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Abstract 

This paper presents a duration dependent model for analyzing the evolution of credit 

ratings. It considers the backward recurrence process to tackle the time of permanence 

problem in the rating classes. In this way it is possible to manage the duration effects, 

which represent one of the most important features in rating dynamics. Furthermore, 

the paper shows how it is possible to compute the cost of capital that an organization is 

required to pay for the capital used in financing its activities. A real data application 

using Standard & Poor’s historical database is provided. 

1. Introduction 

The main purpose of this paper is to propose a new stochastic model that is 
able to analyze credit rating migrations and to evaluate the cost of capital necessary 
for financing a company’s activity. 

The problem of credit risk basically consists of computing the probability 
that a firm will go into the default state. The literature on this topic is copious and 
the interested reader can refer to books by Chacko et al. (2006), Lando (2004) and 
Bluhm et al. (2002) or to papers by Carty and Fons (1994), Nickell et al. (2000), 
Bangia et al. (2002), Řezáč and Řezáč (2011), Jagric et al. (2011) and Gapko and 
Šmíd (2012). 

International organizations, such as Fitch, Moody’s and Standard & Poor’s 
(S&P), evaluate credit risk by giving different ratings to firms that have agreed to be 
inspected. Such firms receive a note (rating) that represents an assessment of how 
reliable they are in terms of repaying their own debt. The rating is a measure of 
the creditworthiness of bonds issued. Clearly, the lower the rating, the higher 
the interest rate that the firm should pay.  

The rating changes with time and a way of following its evolution is by means 
of Markov processes (see, for example, Jarrow et al., 1997; Israel et al., 2001; Hu 
et al., 2002). In this environment, Markov models are called migration models. 

The problem of the poor fitting of Markov processes in the credit risk environ-
ment has been outlined in some papers (see, for example, Altman, 1998; Carty and 
Fons, 1994; Lando and Skodeberg, 2002). More efficient rating migration models 
based on semi-Markov processes have been proposed recently (e.g. D’Amico et al., 
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2005; Vasileiou and Vassiliou, 2006; Vasileiou and Vassiliou, 2013; D’Amico et al., 
2009a; D’Amico et al., 2010a). The semi-Markov models represent a generalization 
of the Markovian models that allow the possibility to use any kind of distribution 
functions for modeling the sojourn times in the states of the system. 

In the article by D’Amico et al. (2005), a model based on homogeneous semi-
Markov processes was presented. In that paper the duration problem was considered 
for the first time, although in an incomplete way. The duration effect affirms that 
the time during which a company is in a rating class influences the transition proba-
bilities and, consequently, the company’s reliability functions. 

A generalization of the transition probabilities for a non-homogeneous semi-
Markov process (NHSMP) is obtained by introducing the backward environment (see 
D’Amico et al., 2009b). In this case, the transition probabilities are also dependent on 
the time of entrance into a given state. For this reason, this paper proposes a model 
based on an NHSMP that efficiently solves the credit rating duration problem.  

The rating evolution is investigated by using real data from the rating agency 
S&P and, for the first time, a duration dependent rating migration model is imple-
mented to describe the duration effect implicit in real data. The classical rating 
models consider the No Rating class (NR) for unrated companies. Since the reasons 
for an NR assessment may be positive or negative, as better explained later in this 
paper, the proposed model considers the splitting of the NR state into two artificial 
rating classes, called NR1 and NR2, associated with positive and negative causes, 
respectively. 

Moreover, the proposed model permits quantification of the cost of capital 
that an organization is required to pay for the capital used in financing its activities. 
This paper proves that the cost of capital, depending on the transition probabilities 
and reliability functions with initial and final backward times, is also influenced by 
the duration inside the rating classes. 

Therefore our suggestion is that the duration effects should be taken into 
account in the classical cost of capital analyses and investment decisions (see, for 
example, Magni, 2011; Block, 2011; Gurgur, 2011).  

2. Duration Dependent Semi-Markov Models 

In this section semi-Markov models, which take into account the initial and 
final backward times, are briefly described; for more details, see D’Amico et al. 
(2009b). In a semi-Markov process environment, two random variables evolve 
jointly. Jn, n∈ℕ  with state space I = {1, 2, …, m} represents the state at the n-th 
transition. Tn, n∈ℕ  with state space equal to ℕ  represents the time of the n-th 
transition. 

The process (Jn, Tn) is supposed to be a non-homogeneous Markov renewal 
process with kernel Q = [Qij (s,t)] defined in the following way: 

Qij (s,t) = P[Jn+1 = j, Tn+1 ≤ t | Jn = i, Tn = s] 

            = P[Tn+1 ≤ t | Jn = i, Jn+1 = j, Tn = s] ⋅ P[Jn+1 = j | Jn = i, Tn = s] =: Gij (s,t) ⋅ pij (s) 

The main difference between a non-homogeneous Markov process and 
an NHSMP is in the probability distribution function Gij (s,t) =P[Tn+1 ≤ t | Jn = i, Jn+1 =  
= j, Tn = s]. 
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In a Markovian environment, this function has to be a geometric distribution 
function; however, in the semi-Markovian case it can be of any type.  

The pij(s) are the transition probabilities of the non-homogeneous embedded 
Markov chain Jn. Now let { }( ) max |

n
N t n T t= ∈ ≤ℕ then the NHSMP 

( )
( ) ,

N t
Z t J=  

t∈ℕ  can be defined as the state occupied by the process at each time. The transition 

probabilities are defined in the following way: 
( )

( , ) P ( ) | ( ) ,
ij N s
s t Z t j Z s i T sφ  = = = =  . 

They are obtained by solving the following evolution equations: 

          
( )

1 1

( , ) 1 ( , ) ( , ) ( , 1) ( , )
m t

ij ij ij i i j

j I s

s t Q s t Q s Q s t
β β β

β ϑ

φ δ ϑ ϑ φ ϑ
∈ = = +

 
= − + − − 

 
∑ ∑ ∑          (1) 

where 
1 if

0 if
ij

i j

i j
δ

=
= 

≠
. 

The first addendum of formula (1) gives the probability that the system does 
not have transitions up to time t given that it entered state i at time s. The second 
addendum represents the probability that the system enters state β just at time ,ϑ  
given that it entered state i at time s and then, after the transition, will follow one of 
the possible trajectories connecting state β at ,ϑ  to state j at t . 

In order to appropriately consider the duration problem, it is necessary to 
introduce the backward time recurrence process: ( )B t t T= − . 

The process B(t) denotes the time since the last transition (Limnios and Oprişan, 
2001; Janssen and Manca, 2006; Janssen and Manca, 2007).  

As derived in D’Amico et al. (2009b), denoted by: 

                              [ ]( , ; ) P ( ) | ( ) , ( )b

ij
v s t Z t j Z s i B s s vφ = = = = −                             (2) 

the semi-Markov transition probabilities with initial backward times that express 
the probability of staying in state j at time t, given that  at time s the system was in 
state i, with entrance into this state at time v. The difference s–v represents the initial 
backward time (the duration in state i).  

The duration effect also occurs when the system enters state j: the system can 
enter state j at time v’ and never exit from it up to time t. For this reason formula (2) 
can be further generalized: 

                 
[ ]( , ; ', ) P ( ) , ( ) ' | ( ) , ( )b b

ij
v s v t Z t j B t t v Z s i B s s vφ = = = − = = −                   (3) 

A trajectory of an NHSMP with initial and final backward times is reported in 
Figure 1. Here we have that ( ) , ( ) 1,N s n N t h= = −  the initial backward ( )

n
B s s T= − =  

s v= − and the final backward value 
1

( ) '
h

B t t T t v
−

= − = − . 

The transition probabilities (2) and (3) satisfy recursive renewal type equa-
tions that generalize equation (1) (see D’Amico et al., 2009b). 

3. Duration Dependent Rating Migration Model 

The credit risk migration problem can be studied using an NHSMP. The rating 
process, carried out by the rating agency, gives a measure of the creditworthiness of 
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Figure 1  A Trajectory of a NHSMP with Initial and Final Backward Recurrence Times 

 
 

a particular company, security or obligation. The rating agency S&P basically con-
siders eight different classes of long-term rating. They are listed to form the follow-
ing coarse set of states: I = {AAA, AA, A, BBB, BB, B, CCC, NR, D}. 

The rating AAA indicates the highest level of creditworthiness, assigned to 
a financial instrument considered extremely reliable with regard to financial obliga-
tions, and decreases towards the rating CCC, which expresses a bankruptcy petition 
that has been filed or similar action taken, but payments of financial commitments 
have continued. 

A table showing the financial meaning of the S&P rating categories is 
reported in Bluhm et al., 2002. 

The ratings from AA to CCC may be modified by the addition of a plus or 
minus sign to show relative standing within the major rating categories and then 
a finer set of ratings could be considered. Moreover, S&P also publishes rating out-
looks (positive, neutral, negative) that assess the potential for change by incorpo-
rating trends or risks with certain implications for credit quality (see Trueck and 
Rachev, 2009). It is possible to consider the outlook effects within the proposed 
model simply by enlarging the state space and by considering each state as a couple 
(rating-outlook). Anyway, these strategies imply a dramatic increase in the number  
of parameters to be estimated. The estimation of a semi-Markov kernel requires large 
numbers of observations of rating transitions even for the coarse rating categories. 
For this reason, and based on previous studies on the Markov chain migration model 
(e.g. Hu et al., 2002; Crouhy et al., 2001) only the coarse scale is considered in 
the application. 

An issue designated NR is not rated. In other words, at some point during its 
rating history it had its rating withdrawn and is consequently removed from conside-
ration, but is monitored with the aim of capturing a potential default. Ratings are 
withdrawn when rated programs are terminated and the relevant debt is extinguished 
or when the entity leaves the public fixed-income markets. Moreover mergers, acqui-
sitions, lack of cooperation, insufficient information, matter of policy and redemp-
tions are all reasons warranting an NR rating. 

State D expresses the occurrence of payment default on a financial obligation. 
Since reasons for an NR assessment may be both positive and negative, a splitting  
of the NR state into two new states denoted by NR1 and NR2 is recommended 
(D’Amico et al., 2010a). An instrument is rated NR1 when it enters state NR coming 
from an investment grade. The term investment grade refers to instruments ranked up 
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to BBB key. This term is broadly used to describe instruments with relatively high 
levels of creditworthiness and credit quality. In contrast, an instrument is rated NR2 
when it enters state NR coming from a speculative grade. Non-investment or specu-
lative grade refers to debt securities, where the issuer has the ability to repay but 
faces significant uncertainties that could affect credit risk. The related ratings are BB 
or lower. Obviously, this higher default risk is compensated by a higher possible 
return. 

As usual in reliability theory, the state space is partitioned into two subsets 
denoted by U and D. Subset U contains all of the good ratings (up states) and subset 
D contains all of the bad ratings (down states): 

           { } { }AAA,  AA,  A,  BBB,  BB,  B,CCC,  NR1 ;        NR2,  D  U D= =          (4) 

This approach allows us to use the classical reliability indicators such as 
the availability, reliability and maintainability functions. These indicators have been 
generalized by also taking into account the initial and final backward and forward 
recurrence times in D’Amico et al. (2010b). Below, these indicators are evaluated by 
considering the initial and final backward times on the real data set. 

The availability with initial and final backward times is defined as follows: 

    ( , ; ', ) : ( ) , ( ) ' ( ) , ( ) ( , ; ', )
b b b b

i ij

j U

A v s v t P Z t U B t t v Z s i B s s v v s v tφ
∈

=  ∈ = − = = −  =  ∑    (5) 

This gives the probability that the instrument has an up rating at time t 
whatever happens at (s,t] considering the initial and final backward times.  

The reliability with initial and final backward times is defined i U∀ ∈  as 

follows: 

        
( , ; ', ) : ( ) : , ( ) ' ( ) , ( )

( , ; ', )

b b

i

b b

ij

j U

R v s v t P Z h U s h t B t t v Z s i B s s v

v s v tφ
∈

=  ∈ ∀ < ≤ = − = = −  

=∑ ɶ
         (6) 

where ( , ; ', )b b

ij
v s v tφɶ  are the transition probabilities with initial and final backward 

times computed by using the following kernel transformation: 

                                                       
ij ij
p i Dδ= ∀ ∈ɶ                                                   (7) 

The transformation (7) defines a new kernel Qɶ  for which all the states of 
the subset D are changed in absorbing states.  

Formula (6) gives the probability that the instrument always has an up rating 
from time s to time t considering the initial and final backward times. Notice that 
the reliability with initial backward time in the following equation: 

                                            
'

( , ; ) : ( , ; ', )
t

b b b

i i

v v

R v s t R v s v t

=

=∑                                        (8) 

has to be introduced into the analysis in relation to the cost of capital estimation. 

The maintainability with initial and final backward times is defined i D∀ ∈  

as follows: 
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( , ; ', ) : 1 ( ) , , ( ) ' ( ) , ( )

( , ; ', )

b b

i

b b

ij

j U

M v s v t P Z h D s h t B t t v Z s i D B s s v

v s v tφ
∈

= −  ∈ ∀ < ≤ = − = ∈ = −  

=∑
⌣     (9) 

where ( , ; ', )b b

ij
v s v tφ

⌣

 are the transition probabilities with initial and final backward 

times computed by using the following kernel transformation: 

                                                       
ij ij
p i Uδ= ∀ ∈
⌣

                                                (10) 

The transformation (10) defines a new kernel Q
⌣

 for which all the states of 
the subset U are changed in the absorbing states. 

Formula (9) gives the probability that the instrument will have an up rating at 
least once from time s to time t when considering the initial and final backward 
times. 

The choice of a non-homogeneous model permits taking into consideration 
periods of financial and economic crises characterized by an increase in default rates. 
Indeed, in a non-homogeneous model, transition probabilities and credit risk indi-
cators are time varying and can be computed for each time couple ,s t . 

4. Cost of Capital Implications 

In this section the impact of ratings on the cost of capital and the implication 
of a duration dependent rating model are considered. To this end, let us consider 
a firm that at current time s  has the rating Z(s) = i of duration ( )B s v= . Seeking 

a source of financing, it decides to issue a financial obligation with inception time t 
and maturity t x+  promising to pay EUR 1. 

The interest rate the firm will pay for this contract depends on the firm’s 
reliability, which gives important financial information. For example, if the one-
period reliability is 0.98 (the probability of being reimbursed after one period) and 
the one-period free risk interest rate is 0.03, then the obligation should pay the fol-

lowing one-period rate of interest: 
1.03

1 5.1%.
0.98

− ≃  

The interest rate the firm will pay for the considered contract depends on 
the credit rating ( )Z t  and on the duration ( )B t  because the reliability function in our 

model is ( )( ), ( )Z t B t − dependent. At each time s , these quantities are random vari-

ables. 

Therefore, if the one-period risk free interest rate is r, then the capitalized 
value of EUR 1 during the next period is 

                                                
( )

1

( )

1

( ( ), ; )b x

Z t

r

R t B t t t x

+

− +

                                           (11) 

The duration dependent rating model allows us to compute the expected cost 
of financing by evaluating the expectation of the random variable (11): 
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( )( )
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1 1
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b bt
ij
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where [ ]
s

E X  is the expectation of random variable X  evaluated by using the infor-

mation at time s . The variable (11) takes the value 
( )

1

1

( , ; )b x
j

r

R d t t x

+

+

 with proba-

bility: [ ]
( , ; , )

P ( ) , ( ) | ( ) , ( ) , ( )
( , ; )

b b

ij

b

i

v s d t
Z t j B t t d Z s i B s s v Z t U

R v s t

φ
= = − = = − ∈ = . 

The riskiness of the contract can be evaluated by computing the variance of 
(11): 

( )

( )
1

( )

1

( ( ), ; )

s

b x

Z t

r
V

R t B t t t x

 
+ 
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+ +    
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    + +    

∑∑ ∑∑

 

By means of similar arguments the skewness and kurtosis can also be computed. 

5. The Credit Risk Model and the Related Algorithm 

5.1 Non-Parametric Estimation of Indicators 

In order to achieve the claimed results, it is necessary to estimate the semi-
Markov kernel Q = [Qij(s, t)] and the proposed credit rating indicators from the con-
sidered data set. Firstly, the following symbols are introduced: 

– K is the number of independent trajectories in the data set, which denotes 
the credit rating histories of the rated financial instruments.  

– r

n
J  is the rating at the n-th transition of the r-th financial instruments.  

– r

n
T  is the time in which the r-th financial instrument makes the n-th change  

of rating. 

– { }( ) sup :
r r r

n
N N T n N T T= = ∈ ≤  is the total number of transitions held by 

the r-th financial instrument. 

– 
{ }1

1

( )

r

r

k

N

r r

i i J i
k

N N T
−

=

=

= =∑ 1  is the number of visits of the r-th financial 

instrument to rating class i. 
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– 
1

( )
K

r

i i i

r

N N T N

=

= =∑  is the total number of visits of all financial instrument to 

rating class i. 

Then consider the following empirical kernel estimator on the analogous 
estimator defined by Oubhi and Limnios (1999) in the homogeneous case: 

                              
{ }1 1

1 1

, , ,

1
( , , )

r

r r r r

l l l l

K N

ij

r li
J i J j T s T t

Q s t K
N − −

∧

= =

= = ≤=

= ∑∑1                              (13) 

After evaluating estimator (13) it is possible to estimate transition probabili-
ties, credit rating indicators and the cost of capital measures by using a plug-in 
procedure, which involves replacing the theoretical kernel ( , )

ij
Q s t  with its empirical 

estimators ( , , )
ij

Q s t K
∧

 in the indicators’ computation. 

Due to lack of space, the kernel estimates are not provided here, but they are 
available upon request.  

5.2 The Algorithm 

The relationship between a discrete time initial and final backward semi-
Markov process is fully described above and the program is presented by means of 
a pseudolanguage in the Appendix om the web-site of this journal, so that the reader 
can follow the algorithm used. The implementation of the algorithm requires the intro-

duction of some auxiliary variables necessary to compute ( , ; ', )b b

ij
v s v tφ  (see D’Amico 

et al., 2009b). 

After computing the probabilities ( , ; ', )b b

ij
v s v tφ , it is possible to evaluate the avail-

ability with initial and final backward times simply by summing the ( , ; ', )b b

ij
v s v tφ  on  

the states j U∈ ; see formula (5). 

Next, in order to evaluate the reliability ( , ; ', ),b b

i
R v s v t  it is sufficient to replace 

matrix ( )sP  with ( )sPɶ , whose elements are given in formula (7), and then run 

the algorithm again. 

Finally, in order to evaluate the maintainability ( , ; ', ),b b

i
M v s v t  it is sufficient 

to replace matrix ( )sP  with ( )sP
⌣

, whose elements are given in formula (10), and 

then run the algorithm again. 

5.3 Application to Standard & Poor’s Historical File 

Data are taken from the S&P rated universe. The database refers to files con-
cerning the entity ratings history, instrument ratings history and issue/maturity 
ratings history. The history starts in 1922 and ends on 31 December 2008. In view of 
maintaining statistical significance, only the rated financial instruments (instrument 
history and issue/maturity history) from 1981 are selected. 
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The terms instrument and issue/maturity include any kind of individual debt 
issued by the entities at a particular time and refer to specific maturities and/or 
programs. 

Only the long-term ratings assessed by S&P to instruments are considered. 
They express an opinion about the credit quality of an individual debt instrument and 
take into consideration the creditworthiness of guarantors, insurers and other forms 
of credit enhancement based on the obligation and also the currency in which 
the obligation is denominated. 

The considered time scale is one year. This choice agrees with the majority of 
credit rating migration studies (see, for example, Carty and Fons, 1994; Bangia et al., 
2002; Jafry and Schuermann, 2004). Moreover, as highlighted by Bangia et al. (2002), 
“the other factor determining the transition horizon is the application purpose”. For 
the calculation of the cost of capital, a one year transition horizon is standard. With-
out additional computational difficulties, a more granular (monthly or quarterly) time 
scale could be adopted for measuring the eventual rating transitions of a financial 
instrument within one year. Anyway, a finer time scale requires a larger dataset to 
non-parametrically estimate the waiting time distribution functions ( ; ),

ij
G s t  because 

the probability distribution functions are spread out on finer supports requiring 
the estimation of more probability masses. At the same time, since the rating migra-
tions of a single financial instrument are not very frequent, the transitions within one 
year are not sufficiently informative to allow significant estimation of the increased 
number of probability masses. Therefore, the choice of the one year time scale is 
connected to the choice of a non-parametric model due to the low frequency of 
the rating changes. Anyway, it should be stated that the results might be different in 
the case of more granular data and that shorter horizons such as semi-annual or 
quarterly tend to have results similar to those obtained by the continuous time model 
as in Lando and Skodeberg (2002) and Jafry and Schuermann (2004). Then, this 
paper focus on the one-year horizon, as that is typical for many credit applications, 
cost of capital included. 

Table 1 in the Appendix shows the one-year instruments frequencies subdi-
vided by rating class. Figure 2 reports the number of transitions that occurred among 
the ratings from 1981 to 2008. 

A huge amount of results was obtained and only some of them are included 
here; however, they are all available upon request. The transition probabilities of 
the embedded Markov chain at s = 0 are reported in Table 2 in the Appendix. 

A look to the table reveals some interesting features. First of all, rating D is 
not an absorbing state. Indeed, there is probability equal to 0.909 of entering state 
NR2 with the next transition; the remaining probability mass is spread over the specu-
lative grades. This behavior is repeated over time but with different transition proba-
bilities.  

Next, entry into state NR1 is more likely from higher investment grades. 
The opposite happens for entry into state NR2: the worse the rating, the more 
probable the entry into state NR2. Finally, the analysis of all the transition matrices 
of the embedded Markov chain suggests that the adoption of a non-homogeneous 
model is more appropriate because of the different transition probability values 
depending on the years. 
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Figure 2  Number of Rating Transitions per Year 

 

Figure 3  Reliability Functions with Initial Backward bRi (v, s; s+h) 

 

Notes: On the x-axis there are the h-values; on the y-axis there are the probabilities. Top-left panel shows 

the case ν = 8, s = 8 , top-right panel shows the case ν = 7, s = 8, bottom-left panel shows the case 

ν = 6, s = 8, bottom-right panel shows the case ν = 4, s = 5 . 

The semi-Markov transition probabilities with initial backward times for dif-
ferent values of v, s and t are reported in the Appendix (see Table 3 in the Appendix). 

Notice that the difference (t-s) is equal to four years in all cases considered. 
The comparison between the first three cases shows differences that can be imputable 
to non-homogeneity, because they have the same initial backward value of 1. 

The comparison between the last two cases shows differences that can be imput-
able to the different initial backward values, because the values s and t are the same. 

Now, as an example, if the results related to times (2,3;7) and (10,11;15) are 
compared, then the differences are imputable to both the non-homogeneity effect and 
to the initial backward values. 

In Figure 3 the reliability functions with initial backward times for different 

values of v, s and t obtained by 
' 0

( , ; ) ( , ; ', )
t v

b b b

i i

v

R v s t R v s v t

−

=

=∑  are shown. 
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From Table 4 (5) in the Appendix, it is possible to take over the dependence of 
the reliability (maintainability) functions on the initial and final backward times. In 
fact, by comparing two columns, it is possible to see different reliability (maintain-
ability) values due to different initial backward times. By comparing two rows, it is 
possible to see the effects due to different final backward values. 

The model also permits the analysis concerning the cost of capital depending 
on the riskiness of the firm. To this end, consider the example of a firm that, at 
current time 6,s =  has the rating ( )Z s i=  of duration ( ) 1B s s v= − = . Seeking 

a source of financing, it decides to issue a financial obligation with inception time 
7t =  and maturity 8t x+ =  promising to reimburse EUR 1 at the maturity date. 

The computation of the expectation (12) produces the results given in Table 6 in 
the Appendix.  

It is possible to observe the monotonicity in the capitalized values with 
respect to the different rating classes. Concerning the investment grade classes, 
the capitalized values range from 1.030 to 1.033. The differences inside the invest-
ment ratings are expected to increase if a maturity duration longer than one year is 
considered. In contrast, the capitalized values are considerably burdensome for 
the speculative grade classes, ranging from 1.194 to 1.224. 

6. Conclusions 

In this paper a discrete time non-homogeneous semi-Markov process with 
initial and final backward recurrence times was considered in order to execute a real 
application to credit rating data. The model was applied to data from the historical 
database of Standard & Poor’s from 1981 to 2008 and was considered over an annual 
time scale. The raw data were reorganized with the aim of better describing the finan-
cial meaning of the No Rating class (NR), which was then split into two new states: 
one good and the other bad. The introduction of such artificial ratings guarantees 
the monotonicity of the reliability function with respect to the rating classes.  

It is worth noting that the introduction of recurrence times is necessary in 
order to capture and describe the duration effects in rating models. The duration 
effect is crucial because the time of permanence in a credit rating changes the transi-
tion probabilities and the reliability functions. The application results were very 
interesting because they confirmed the duration effects, namely that changing the initial 
and final backward times may alter the results considerably. 

A quantification of the cost of capital that an organization is required to pay 
for the capital used in financing its activities was performed. The paper proved that 
the cost of capital, depending on the transition probabilities and reliability functions 
with initial and final backward times, is also influenced by the duration within 
a rating class.  

Further developments include the re-estimation of the model using additional 
information, such as a more detailed structure of rating classes, rating outlooks and 
more granular (monthly or quarterly) datasets. These developments are conditional 
on the acquisition of a larger dataset, which will be certainly available in the near 
future given the growth of the rating market. 
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