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Resume
The objective of this study was to assess the effect of selected operational 
and technical factors on downtime of vehicles. The sample consisted of buses 
from a municipal transport company (Poland). Estimation of parameters 
of a linear regression model was performed. Month of failure (downtime 
event) and its type were used as predictors. Failures were divided into three 
categories: events related to the company’s operations, including vehicle 
failures (1) and other (organizational) problems (2), as well as failures caused 
by external factors unrelated to the operations of the transport company (3). 
The downtime was found to be significantly associated with failure type 
and month of failure. A linear regression model of downtime with a reduced 
number of impact factors, taking into account two main failure types and 
two main periods of their occurrence during the year, was developed.
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can be limited to improve the regularity of headways 
[8-10]. Berrebi et. al. have studied the practical effects 
of implementation of these corrective strategies. They 
demonstrated that the “bus holding” system reduced 
bunching, thus also decreasing average passenger 
waiting time [2]. Adamski and Turnau have presented 
a transport system control strategy in which buses 
were sent at specific times to critical bus stops with 
high numbers of passengers [11]. However, it is worth 
mentioning that the “bus holding” method also had 
negative effects, such as disturbances in traffic flow and 
an increase in average waiting time [1, 12-18]. 

An important component of the “bus holding” strategy 
is prediction of fleet availability. One prediction method 
involves simulation of readiness based on a regression 
model developed with use of the retrospective data. 

In this paper, a linear regression model is proposed, 
which links the bus downtime (not-ready time) with the 
month of the year in which a bus was stationary and 
type of downtime. A regression analysis of downtime was 
performed based on data obtained from the municipal 
transport company in Lublin, Poland. The main objective 
was to develop a regression model with a reduced 
number of factors, which could be used to effectively 
predict bus downtime and ensure continuity of system 
operation. 

1  Introduction 

In public transport systems, vehicle failures and 
organizational shortcomings often substantially increase 
passenger waiting time. In this paper, disablement 
of a vehicle caused by technical or operational factors 
has been referred to with the umbrella term “failure”. 
Vehicle failures are of concern to both drivers and fleet 
managers. In public transport systems, randomness of 
bus departure times and travel times has an influence on 
the quality of transport services [1]. In a situation when 
compliance with the timetable is the major requirement, 
the real travel time in the whole transport system 
is adjusted to a vehicle with the lowest operational 
speed. In the literature, this phenomenon is known as 
“bunching”. Bunching forces passengers to arrive early 
at stations and to budget long travel time [2-5].

The literature describes several corrective strategies 
to reduce bus bunching. Hickman has proposed 
a stochastic model of vehicle operations based on recursive 
equations for expected values of headways and bus loads 
[6]. His strategy of improving transport services consists 
in holding operating buses along the service line, in order 
to regulate the system on an ongoing basis. 

Daganzo and other authors have developed a mixed 
strategy in which passenger boarding and alighting 
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status of the vehicles. Unfortunately, the data were not 
detailed enough to allow to discriminate which failure 
was caused by which factor. Type B were failures related 
to events outside the company’s control (e.g. collision 
with another vehicle, freezing of the pneumatic system, 
vehicle trapped in the snow, a blocked route, an incident 
inside the vehicle). 

3 Results

Downtime observation results were divided into 
”monthly” groups. The number of all the failures 
recorded in 2018-2019, broken down by month, is given 
in Table 2. Downtime data for the years 2018-2019, also 
broken down by month, are shown in Table 3. Monthly 
downtime duration is presented in Table 2. Figure 1 
shows a box plot of downtime per month. As seen in 
the graph, median values of downtime are different 
for different months. The highest mean values were 
recorded in January, September, October and November. 
It is worth stressing that the number of failures is 
different for each month (Table 3). The largest number 
of failures occurred in March, however, the mean and 
median downtime values for this month were the lowest 
(Table 2), which means that the failures were short-term 
ones.

Significance of differences in downtime between 
months was assessed using the non-parametric Kruskal-
Wallis test. 

The Chi-squared statistic was χ2 = 243.98 and 
the p-value < p <0.0001, which indicated that, at 
the significance level α = 0.05, the null hypothesis of 
equality of means was rejected. This demonstrates 
that there were significant differences between at 
least two monthly downtime groups.

Another factor that was analysed was the type of 
failure. The observed failures were classified as one 
of the three categories (types), designated here as 
A1, A2, B. The largest group were type A2 failures, 
which occurred 1338 times in the whole study period. 

2 Material and methods

Twenty one buses (8 different makes and models) 
were studied. The vehicles were between 10 and 16 
years old. Observations were conducted in standard 
public transport conditions over 2 years of operation 
(2018-2019). The dates and times of bus arrival to and 
departure from the depot and the vehicle downtime 
were registered. Source documentation included the 
company’s daily internal reports on the operational 
status of the fleet. The basic descriptive statistics of the 
buses are presented in Table 1. 

The buses serviced standard routes in municipal 
traffic. The average monthly mileage was approximately 
4637 km. The lowest average monthly mileage of 4313 km 
was recorded for a bus make 5 (Standard Deviation-SD 
1711 km) and the highest mileage of 6041 km for a bus 
make 2 (SD 1699 km).

Fleet downtime data for the years 2018-2019 were 
analysed. The impact of two factors, month of failure 
and failure type, on the dependent variable (downtime) 
was considered. 

Month of failure was analysed repeatedly in each 
year of observation and was thus an indicator of 
seasonality related to seasonal changes in weather 
and vehicle loads (number of passengers) over the 
year. In winter, many downtime events were caused by 
door freezing, failures of driver’s cabin and passenger 
compartment heating and power outages. During 
the summertime, downtime was mainly due to high 
temperatures, i.e. engine overheating and lack of air 
conditioning in the vehicle.

The second factor that has been analysed was 
the failure type. Three types of most frequent failures 
(downtime events) were considered. Type A1 were 
failures related to a vehicle damage (e.g. broken/jammed 
door lock, fluid leakage, broken brakes, no ignition, 
engine overheating). Type A2 were organizational 
failures and other technical problems (e.g. a damaged 
wind shield, mirror, tyre). Some of these failures were 
related to weather conditions and some to the general 

Table 1 Descriptive statistics of the investigated buses

vehicle 
make

indicator

vehicle type number of 
objects (pcs)

average mileage 
per 1 vehicle

M (km)

median mileage per 1 
vehicle 
Me (km)

standard deviation
Sd (km)

1 single-decker 53 6041 6473 1699

2 single-decker 20 4414 5511 2671

3 articulated bus 27 4495 4519 926

4 articulated bus 28 4313 4972 2197

5 single-decker 22 3668 3523 1171

6 articulated bus 10 5966 6226 1448

7 single-decker 20 5062 5301 1507

8 articulated bus 30 5500 5593 873

9 single-decker 18 5014 5774 2504
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significantly depending on the type of failure. The 
longest downtimes (though the smallest in number) 
were caused by the B type failures, which were outside 
the company’s control. The shortest stoppages were 
related to A1 type events associated with repair of 
subsystems (mechanisms) or scheduled maintenance of 
vehicles. 

The number of type A1 failures was similar (1136 
events). The lowest number of failures were the B type 
events (596 events). Descriptive statistics of downtime 
for each type of failure is presented in Table 4 and 
a box-plot of downtime versus failure type is shown 
 in Figure 2.

As Figure 2 shows, downtime duration differed 

 
Figure 1 The box plot of downtime in each month

Table 2 Descriptive statistics of bus downtime distribution in each month

month
median

M (minutes)
mean Me (minutes)

standard deviation
Sd (minutes)

January 65 95.4 84.8

February 37 45.8 43.2

March 39 47.7 40.7

April 41 48.7 52.4

May 38 43.3 35.3

June 44 49.2 36.9

July 50 51.8 39.5

August 55.5 86.7 95.8

September 65 104 110.

October 62 101 106.

November 61 107 118.

December 48 53.4 51.7

Table 3 Number of failures in each month in 2018-2019

month January February March April May June

number of 
failures 332 339 369 305 227 228

month July August September October November December

number of 
failures 179 178 255 247 266 195
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studied category. Variables with extreme average values 
were selected: type A1 failure and the month of April. In 
this way, the effect of single-signedness of the remaining 
parameters with regards to the level of the omitted 
variable was obtained.  

A statistical analysis was conducted to determine 
the structure of the linear regression model with binary 
variables, which resulted from the quantitative nature 
of the dependent variable and the qualitative character 
of the independent variables. The estimated model 
parameters are given in Table 5.

Four of the estimated parameters were statistically 
insignificant. The AIC (Akaike Information Criterion) = 
34011 and corrected R2 = 48 % indicate that the model 
does not fully explain the observed phenomena. This 
is also indicated by the residual distribution, which is 
different from the normal distribution (Lilliefors test 
statistics D = 0.088 and p-value < 0.001). Additionally, 
an analysis of the autocorrelation function (Figure 3) 
demonstrated significant dependencies not described by 
the model. This means that bus downtime is dependent 
on factors which have not been included in the model.  

The regression equation is given by:
y= 18.4+36.1 *A2 + B*137.7 +29.6*January - 216 
*February -13.6*March + 3.3*May + 1.8*July -3.8 
*June + 23.1*August + 31.6*September + 30.0 
*October + 32.1*November + 2.5*December+ ε. (2)

4 Linear regression model of downtime

Based on the bus downtime data discussed in 
Section 3, a multi-regression model describing the 
relationship of downtime duration with month and type 
of failure was developed. The general formula for the 
linear regression model is as follows: 

y= βo+β1x1+β2x2+...+βkxk+ε, (1)

where y is dependent variable, β0 is intercept, xk are 
independent variables, βk are model parameters, ε is 
random parameter. 

The regression coefficient βk describes by how much 
the average value of the independent variable y will 
change if the value of the independent variable xk 
changes by a unit, all the other independent variables 
being constant. The random component in the model 
reflects an incomplete fit to empirical data. 

Due to the fact that the independent variables 
had a qualitative character and formed closed sets (24 
months and 3 types of failures), they had to be recoded 
as binary variables. Then, each variable took either the 
value of 1 - when the phenomenon does occur or 0 - when 
it does not occur. Parameters of the regression function 
were estimated using the least-squares method after 
initial elimination of a selected variable in each of the 

Figure 2 The box plot of bus downtime versus type of failure

Table 4 Descriptive statistics of downtime distribution for different types of failures

type of failure median (minutes) mean
(minutes)

standard 
deviation
(minutes)

min. (minutes) max. (minutes)

A1 10 23.8 26 1 119

A2 63 64.1 27.1 10 132

B 134 167 124. 23 399
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between distributions, while the alternative hypothesis 
is that the differences are statistically significant. The 
test statistic is given by: 

W sgn x x R
i

N
i2 11

#= -
=

^ h6 @| ,  (4)

where sgn is the sign function, R Ri ijj

k
=| , Rij is the 

rank of observation, x1, x2 are study groups, N is sample 
size (number of study groups). Test results are presented 
in Table 6.

Based on the results, three groups of months were 
selected for which the downtime distributions were 
not significantly different. Additionally, the lack of 
significance of differences in each group was confirmed 
using the Kruskal-Wallis test. The first group of months 
(group I) included August, September, October and 
November. For this group, the chi-squared statistics  
χ2 = 1.245 and p-value = 0.742. The second group (group 

The quality of fit of the regression model was 
evaluated using AIC (Figure 3). The value of AIC was 
found from the following equation:

AIC= -2 ln L +2k, (3)

where k is the number of model parameters and L is the 
reliability function.

In accordance with the objective of the study, in the 
next stage of the calculations, the model was simplified. 
To limit the number of predictors, it was proposed that 
months with similar regression coefficients should be 
aggregated. Statistically similar months were grouped 
with Pairwise Wilcoxon Rank Sum Test, which is a non-
parametric test with multi-testing correction\ used to 
compare pairs in groups. The null hypothesis for Pairwise 
Wilcoxon Rank Sum Test is that there are no differences 

Table 5 Parameters of the linear regression model and evaluation of their significance 

parameter estimate βk std. err or S(βk) t value p-value

β0 18.4 3.379 5.432 < 0.001

failure A2 36.1 2.300 15.672 < 0.001

failure B 137.7 2.907 47.390 < 0.001

January 29.6 4.472 6.621 < 0.001

February -21.6 4.453 -4.850 < 0.001

March -13.6 4.357 -3.112 0.002

May 3.3 4.933 0.668 0.504

July 1.8 5.338 0.336 0.737

June -3.8 4.930 -0.761 0.447

August 23.1 5.341 4.320 < 0.001

September 31.6 4.806 6.585 < 0.001

October 30.0 4.843 6.184 < 0.001

November 32.1 4.755 6.759 < 0.001

December 2.5 5.182 0.474 0.636

where Std. Err or S (βk) explains the accuracy of the parameter estimate (βk). Indicates by how many units the assessment 
value (estimated) differs from the actual value of parameter βk.

Figure 3 Autocorrelation function of model residual



A246  R Y M A R Z  e t  a l .

C O M M U N I C A T I O N S    4 / 2 0 2 1  V O L U M E  2 3

This model allows to determine the impact of climate 
seasonality over the year and the effect of organizational 
and technical factors (type of failure) on bus downtime. 
The model also permits to predict the availability 
of a transportation system as part of the strategy of 
ensuring the continuity of transportation services, e.g. 
by introducing the «bus holding» control strategy. 

From among the three types of downtime events, 
considered as independent variables, the model includes 
type B failures (events outside the company’s control) 
as the dominant type and type A2 (operational and 
organizational) failures (which have four times less 
impact than type B events). Among the selected month 
groups, the reduced model presents the summer-
autumn season, including August, September, October 
and November, as well as the winter season, which is 
represented by a single month - January. The effects of 
the two seasons on downtime duration are comparable 
and similar to the impact of A2 type failures. 
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II) included February, March, April, May, June, July 
and December. For this group χ2 = 10.878 and p-value 
= 0.092. The last group consisted of only one month, 
January, for which no goodness of fit with any other 
group was observed. The parameters of the estimated 
model are presented in Table 7.

The final form of the model was the following:

y= 12 +36.8 *A2 + 135.5 * B + 36.2 *  
grI + 36.3 * gr III. (5)

All the model parameters were statistically 
significant. Corrected R2 = 48 % and AIC = 34045.64. 
The values of the parameters describing the quality of 
the regression model did not differ significantly from the 
basic formula given by Equation (2). The reduction of 
the number of factors, achieved by their aggregation in 
the manner presented in this paper, did not reduce the 
quality of the initial regression model.

5  Summary

Based on a study of municipal bus operations, 
a linear multi-regression model of downtime, as 
a function of selected groups of months of the year and 
type of downtime event (failure), was developed.  

Table 6 Pairwise Wilcoxon Rank Sum Test

 January February March April May June July August September October November

February 0.000

March 0.000 0.623

April 0.000 0.738 0.542

May 0.000 0.795 0.481 0.990

June 0.000 0.118 0.386 0.118 0.118

July 0.000 0.040 0.166 0.046 0.046 0.576

August 0.000 0.000 0.000 0.000 0.000 0.001 0.022

September 0.036 0.000 0.000 0.000 0.000 0.000 0.000 0.340

October 0.009 0.000 0.000 0.000 0.000 0.000 0.001 0.621 0.685

November 0.004 0.000 0.000 0.000 0.000 0.000 0.004 0.711 0.576 0.991

December 0.000 0.120 0.376 0.117 0.117 0.910 0.701 0.005 0.000 0.000 0.001

Table 7 Parameters of the linear regression model

parameter estimate std error t value p-value

(intercept) 12 1.815 6.634 < 0.001

failure A2 36.8 2.285 16.104 < 0.001

failure B 135.5 2.900 46.731 < 0.001

group I 36.2 2.297 15.772 < 0.001

group III 36.3 3.387 10.697 < 0.001
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