Production of food, beverages, and tobacco

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Production of textiles, clothing, leather, and leather products

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Production of wood and paper products, printing

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Production of coke and refined petroleum products

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Production of chemicals and chemical products

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Production of basic pharmaceutical products and pharmaceutical preparations

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Production of rubber and plastic products and other non-metallic mineral products

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Production of metals and metal structures excluding machinery and equipment

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Production of computers, electronic, and optical products
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Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Production of electrical equipment

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Production of machinery and equipment n.e.c.

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Production of transport equipment

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Other manufacturing, repair, and installation of machinery and equipment

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE
Rev. 2, Supply of electricity, gas, and cold air

Source: NBS macroeconomic database

Table A1.3: Revenue

Revenue, Total revenue, Total, constant prices, seasonally adjusted

Revenue, Total revenue, Total, domestic trade, constant prices, seasonally adjusted

Revenue, Total revenue, Total, selected sectors, constant prices, seasonally adjusted

Revenue, Domestic trade, constant prices, seasonally adjusted, Sale and repair of motor
vehicles

Revenue, Domestic trade, constant prices, seasonally adjusted, Wholesale excluding motor
vehicles

Revenue, Domestic trade, constant prices, seasonally adjusted, Retail excluding motor
vehicles

Revenue, Domestic trade, constant prices, seasonally adjusted, Accommodation

Revenue, Domestic trade, constant prices, seasonally adjusted, Food and beverage service
activities

Revenue, Selected sectors, constant prices, seasonally adjusted, Industry

Revenue, Selected sectors, constant prices, seasonally adjusted, Construction

Revenue, Selected sectors, constant prices, seasonally adjusted, Selected market services

Revenue, Selected sectors, constant prices, seasonally adjusted, Information and
communication

Revenue, Selected sectors, constant prices, seasonally adjusted, Transportation and storage

Revenue, Revenue, MIG, constant prices, seasonally adjusted, Mining and quarrying

Revenue, Revenue, MIG, constant prices, seasonally adjusted, Mining and quarrying;
industrial production

Revenue, Revenue, MIG, constant prices, seasonally adjusted, Industrial production

Revenue, Revenue, MIG, constant prices, seasonally adjusted, Investment goods

Revenue, Revenue, MIG, constant prices, seasonally adjusted, Consumer goods

Revenue, Revenue, MIG, constant prices, seasonally adjusted, Consumer goods excluding
food, alcohol, and tobacco products

Source: NBS macroeconomic database

Table A1.4: Wages

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, All
sectors

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Industry total

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Industry total, of which: mining and quarrying
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Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Industry total, of which: industrial production

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Industry total, of which: energy

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Industry total, of which: water and waste management

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Construction

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, Sale
and repair of motor vehicles

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Wholesale, excluding motor vehicles

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Retail, excluding motor vehicles

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Accommodation

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Restaurants and catering

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Transportation and storage

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Transportation and storage, of which: postal services and courier services

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Information and communication

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Selected market services

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Services total

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted,
Trade total

Source: NBS macroeconomic database

Table A1.5: Employment

Job vacancies, Monthly job vacancies, UPSVAR, seasonally adjusted, Job vacancies

Job vacancies, Monthly job vacancies, UPSVAR, seasonally adjusted, Job vacancies - inflow

Job vacancies, Monthly job vacancies, UPSVAR, seasonally adjusted, Job vacancies -
outflow

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
All sectors

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Industry total, of which: mining and quarrying

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Industry total, of which: energy

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Industry total, of which: water and waste management

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Construction

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Sale and repair of motor vehicles
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Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Wholesale, excluding motor vehicles

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Retail, excluding motor vehicles

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Accommodation

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Restaurants and catering

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Transportation and storage

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Transportation and storage, of which: postal services and courier services

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Information and communication

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Selected market services

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Services total

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted,
Trade total

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, Mining
and quarrying

Employment (hours, persons), Monthly employment in industry, seasonally adjusted,
Manufacturing of food, beverages and tobacco products

Employment (hours, persons), Monthly employment in industry, seasonally adjusted,
Manufacturing of wood and paper products, printing

Employment (hours, persons), Monthly employment in industry, seasonally adjusted,
Manufacturing of coke and refined petroleum products

Employment (hours, persons), Monthly employment in industry, seasonally adjusted,
Manufacturing of chemicals and chemical products

Employment (hours, persons), Monthly employment in industry, seasonally adjusted,
Manufacturing of basic pharmaceutical products and pharmaceutical preparations

Employment (hours, persons), Monthly employment in industry, seasonally adjusted,
Manufacturing of rubber and plastic products and other non-metallic mineral products

Employment (hours, persons), Monthly employment in industry, seasonally adjusted,
Manufacturing of computer, electronic and optical products

Employment (hours, persons), Monthly employment in industry, seasonally adjusted,
Manufacturing of electrical equipment

Employment (hours, persons), Monthly employment in industry, seasonally adjusted,
Manufacturing of machinery and equipment not elsewhere classified

Employment (hours, persons), Monthly employment in industry, seasonally adjusted,
Manufacturing of transport equipment

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, Energy

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, Water
and waste management

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Number of
unemployed persons

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Number of
available unemployed persons
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Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Inflow of job
seekers

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Inflow of job
seekers, graduates

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Outflow of job
seekers

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Outflow of job
seekers, placed in the labor market

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Outflow of job
seekers, excluded due to non-cooperation

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Outflow of job
seekers, others

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Non-available job
seekers

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Temporary
incapacity for work and OCR

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Unemployment
rate as a percentage of total applicants

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Registered
unemployment rate

Source: NBS macroeconomic database

Table A1.6: Foreign trade

Foreign Trade, Foreign Trade-Export, Total Export, seasonally adjusted

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Countries outside the
eurozone

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Countries in the
eurozone

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - EU 28

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - V3 (Poland, Hungary,
Czechia)

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Germany

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Czechia

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - France

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Poland

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Austria

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Italy

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Hungary

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Russia

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - United Kingdom of
Great Britain and Northern Ireland

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - China

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Netherlands

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Spain

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Sweden

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Romania

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - USA

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Belgium

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Turkey
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Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Switzerland

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Korea

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Unspecified

Foreign Trade, Foreign Trade-Export, Commodity structure of exports - final consumption

Foreign Trade, Foreign Trade-Export, Commodity structure of exports - raw materials

Foreign Trade, Foreign Trade-Export, Commodity structure of exports - intermediates

Foreign Trade, Foreign Trade-Export, Commodity structure of exports - machinery,
apparatus, equipment

Foreign Trade, Foreign Trade-Import, Total Import, seasonally adjusted

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Countries outside the
Eurozone

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Countries in the
Eurozone

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - EU 28

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - V3 (Poland, Hungary,
Czechia)

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Germany

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Czechia

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - France

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Poland

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Austria

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Italy

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Hungary

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Russia

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - United Kingdom of
Great Britain and Northern Ireland

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - China

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Netherlands

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Spain

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Sweden

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Romania

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - USA

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Belgium

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Turkey

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Switzerland

Source: NBS macroeconomic database

Table A1.7: Current account

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Current account
- assets

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Current account
- liabilities

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Goods - credit

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Goods - debit

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Services - credit

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Services - debit

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Primary income
- credit
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Current account (BPM6), Current account (BPM6), seasonally unadjusted, Primary income
- debit

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Secondary
income - credit

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Secondary
income - debit

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Capital account -
debit

Source: NBS macroeconomic database

Table A1.8: Exchange rates

Exchange rates, Bilateral exchange rates, Bilateral exchange rate CZK/EUR

Exchange rates, Bilateral exchange rates, Bilateral exchange rate HUF/EUR

Exchange rates, Bilateral exchange rates, Bilateral exchange rate PLN/EUR

Exchange rates, Bilateral exchange rates, Bilateral exchange rate USD/EUR

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), Germany

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), Czech Republic

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), Italy

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), France

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), Austria

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), Poland

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), Hungary

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), United Kingdom

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), United States

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), Netherlands

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), Belgium

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), Spain

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), Russian Federation

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), China

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the
Slovak Republic), Republic of Korea

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), Germany

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), Czech Republic
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Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), Italy

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), France

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), Austria

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), Poland

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), Hungary

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), United Kingdom

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), United States

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), Netherlands

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), Belgium

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), Spain

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), Russian Federation

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), China

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the
Slovak Republic), Republic of Korea

Exchange rates, Effective exchange rates - monthly (15 main trading partners of the Slovak
Republic), Nominal effective exchange rate

Exchange rates, Effective exchange rates - monthly (15 main trading partners of the Slovak
Republic), Real effective exchange rate based on CPI

Exchange rates, Effective exchange rates - monthly (15 main trading partners of the Slovak
Republic), Real effective exchange rate based on PPI

Source: NBS macroeconomic database

Table A1.9: Indicators

The Economic Sentiment Indicator, The Economic Sentiment Indicator, Long-term average,
Economic Sentiment Indicator

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted,
Industry

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted,
Industrial Production Trend (last 3 months)

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted, Current
Level of Overall Demand for Production

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted, Current
Level of Demand for Production Abroad

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted, Current
Stocks of Finished Products

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted,
Expected Industrial Production (next 3 months)
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Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted,
Expected Product Prices (next 3 months)

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted,
Expected Number of Employees (next 3 months)

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted, Services

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted, Business
Situation Trend (last 3 months)

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted, Demand
for Services Development (last 3 months)

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted,
Expected Demand for Services (next 3 months)

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted, Number
of Employees (last 3 months)

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted,
Expected Number of Employees (next 3 months)

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted,
Expected Service Prices (next 3 months)

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted,
Consumers

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted,
Expected Household Financial Situation (next 12 months)

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, Past
Household Financial Situation (last 12 months)

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, Past
Economic Situation of Slovakia (last 12 months)

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted,
Expected Economic Situation Development in Slovakia (next 12 months)

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, Past
Inflation (last 12 months)

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted,
Expected Inflation (next 12 months)

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted,
Expected Unemployment (next 12 months)

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted,
Conditions for Major Purchases in Slovakia

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted,
Household Plans for Major Purchases (last 12 months)

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, Saving
Conditions in Slovakia

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted,
Expected Household Savings Development (next 12 months)

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted,
Opinion on Household Financial Situation (last 12 months)

Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Retail

Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Business
Situation Trend (last 3 months)

Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Current
Inventory Levels
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Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Expected
Supplier Requirements (next 3 months)

Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Expected
Business Situation (next 3 months)

Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Expected
Number of Employees (next 3 months)

Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Expected
Product Prices (next 3 months)

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted,
Construction

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted,
Construction Activity Trend (last 3 months)

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted,
Factors Limiting Construction Production (%): none

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted,
Factors Limiting Construction Production (%): insufficient demand

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted,
Factors Limiting Construction Production (%): weather conditions

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted,
Factors Limiting Construction Production (%): lack of employees

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted,
Factors Limiting Construction Production (%): lack of material and/or equipment

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted,
Factors Limiting Construction Production (%): other

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted,
Factors Limiting Construction Production (%): financial constraints

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted,
Current Level of Demand for Construction Production

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted,
Expected Number of Employees (next 3 months)

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted,
Expected Construction Production Prices (next 3 months)

Economic Sentiment Indicator, Expected Employment Development, Expected Employment
Development Together

Economic Sentiment Indicator, Industrial Confidence Indicator, Contributions, Seasonally
adjusted, Industry

Economic Sentiment Indicator, Industrial Confidence Indicator, Contributions, Seasonally
adjusted, Current Level of Overall Demand for Production

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Food Production

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Beverage Production

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Textile Production

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Clothing Production

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Leather and Leather Goods Production
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Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Wood Processing and Wood and Cork Products Manufacturing
except Furniture

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Paper and Paper Products Manufacturing

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Printing and Reproduction of Recorded Media

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Chemicals and Chemical Products Manufacturing

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Pharmaceutical Products and Preparations Manufacturing

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Rubber and Plastic Products Manufacturing

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Other Non-metallic Mineral Products Manufacturing

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Metals Processing and Manufacturing

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Fabricated Metal Products Manufacturing except Machinery
and Equipment

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Computer, Electronic and Optical Products Manufacturing

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Electrical Equipment Manufacturing

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Machinery and Equipment Manufacturing

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Motor Vehicles, Trailers and Semi-Trailers Manufacturing

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Other Transport Equipment Manufacturing

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Furniture Manufacturing

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Other Manufacturing

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Electricity, Gas, Steam and Air Conditioning Supply

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Water Supply, Sewerage, Waste Management and Remediation
Activities

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3
months), Seasonally adjusted, Mining and Quarrying

Source: NBS macroeconomic database
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