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Abstract
We analyze the long-term memory properties of hourly prices of electricity in the Czech 
Republic between 2009 and 2012. Various statistical properties of these prices are studied,
and as the dynamics of electricity prices is dominated by cycles—in particular intraday 
and daily—we opt for detrended fluctuation analysis, which is well suited to such specific 
series. We find that electricity prices are non-stationary but strongly mean-reverting, 
which distinguishes them from prices of other financial assets, which are usually charac-
terized as unit root series. Such behavior is attributed to specific features of electricity, in 
particular its non-storability. Additionally, we argue that the rapid mean-reversion is due 
to the principles of electricity spot prices. These properties are shown to be stable across 
all the years studied.

1. Introduction

Electricity is a flow commodity with unique characteristics that influence 
the way it is traded and thus the behavior of spot and futures prices in the market. 
Electricity cannot be effectively stored (with the minor exception of pumped-storage 
hydro power plants, which are scarce), so the adjustment of demand and supply must 
be instantaneous. Electricity consumption reflects human behavior and the temporal 
patterns of human life with its daily and weekly routines. This is reflected in the daily 
pattern (with its single or double-peak structure) and weekly pattern of consumption 
(Simonsen et al., 2004). On a larger scale, there are seasonal fluctuations caused mainly 
by the weather, and in particular by the temperature and the number of hours of day-
light (Lucia and Schwartz, 2002). The seasonal patterns are strongly geographical-
ly dependent—in northern countries, the highest consumption is usually observed 
during the winter months due to heating, and in southern countries, air-conditioning 
increases consumption during the summer (Zachmann, 2008).

Electricity prices on the spot market are very sensitive to temperatures and 
especially to sudden weather changes, which are expected up to a point. However, 
the weather forecast is never perfect, causing spot prices of electricity to be much 
more volatile than those of other financial assets (Asbury, 1975). Moreover, the elec-
tricity supply side is also weather dependent, especially in the case of renewable sources 
of energy such as wind turbines and photovoltaic power plants (von Bremen, 2010).

Demand for electricity is highly inelastic. In the short run, it is absolutely 
inelastic, so that the price is completely determined by the supply curve (merit order
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curve, marginal cost curve). The curve resembles an upward-sloping stairway, with 
each step approximately representing a different type of power plant and thus 
a different level of marginal costs. The price on the market rises until it reaches 
the marginal cost of the power plant on the next level, after which the supply rises. 
This is why the merit order curve is not smooth. In order to produce an additional 
MWh, more expensive power sources (plants) are activated, and as the supply increases, 
the price increases as well (Geman and Roncoroni, 2006; Sensfuss et al., 2008).

High (or excess) volatility is another typical feature of electricity prices and is 
mainly due to the non-storability of electricity itself. There are no reserves that can 
be used in the event of a sudden increase in demand or change in the weather 
(Janczura et al., 2013). Not only are the prices volatile, but the volatility also has 
a tendency to cluster. Apart from this clustering, the volatility also displays an inverse 
leverage effect—positive shocks increase the price volatility more than negative ones 
(Knittel and Roberts, 2005). In addition, electricity prices tend to “jump” very 
frequently. These jumps, usually referred to as “spikes”, are typified by a sharp 
increase followed by a slower decrease, causing pronounced asymmetry. Due to 
the properties described above, electricity prices are often treated as non-stationary.

Unlike other financial time series, specifically prices of various assets, elec-
tricity prices are mean-reverting (Simonsen, 2003; Weron and Przybylowicz, 2000). 
According to Barlow (2002), estimates of the mean reversion time range from two 
to six days. Geman (2005) states that with constant or slightly increasing demand, 
the supply side is able to adjust the pattern so that prices remain close to their mean 
value. However, the strength of the mean reversion varies from study to study—some 
studies report electricity prices to be stationary (Park et al., 2006), while others find 
weak mean reversion close to the unit root (Simonsen, 2003), with many results lying 
in between. A more detailed description of these results is provided in the next 
section.

Electricity prices are also influenced by factors that are unthinkable for other 
“typical” financial assets: technical constraints. A power plant which is out of order 
due to either technical problems or regular maintenance can influence the price 
because the number of power plants is small and limited. Electricity can be easily and 
quickly transported, but transmission lines have capacity constraints which must not 
be exceeded. That is the main reason why electricity prices differ in neighboring areas,
but it can also cause high levels of volatility due to potential instability of the whole 
system (Borenstein et al., 1997).

Last but not least, electricity demand and thus also prices depend on the busi-
ness cycle, economic activity, and growth. Electricity consumption and economic 
growth are linked; different studies suggest different directions of the causality—
from electricity consumption to GDP, vice versa, or both (Soytas and Sari, 2003; 
Lee, 2005; Squalli, 2007; Ciarreta and Zarraga, 2010).

In our study, we focus on various properties of electricity prices in the Czech 
Republic, paying special attention to the long-term memory of spot prices. To 
the best of our knowledge, this is the first such study of the Czech electricity market. 
The market was fully deregulated in 2006 and the network of power plants consists 
of less expensive hydro and nuclear power plants, and more expensive hard coal and 
gas power plants, with lignite plants somewhere in between (Sensfuss et al., 2008). 
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A small increase in demand can thus put into operation considerably more expensive 
power plants and the occurrence of spikes is potentially high.

OTE (the Czech electricity and gas market operator, established in 2001) has 
been organizing the day-ahead spot electricity market since 2002. The Czech market 
has been coupled through implicit auctions with the organized day-ahead electricity 
market in Slovakia since 2009 and with the day-ahead electricity market in Hungary 
since 2012. It has the form of a daily auction, with a traded period of 1 hour and 
a minimum tradable volume of 1 MWh, and with the euro as its trading currency. 
The market always closes at 11 a.m. the day before. The volume of electricity 
registered in the OTE system for the day-ahead market in 2012 was 10,971 GWh for 
sale and 10,562 GWh for purchase.1

In this paper, we describe the temporal patterns, distributional properties, and, 
above all, the correlation structure, paying special attention to the long-term memory 
of prices. To do so, we use detrended fluctuation analysis, which is well suited to 
time series with such a complicated structure as electricity spot prices. We show that 
the prices are non-stationary and strongly persistent, but remain strongly mean-
reverting, which distinguishes them from other financial prices such as stock prices 
and exchange rates, which follow a random walk pattern (Cont, 2001). To the best of 
our knowledge, this is the first detailed analysis of Czech electricity prices and their 
dynamics. The paper is structured as follows. Section 2 focuses on recent studies on 
the long-term memory properties of electricity prices. Section 3 presents the data. 
Section 4 describes the methodology. Section 5 discusses the results, and Section 6 
concludes.

2. Brief Literature Review

The correlations and memory characteristics of electricity prices have been 
the subject of many studies in recent years. Weron and Przybylowicz (2000) analyze 
California Power Exchange (CalPX) and Swiss Electricity hourly prices using re-
scaled range analysis and find mean-reverting characteristics. This analysis is then 
broadened by Weron (2002), who studies four electricity markets (CalPX, Nord Pool, 
Entergy, and UK spot) with three different methods (rescaled range analysis, de-
trended fluctuation analysis, and periodogram methods) and confirms that the returns 
of electricity prices are anti-persistent. Simonsen (2003) analyzes Nord Pool prices 
using the multi-scale wavelet approach and compares it with standard rescaled range 
analysis to show that the returns of electricity prices are weakly anti-persistent. 
The author stresses that the choice of an appropriate technique for long-term memory 
estimation is crucial. Park et al. (2006) examine 11 U.S. electricity markets using 
the vector autoregression methodology and importantly find several price series to be 
stationary. This contradicts the standard understanding of prices of financial assets, 
which typically form a unit root series and are thus strongly non-stationary.

Koopman et al. (2007) develop an adjusted fractionally integrated autoregres-
sive moving average model with generalized autoregressive conditional hetero-
skedasticity (ARFIMA-GARCH), which is able to capture day-of-the-week patterns 
and extreme price movements, specifically for electricity prices on three European 
markets (the German EEX, the French Powernext, and the Dutch APX). They show 

1 Details are available at https://www.ote-cr.cz/statistics.
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that the weekly patterns are indeed crucial in daily price analysis. Norouzzadeh et al. 
(2007) study the long-term memory and multi-fractality of the Spanish spot market 
and find persistent yet strongly mean-reverting prices. Erzgraber et al. (2008) focus 
on long-term memory in Nord Pool markets and find the returns to be weakly (com-
pared to the previous study) anti-persistent. They also find that the strength of 
the memory depends on the time of day of the measurement, i.e., the prices are cor-
related not only from hour to hour, but also in the same hour from day to day. 
Moreover, they show that the memory parameter varies strongly over time. Uritskaya 
and Serletis (2008) examine Alberta and Mid-C electricity prices using detrended 
fluctuation analysis and spectral exponents and find that both Alberta and Mid-C 
prices are persistent and mean-reverting. However, the former remain stationary, 
whereas the latter do not.

Malo (2009) combines various properties of electricity prices and uses a Markov-
switching multifractal model with conditional copulas to construct a model for risk 
minimization of the Nord Pool markets. Comparing various methods of long-term 
memory estimation, the author finds anti-persistent returns for electricity prices. 
Conditional value at risk is also discussed in detail using various copula specifica-
tions. Alvarez-Ramirez and Escarela-Perez (2010) analyze the Ontario and Alberta 
electricity markets with detrended fluctuation analysis and the Allan factor model to 
show that the long-term memory properties of both prices and demand strongly vary 
over time. Haugom et al. (2011) model Nord Pool electricity prices using a long-term 
memory mimicking heterogeneous autoregressive model with realized variance 
(HAR-RV) and show that incorporating the strongly persistent realized variance 
improves the predicting power of the model. And Rypdal and Lovsleten (2013) 
model the Nord Pool data using a multifractal random walk model adjusted for mean-
reversion and volatility persistence to capture the most important characteristics 
of electricity prices. Using the model, the authors show that the characteristics of 
electricity prices are very different from those of stock market prices. In our analysis, 
we apply detrended fluctuation analysis to the hourly spot prices of Czech electricity. 
Specifically, we utilize its ability to separate cycles and seasonalities from the long-
term memory.

3. Methodology

3.1 Long-term Memory

Long-term memory is traditionally linked with slowly decaying autocor-

relation functions. For an autocorrelation function ( )k with lag k, the decay is de-

scribed as asymptotically hyperbolic, so that 2 2( ) Hk k  , where k   . The auto-

correlation function thus follows an asymptotic power law. A characteristic para-
meter of long-term memory is the Hurst exponent H, which ranges between 0 and 1 
for stationary processes. The breaking value of 0.5 is connected with a short-term 
correlated process (usually characterized by exponential or more rapid decay of 
the autocorrelation function). For H > 0.5, the underlying process is positively 
correlated and locally trending and is traditionally labeled as a persistent process. For 
H < 0.5, the process is anti-persistent and switches direction more frequently than 
a random process would (Beran, 1994; Samorodnitsky, 2006).
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For non-stationary processes, the definition of long-term memory via the auto-
correlation function is inappropriate, as the process has infinite variance and there 
are no correlations. For this case, and also in the general case, a spectrum-based 
definition is used. Assuming that the spectrum or pseudo-spectrum of an underlying 
process exists near to the origin, i.e., ( )f  exists for 0   , we define long-

term memory via a power law at the origin of the spectrum, i.e., 1 2( ) Hf    for 

0   . For persistent processes, ( )f  diverges at the origin, whereas for anti-

persistent processes, it collapses to zero (Samorodnitsky, 2006).

Historically, there have been two major streams of Hurst exponent estimators 
—time-domain estimators and frequency-domain estimators. Time-domain esti-
mators are based on the autocorrelation definition of long-term memory and its 
implications for the scaling of the variance of partial sums. The most frequently used 
ones include rescaled range analysis (Hurst, 1951; Mandelbrot and Wallis, 1968; 
Mandelbrot and van Ness, 1968), detrended fluctuation analysis (Peng et al., 1993, 
1994; Kantelhardt et al., 2002), the generalized Hurst exponent approach (Alvarez-
Ramirez et al., 2002; Di Matteo et al., 2003; Di Matteo, 2007), and detrending 
moving average (Alessio et al., 2002). The frequency domain estimators are based 
on the spectrum definition and the most popular ones include the GPH estimator 
(Geweke and Porter-Hudak, 1983), the average periodogram estimator (Robinson, 
1994), the log-periodogram estimator (Beran, 1994; Robinson, 1995b), and the local 
Whittle estimator (Künsch, 1987; Robinson, 1995a). Due to the very specific statis-
tical properties of electricity prices, which have been mentioned in the previous 
sections and are also discussed in the following section, we opt for detrended 
fluctuation analysis, which has desirable properties for this type of analysis. As 
a control estimator, we choose the GPH estimator.

3.2 Detrended Fluctuation Analysis

The detrended fluctuation analysis (DFA) of Peng et al. (1993, 1994) is 
a special case of multifractal detrended fluctuation analysis (MF-DFA) introduced by 
Kantelhardt et al. (2002). For a better understanding of the procedure, we present 
the more general MF-DFA as an initial step.

Let us have a time series { }tx with t = 1, . . . , T, where T is a finite time series 

length. The profile X(t) is constructed as

             
1

t
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i

X t x x
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  is the time series average. The profile is then divided into 

/sT T s non-overlapping windows with length s (scale), where ⌊⌋ is a lower 

integer part operator. As Ts is not necessarily equal to T/s, part of the time series is 
left at the end of the series. In order not to lose the information of this segment, 
the profile is also divided from the opposite end and both sets of blocks of length s 
are further utilized (we thus get 2Ts windows of length s).
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In each of these 2Ts segments, we calculate the mean squared deviation from 
the trend of the series in this particular window. This means that for the k-th window, 
the mean squared deviation F2(k, s) is obtained as

                                         
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where ( )kX i


is a polynomial fit of a time trend at position I in window k. In our 

application, we use a linear fit obtained via ordinary least squares regression, which 
is standard for the DFA and MF-DFA procedures (Hu et al., 2001; Grech and Mazur, 

2005; Kantelhardt, 2009; Kristoufek, 2010). This is applied for windows 1, , sk T  , 

and then for windows k = Ts + 1, . . . , 2Ts we obtain
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The multifractal analysis stems in the scaling of the q-th order fluctuations, 
so we need to find the behavior of the fluctuations at scale s for different values of 
order q. To do so, we construct the q-th order fluctuation function

                                        

1

2
2 2

1

1
( , )

2

s
qT q

q
s k

F s F k s
T 

 
  
  

 
      (4)

For q = 0, the zeroth-order fluctuation function is defined as
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Order q can take any real value. For q = 2, the MF-DFA procedure reduces to 
DFA and it is used to analyze the long-term memory properties of series {xt}. Later 

in the text, we label H ≡ H(2). For other values of q, the interpretation is not so straight-

forward, but the scaling behavior dependence on q is the basis of the multifractal 
analysis, which we do not discuss here. In practice, minimum and maximum scales 
smin and smax need to be set, as for finite series the averaging and trend-fitting 
procedures can become unreliable. Usually, the minimum scale is set as smin ≈ 10 and 
the maximum scale as smax = T /4 to avoid inefficient trend fitting for low scales and 
imprecise averaging at high scales.

3.3 Useful Properties of MF-DFA

Estimation of the long-term memory parameters H has a long history, starting 
with Hurst (1951). Since then, many methods have been developed to study the power-
law scaling of the autocorrelation function and the connected phenomena of 
the divergent-at-origin spectrum and the power-law scaling of the variance of 
the partial sums. Estimators have been developed in both the time and frequency 



Finance a úvěr-Czech Journal of Economics and Finance, 63, 2013, no. 5                                     413

domains (see Taqqu et al., 1995; Taqqu and Teverovsky, 1996, and Di Matteo, 2007, 
for reviews of the various methods).

As the MF-DFA method can be labeled as the most frequently used method 
of multifractal analysis, its strengths and weaknesses have also been given an appro-
priate focus in the literature. None of the other methods have been studied in such 
detail. For our purposes, we are mainly interested in the ability of MF-DFA to deal 
with cycles and heavy-tailed distributions.

Hu et al. (2001) discuss the effect of trends on the properties of detrended 
fluctuation analysis and give special attention to periodic cycles. For long-term 
memory processes combined with a sinusoidal trend, they show that the scaling 
function F2(s) undergoes several cross-overs (changes in scaling rules) due to inter-
action between the long-term memory and the sinusoidal trend. For both persistent 
and anti-persistent series, the scaling passes through three cross-overs and the scaling 
laws connected to the long-term memory effects are observed for scales s below 
the first and above the third cross-over scales. In this way, it is possible to dis-
tinguish between the effect of long-term memory and sinusoidal trends. Importantly, 
the authors show that for anti-persistent processes, the third cross-over scale is 
frequently higher than T /4 or even T, so that the long-term memory scaling needs to 
be obtained only from the scales below the first cross-over.

Barunik and Kristoufek (2010) study the effect of heavy tails on the most 
frequently used heuristic methods of Hurst exponent estimation. They show that 
DFA is unbiased regardless of how heavy the tails are. For MF-DFA, they are 
interested in the case of q = 1 and find that for reasonable tails (with a tail parameter 
between 1.5 and 2, where the value of 2 is connected with the Gaussian distribution 
and the value of 1 with the Cauchy distribution), the estimates of H(1) are practically 
unbiased as well.

In the original study, Kantelhardt et al. (2002) also discuss the possibility of 
highly anti-persistent processes with H close to 0. In such situations, practically all 
the estimators become severely upward-biased. However, the MF-DFA methodology 
is constructed for both asymptotically stationary and non-stationary processes. In 

practice, the series {xt} can be integrated into a new series {yt} defined as 
1

t

t i
i

y x




for t = 1, . . . , T and MF-DFA can be applied to {yt}. Labeling the generalized Hurst 
exponent of the series {xt} as Hx(q) and the generalized Hurst exponent of the inte-

grated series {yt} as Hy (q), it holds that     1x yH q H q  . Therefore, if {xt}

possesses properties resembling strong anti-persistence, the generalized Hurst expo-
nent for the series can be obtained by running MF-DFA on the integrated series and 
reducing the estimate by 1.

As a special case of MF-DFA, DFA is thus an ideal candidate for long-term 
memory analysis of electricity prices, as the above-mentioned properties match 
the properties of electricity prices discussed in the previous sections as well as in 
the next section dealing with the specific properties of Czech electricity spot prices. 
Before we turn to the dataset description and results, we introduce the control 
estimator.
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3.4 Alternative Estimators

Probably the most severe disadvantage of the MF-DFA and DFA estimators is 
their lack of asymptotic properties. To cover this issue, we also include two frequency-
based estimators—the original GPH and GPH with a smoothed periodogram. Apart 
from the fact that both have well defined asymptotic properties, we also use them to 
stress the superiority of the DFA approach in such a complex matter as electricity 
prices. We expect that frequency-based estimators will not be able to deliver reliable 
results as their parametric specification is too strict.

The GPH estimator (Geweke and Porter-Hudak, 1983) is based on a full func-
tional specification of the underlying process as an ARFIMA(0,d,0) process with 
a specific spectral form:

                             
   

( 0.5)2 0.5 21 exp 4 ( / 2)
HH

f i sin  
  

                     (6)

The spectrum ( )f  is estimated using the periodogram and the Hurst expo-

nent is estimated using ordinary least squares on

                                  2log ( 0.5) log 4 / 2j jI H sin                                     (7)

The estimator is consistent and asymptotically normal (Beran, 1994), specifically

                                                0 2ˆ 0, / 6dT H H N                                                 (8)

As the periodogram is not a consistent estimator of the spectrum, Reisen 
(1994) and Reisen et al. (2000) propose to apply the smoothed periodogram for 
the estimation procedure (see both references for more details on smoothing). We use 
both methods. A major issue with frequency-based estimators such as GPH is the fact 
that the underlying series do not necessarily follow the assumed process specifica-
tion. In the case of GPH, this is a simple ARFIMA(0,d,0). In the following sections, 
however, we show that the correlation structure of the electricity series is very 
complicated and it is thus an oversimplification to assume this specification. More-
over, assuming such specification incorrectly yields biased estimates as expected. To 
at least partly overcome this issue, Robinson (1995a) and Phillips and Shimotsu (2004)
propose to utilize only a part of the periodogram for the estimation of the Hurst 
exponent in Eq. 7. The part of the periodogram taken into consideration, m, is usually 
taken as a root of the time series length T, so that m = Tη, where parameter η varies 
between 0 and 1. The asymptotic properties then change to

                                               0 2ˆ 0, / 6dm H H N                                                (9)

The estimator thus becomes less efficient, but is less sensitive to bias at high 
frequencies. The estimates of the Hurst exponent are then drawn against varying m to 
see whether the estimates stabilize at some point so that the correct estimate can be 
identified.

4. Data Description

We analyze hourly day-ahead spot prices of electricity2 in the Czech Republic 
between January 1, 2009 and November 30, 2012, with a total of 34,316 observa-
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Table 1  Descriptive Statistics

Price Change in price

mean 43.7700 0.0001

SD 16.2551 6.6093

skewness 0.1040 0.4136

excess kurtosis 1.6686 7.4503

Shapiro-Wilktest 14.9120 19.6280

p-value < 0.01 < 0.01

Jarque-Bera test 4041 80315

p-value < 0.01 < 0.01

ADF- test (50) -13.9594 -36.1585

p-value < 0.01 < 0.01

KPSS (50) 8.7456 0.0012

p-value < 0.01 > 0.1

tions.3 The prices are denominated in EUR per MWh and negative prices were not 
allowed before 2013. In Figure 1, we show the evolution of prices during the period 
analyzed. It is evident that prices jump frequently in both directions. The first 
differences of the prices strongly resemble the standard returns of stocks or exchange 
rates, with volatility clustering and extreme movements. The first differences are far 
from being normally distributed, as shown in Figure 2. However, the original price 
series are close to normally distributed if we omit the fact that the prices are censored 
from below. Overall non-normality of the distributions is supported by the Shapiro-
Wilk (Shapiro and Wilk, 1965) and Jarque-Bera (Jarque and Bera, 1980, 1981) tests 
in Table 1, which show strong rejection of normality for both series. Standard 
descriptive statistics support only mild heavy tails for prices, but heavy tails for 
the first differences. Both series are positively skewed, so more extreme upward 
movements are more likely. However, the skewness of prices is very close to zero, 
hinting at symmetry, which is again in line with the histograms in Figure 2.

To analyze the dynamics of the series, it is crucial to distinguish between 
stationary and non-stationary series. To this end, we use the ADF (Dickey and Fuller, 
1979) and KPSS (Kwiatkowski et al., 1992) tests. The null hypothesis of the former 
is a unit root against no unit root, whereas for the latter, the hypothesis of stationarity 
against non-stationarity is tested. This provides an ideal combination of tests. 
The results, presented in Table 1, provide evidence that the price series are non-
stationary but do not contain a unit root, whereas the first difference series are 
stationary. In terms of long-term memory notation, the prices of electricity are in 
the interval 1 < H < 1.5 and thus the first differences lie in the range 0 < H < 0.5. 
We thus follow with an analysis of prices, and not first differences, for three reasons. 
Firstly, we do not want to lose information about the dynamics of the prices, which 
we would lose by first differencing. Secondly, the price series are much more inter-

2 OTE—the electricity market operator in the Czech Republic—runs four trade platforms: a block market, 
a day-ahead spot market, an intra-day market, and a balancing market in regulating energy. For more 
information, see the Product Sheet at http://www.ote-cr.cz/about-ote/main-reading.
3 The data were obtained from OTE’s Yearly Reports, available at http://www.ote-cr.cz/statistics.
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Figure 1  Time Series Plots
Hourly electricity prices (left) and changes therein (right) are shown. 
The changes resemble the returns of various financial assets, whereas 
the dynamics of prices are much further from such returns.

    

Figure 2 Histograms of Electricity Prices and Changes in Prices
The probability distribution function of prices (left, in black) is quite close 
to the normal distribution (dashed grey line), with the exception of the censored 
left tail (no negative prices in the sample). Changes in prices (right) are much 
further from normality.

      

esting in the electricity context—there are no actual returns to the series, as it is not 
possible to buy a MWh of electricity and sell it in the following period. And thirdly, 
the expected anti-persistence of the first-differenced series might cause the estimates 
of the Hurst exponent to be biased, whereas for the price series, DFA provides more 
reliable results.

The memory properties of electricity prices are further illustrated by the sample
autocorrelation function and periodogram4 in Figure 3. There, we observe that
the dynamics of prices are very cyclical, with a dominating frequency of 24 hours. 
Both the autocorrelation function and the periodogram are well in line with the defi-
nitions of long-term memory. However, we can see that both the power-law decay of 
the autocorrelation function and the power-law divergence at the origin of the periodo-
gram are disturbed by the aforementioned cyclical properties. Due to this fact, we 
use DFA to analyze the long-term memory properties of the series, as discussed in 
the previous section. The complex cyclicality is further illustrated in Figure 4, where 
we show how the average price and average traded volume depend on the hour of 
the day, the day of the week, and the week and month of the year. This again calls for 
a robust method of Hurst exponent estimation, as discussed previously.

4 The periodogram is based on Bartlett weights with a bandwidth of 370, i.e., approximately 0.1 of 
the time series length.
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Figure 3 Correlation Structure of Prices 
Both the autocorrelation function (left) and the periodogram (right) show a strong 
seasonal component with a dominating scale of 24 hours.

Figure 4 Cyclical Properties of Electricity Prices and Volumes
Seasonal patterns are shown for the intraday (upper left), daily (upper right), 
weekly (lower left), and monthly (lower right) scales. Apart from the weekly scale, 
both prices and volumes show pronounced seasonal patterns.

        

        

5. Results and Discussion

As shown in the previous section, the correlation structure of electricity prices 
in the Czech Republic is very complicated. To control for the most evident seasonali-
ties, we analyze hourly prices, which control for intra-day patterns. Specifically, we 
standardize the first differences of the prices by subtracting the mean value for 
the given hour of the day and then dividing the difference by the standard deviation 
of the first differences for the given hour. The price series are then formed as an inte-
grated series of these standardized first differences.

Before turning to the results of the detrended fluctuation analysis, we provide 
estimates of the Hurst exponent based on GPH and on the version of GPH based on 
a smoothed periodogram.5 In Figure 5, we show how the estimates vary with η,

5 For this, we use the functions fdGPH and fdSperio in the fracdiff package in R-project.
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Figure 5 GPH Estimates of the Hurst Exponent
GPH (left) and GPH based on the smoothed periodogram (right) are shown for 
varying m, where m = Tη. The power parameter η is shown on the x-axis. 
The estimates for both methods vary widely between H ≈ 0.5 (uncorrelated noise) 
and H ≈ 2 (a strongly persistent non-stationary non-mean-reverting process).

    

between 0.1 and 1 with a step of 0.025. Moreover, the results are presented for 
the whole time period as well as for the separate years. We observe that the estimates 
fluctuate widely with changing η. For the original GPH, the estimates vary between 
H ≈ 5.1 and H ≈ 0.9, while most of the estimates lie between the Hurst exponent of 
1.2 and 2.1. The range is thus very wide and the estimates stabilize at least somewhat 
for η > 0.7. However, these estimates are based on almost the whole periodogram, 
where high frequencies (and thus low scales) dominate. Even though the estimates 
are much less erratic for the smoothed version of GPH, the range of the estimates 
does not narrow down enough—the estimates range between H ≈ 0.5 and H ≈ 2.1. 
The estimates again stabilize for η > 0.7. Even though the estimated Hurst exponents 
practically overlap for all years, the GPH approach can hardly be taken as reliable for 
this specific case of electricity prices, and the fact that the estimators have well 
defined asymptotic properties does not help our analysis at all. These results only 
stress the need for a more robust estimation technique—detrended fluctuation 
analysis.

For the detrended fluctuation analysis, i.e., the multifractal detrended fluctua-
tion analysis with q = 2, we set smin = 6 and smax = T/4 to obtain the scaling of 
the fluctuation F2(s) illustrated in Figure 6. As the data frequency equals one hour, 
the minimum scale is set at a quarter of a day and the maximum scale is approxi-
mately one year. Based on the initial analysis of the series in the Data Description 
section, we assume that the series contain strong cycles but might also possess long-
term memory. It is thus reasonable to assume that the scaling of F2(s) contains at 
least one cross-over. This is indeed true for the electricity prices analyzed, as shown 
in Figure 6. We observe one evident cross-over at sx ≈ 48. The cross-over splits 
the scaling chart into two laws, which strongly resemble a power-law scaling, as 
shown in the split charts in Figure 6. This gives two Hurst exponents: H ≈ 1.1 for 
s ≤ 48 and H ≈ 1.7 for s ≥ 48. Note that these Hurst exponents do not differ 
considerably for varying sx between 36 (1.5 days) and 72 (3 days) and they are thus 
quite stable. This multi-scaling can be attributed to the competing effects of the long-
term memory and periodic trends, which are both strong parts of the dynamics of 
electricity prices. As discussed in the previous section, the Hurst exponent based 
on scales below the first cross-over scale sx can be used for interpretation of
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Figure 6 Scaling of Fluctuations F(s)
The upper panel shows the scaling of the fluctuation function and a pronounced 
cross-over at approximately two days. The other two panels show the scaling 
for both regimes in more detail. The middle panel, characterized by H = 1.08, is 
attributed to the long-term memory of the price process and the bottom panel
shows the scaling for scales dominated by cyclical components.

                       

                        

                     

the long-term memory. Therefore, the price dynamics is characterized by H ≈ 1.1 and 
the prices are thus strongly persistent and non-stationary, but still remain well below 
the unit-root level of H = 1.5, so they remain mean-reverting. This is consistent with 
the basic description in Table 1.

The persistence of the series implies that prices follow rather long-lasting 
trends, which even exceed the standard long-term memory with 0 < H < 1, making 
the prices non-stationary. Nonetheless, the dynamics are far from unit-root behavior 
and the prices return to their long-term levels. Such behavior is very different from 
other financial assets, which usually follow a random walk and their returns are thus 
unpredictable (or at least not systematically predictable). However, we need to keep 
in mind that such persistence of electricity prices cannot be easily exploited for 
profit. The persistence can also be seen as a product of incorrect expectations about
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Figure 7 Scaling of Fluctuations F(s) for Separate Years
The estimated Hurst exponents are shown for two scaling regimes for separate 
years between 2009 and 2012. The scaling exponents are remarkably stable. 

                       

the future need for electricity among market participants. Remembering that 
the electricity spot market exists to cover unexpected demand for electricity (as 
the majority of the electricity supplied is based on medium- and long-term contracts), 
extreme price movements are caused mainly by unexpected external events (extremes
of temperature or humidity, macroeconomic news, etc.). When an unexpected event 
occurs, it usually has a medium- or long-lasting effect (for example, a temperature 
above the long-term average usually lasts a whole day or even longer), but traders 
cannot “pre-buy” electricity quickly. To cover the increased demand, additional (and 
usually more expensive) power sources need to be connected to the network, and this 
increases electricity prices. The combined effect of non-storability and the connec-
tion of less efficient power sources pushes electricity prices toward persistent behavior.

To see whether these properties are stable over time, we analyze the long-
term memory components in the same way but for the separate years 2009–2012. In 
Figure 7, we observe that the Hurst exponent linked with long-term memory is rather 
stable and approximately 1.1 for all the price series. For higher scales, we again see 
stability of the scaling exponent around 1.75. Non-stationary mean-reverting per-
sistence is thus observed even for separate years. Note that only the very specific 
characteristics of the DFA method allow us to study the long-term memory without 
arriving at spurious results. Normally, the Hurst exponent linked with higher scales 
would be reported. However, the difference between having H < 1.5 and H > 1.5 is 
crucial. For the former, prices return to their long-term mean. But for the latter, 
prices would explode. Note that having H ≈ 1.1 implies that the mean reversion is 
very rapid. These characteristics are very stable over time, mirroring the results for 
the Ontario and Alberta markets as reported by Alvarez-Ramirez and Escarela-Perez 
(2010). The results therefore lie somewhere between the stationary electricity prices 
in the USA reported by Park et al. (2006) and for Alberta by Uritskaya and Serletis 
(2008) and the almost unit-root prices found for the Nord Pool market by Simonsen 
(2003).

6. Conclusion

We analyzed the long-term memory properties of hourly spot prices of Czech 
electricity between 2009 and 2012. As electricity prices have very intriguing 
properties, such analysis is rather challenging. We showed that Czech prices follow 
patterns similar to those observed for other electricity prices, in particular intraday, 
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daily, and monthly seasonality in both prices and volume. By applying detrended 
fluctuation analysis, we were able to separate these cyclical properties from the long-
term memory. The results are in line with the majority of the relevant literature, 
as we show that electricity prices are non-stationary but mean-reverting, so their 
behavior is partly predictable. However, due to the specific features of electricity 
(mainly its non-storability), such predictable behavior cannot easily be exploited 
for profit. Electricity prices are thus very different from prices of standard financial 
assets such as stocks or exchange rates and they need to be treated accordingly. 
The patterns found in the behavior of electricity prices can be attributed to their 
structure, as spot prices were analyzed. These serve mainly to balance demand for 
electricity, which is not covered by futures contracts. As such, an unexpected change 
in demand for electricity is rather short-lived and the reversion to the long-term price 
is quite rapid, as represented by a Hurst exponent close to (but higher than) unity. 
The stability of the results in specific years and the correspondence to the results 
of more developed markets underline that the Czech electricity market has reached 
a similar level of development.
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