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Abstract 
Background: The significance of this study arises from the increasing complexity of managing insurance 
products, driven by the need to accurately model and predict the occurrence of insured events and associated 
risks. These processes are relevant not only to life insurance companies but to any institution offering personal 
insurance and supplementary coverages, such as banks, brokerage firms, and others. Existing literature 
highlights extensive possibilities for the application of stochastic processes in various fields, including finance, 
biology, and environmental engineering, with notable applicability in insurance.  
Purpose: This article aims to explore the application of stochastic models in the decision-making processes for 
managing insurance products. Specifically, it focuses on the development and utilization of multi-state models 
for pricing selected insurance products and analysing the impact of parameter changes on the amount of regular 
net premium.  
Study design/methodology/approach: We start with the traditional 'Healthy-Dead' model, which we extend to 
include the 'Sick' state. By restricting the transition from this state to the 'Healthy' state, we obtain a three-state 
'Healthy-Sick-Dead' model for incurable critical illness. This is a non-homogeneous Markov process 
characterized by the respective transition probabilities. Actuarial calculations of transition probabilities are based 
on specific statistical data from an unnamed insurance company. The resulting regular net premium represents 
the real (net) price of the supplementary insurance product for incurable critical illness.  
Findings/conclusions: The main findings suggest that incorporating stochastic models into the creation and 
management of insurance products allows for more accurate predictions of insured events and better risk 
assessment. The introduced three-state model provides a robust framework for pricing supplementary insurance 
due to incurable critical illness. The analysis demonstrates how changes in transition probabilities affect the 
amount of net premium, underscoring the importance of precise parameter estimation.  
Limitations/future research: The study's limitations include reliance on accurate historical data, which may 
not fully capture future trends and changes in health outcomes, as experienced during the Covid-19 pandemic. 
Future research should explore the integration of a larger amount of real data and advanced computational 
methods for their processing. Additionally, extending the model to include the 'recovery' transition would 
enhance its applicability for 'all' types of critical illnesses. The creation of such an insurance product would, 
however, assume the availability of a large amount of high-quality data (Schmidt, 2021). 
 
Keywords 
Stochastic processes, insurance, rider, multi-state models, critical illness, transition probabilities, Markov 
processes, annual net premium, Incurable Critical Illness Model 
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Introduction 
The turn of the millennium marked a significant 
expansion in the use of stochastic processes, with 
extensive applications in modelling financial 
markets, predicting stock prices and commodity 
prices, developing financial models and risk 
management strategies (Shreve, 2004; Cerqueti, 
2021), in operations research (Campbell & 
MacKinlay, 1997; Fu & Hu, 2002), in modelling 
biological systems (Wilkinson, 2006; Rogers, 
2011), and in the development of prognostic 
models in medicine (Simpson, et al., 2012; Bergés, 
et al., 2023), biometrics (Hu & Laurière, 2023) and 
biophysics (He, 2022). Stochastic processes also 
play a key role in hydrology and environmental 
engineering for modelling weather conditions, 
weather forecasting (Weeks, 2010), and climate 
change analysis and modelling (Palmer, 1999; 
Hipel, 2000). In geophysics, they are used in 
modelling geological processes, analysing earth 
layers (Gautier, 2016), and modelling groundwater 
contamination (Neuman & Wierenga, 2012). 

Currently, stochastic processes remain a focus 
of active research. New technologies and 
computational methods allow for more 
sophisticated analyses and modelling of random 
processes across many domains. These analyses 
often employ advanced mathematical and 
computational techniques to solve complex 
problems and gain a deeper understanding of the 
structure and behaviour of random processes. Their 
flexibility and ability to model unpredictable 
phenomena make them an indispensable tool in 
various scientific disciplines, including insurance. 
In this field, stochastic models are crucial for 
pricing insurance products and managing risks 
associated with events such as accidents, natural 
disasters, or critical illnesses.  

Given the constant advancements in medicine 
and changes in population health outcomes, it is 
essential to continually adapt and improve existing 
models to better reflect current conditions and 
risks. In this context, exploring new approaches to 
modelling insurance risks is imperative, and this 
was the motivation behind conducting this study. 

The aim of this study is to develop and apply a 
three-state stochastic process model, called the 
Incurable Critical Illness Model (ICIM), for 
assessing premiums for incurable critical illnesses 
in life insurance. This model extends the traditional 
two-state 'Healthy–Dead' model by including a 
'Sick' state, allowing for a more accurate reflection 

of health risks and enabling more precise premium 
determination for products that include critical 
illness riders.  

The proposed method is based on stochastic 
process theory, as described by Shreve (2004) and 
Bowers et al. (1997) in the context of actuarial 
mathematics. A Markov process is used to model 
transitions between health states, a technique that 
has already been applied in biostatistical and 
actuarial studies (Škrovánková & Simonka, 2021). 

In this study, the ICIM model is applied to 
calculate net premiums for critical illness riders. 

Based on the nature of this article, several 
practical research questions can be formulated: 

1. How do the transition probabilities 
between health states affect the calculation 
of net premiums? 

2. How might changes in the transition 
probabilities within the ICIM model impact 
the insurer's financial stability? 

These research questions lead to an exploration of 
the relationship between health state transitions 
and their financial implications for the insurer, 
offering valuable insights for more accurate risk 
assessment and premium determination. 

1. The Possibilities of Using Stochastic 
Processes and Modelling in Insurance 
Stochastic processes are a key tool in the insurance 
industry, offering a wide range of applications. 
Insurance events, such as death due to accidents or 
other causes, changes in health status (e.g., 
contracting an incurable disease), accidents, fires, 
natural disasters, or other catastrophic events, are 
often random and irregular. To address these 
uncertainties, stochastic models are employed to 
estimate the probability of such events occurring 
over time. These processes are crucial for risk 
modelling, financial product valuation, and 
portfolio management. They also offer tools for 
forecasting future events and developing risk 
management strategies (Poláček & Páleš, 2012; 
Brokešová, et al, 2023). Their applications include 
the design of life insurance products and pension 
plans, minimising mortality and longevity risks 
(Choulli et al., 2021; D´Amato, et al., 2020), 
reinsurance (Colaneri, et al. 2024; Shen, 2024), and 
capital management. 

1.1. Modelling Insurance Claims 
Insurance claim modelling uses stochastic 
processes to predict insurance events. In life 
insurance, it helps forecast longevity and mortality, 
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while in non-life insurance, it models the number 
of claims and total damages (Clemente et al., 2023; 
Tadayon & Ghanbarzadeh, 2024). This process is 
important for actuarial risk assessment and 
premium determination. Various models, such as 
the Poisson process and Binomial model, offer 
different advantages, making model selection 
crucial. Accurate claim prediction involves 
identifying key factors, configuring the model, 
estimating parameters using historical data, and 
evaluating performance. Insurers' ability to handle 
big data significantly impacts this process (Mišút, 
2021). 

1.2. Development of Insurance Products 
Insurance companies offer products with varying 
returns and risks, and developing new products is a 
dynamic process aimed at meeting customer needs 
while ensuring the company's sustainability. 
Products are designed with goals such as 
increasing market share, competitiveness, 
profitability, or offering new protection options. 
This process involves defining coverage, terms, 
premiums, and policy duration, followed by 
actuarial and financial analyses to assess risk and 
set appropriate premiums. After launch, product 
performance is monitored and adjusted as 
necessary. Successful product development 
requires market analysis, understanding customer 
needs, and adapting to industry trends (Hellriegel, 
2019). 

1.3. Risk Management 
Risk management involves identifying, assessing, 
and managing risks that impact an organization's 
operations and performance. Stochastic processes 
help insurance companies quantify risks within 
their insurance portfolios, ensuring solvency and 
stability. Risks can be internal (operational, HR, 
technological) or external (market, competition, 
natural). Risk assessment determines the likelihood 
and impact of each risk, helping organizations 
prioritize those that require management. Effective 
risk management is essential for long-term success, 
financial stability, and solvency in uncertain 
environments, leading to improved performance 
and value protection (McNeil, Frey & Embrechts, 
2015). 

1.4. Customizable Insurance Premium Rates 
Customizable insurance premium rates allow 
companies to better account for individual risks 
and customer needs, personalizing prices based on 
factors like age, gender, residence, driving habits, 

and health status. This approach is gaining 
popularity due to increased data availability and 
advancements in data analysis (Páleš, 2012). Data 
collection and dynamic pricing are essential, 
enabling companies to adjust rates based on real-
time data. For example, a driver who frequently 
uses safety features may pay less than one with a 
poor driving record (Biener, 2019). Stochastic 
models help ensure fair, risk-based premium rates. 

2. Multi-state Models in Applications 
Multi-state models (MsM) represent a powerful 
tool for analysing and predicting the behaviour of 
complex systems. They are utilised in various 
scientific and applied fields (some of which are 
mentioned below) to model the interactions 
between different parts of a system and to 
understand the dynamics of these systems. 

2.1. Economics 
In economics, multi-state models are used to model 
economic systems, including market interactions, 
macroeconomic trends, and the behaviour of 
consumers and producers. These models can help 
in predicting market developments, analysing 
economic policy, and assessing economic risks. 

One specific example of the use of multi-state 
models in economics is the modelling of economic 
cycles using Dynamic Stochastic General 
Equilibrium (DSGE) models. 

In addition to DSGE models, multi-state 
models are also used to analyse the impact of 
external shocks, such as pandemics, on the 
economy. For example, the epidemic–economic 
delay model has been applied to study the effects 
of lockdowns on the progression of infectious 
diseases and economic performance. The model 
emphasises that well-timed and strict lockdowns 
can significantly reduce infection rates and delay 
the epidemic peak, thereby easing pressure on 
healthcare systems. However, such measures can 
also negatively impact the economy, particularly if 
isolated individuals become less productive 
(Ishikawa, 2022; Mozokhina et al., 2024). 

2.2. Social Sphere 
Multi-state models in social sciences are used to 
model social networks, the spread of opinions, and 
the behaviour of individuals and groups. These 
models can be useful in analysing the spread of 
diseases, the dissemination of information, and 
predicting trends in society. 
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An example of the use of a multi-state model in 
the social sphere is the modelling of opinion or 
behaviour spread in social networks. These models 
are used to study social phenomena such as trend 
propagation, political polarisation, group identity 
formation, or the spread of new technologies. They 
can also be used to predict social changes or to 
design strategies to influence social behaviour. 

A specific practical example is the "Diffusion 
of Innovations Model", which is used to study the 
spread of new products, technologies, or 
innovations in a population (Rogers, 2003).  

2.3. Insurance 
Multi-state models are increasingly utilised in 
insurance to model the complex processes of 
changes in the health status of insured individuals 
and their life events. These models enable the 
analysis of transitions between various health and 
risk states, which is crucial for product pricing, risk 
management, and the establishment of insurance 
reserves (D’Amico, et al., 2017). In insurance, 
multi-state models are mathematical and statistical 
tools used to predict risk, de-risking (Levantesi, et 
al., 2024; D´Amato, et al., 2020) and determine the 
pricing of insurance products (Christiansen & 
Niemeyer, 2015). These models take into account 
not only traditional factors such as age, gender, and 
health status but also factors like geographic 
location, lifestyle, and their interactions (D’Amico, 
et al., 2020). They enable insurance companies to 
forecast the likelihood of various insurance events, 
utilising a wide range of statistical methods, 
probabilistic models, and historical data to predict 
the number of accidents, extent of damages from 
accidents, fires, natural disasters, and other events, 
as well as the spread of diseases and their fatal 
outcomes. 

In the context of critical illness insurance, these 
models become particularly valuable. For instance, 
stochastic interest rate models, like the Cox-
Ingersoll-Ross model, are used in combination 
with multi-state Markov models to simulate 
transitions between health states, such as healthy, 
critically ill, or deceased, allowing for more 
accurate premium calculations and risk assessment 
(Alim, et al., 2019). Similarly, the increasing use of 
multi-state models in public health, particularly 
during the Covid-19 pandemic, demonstrates their 
versatility (Mohammadi et al., 2024; Zhao et al., 
2024). The SIRD model (susceptible, infected, 
recovered, dead), for example, helps estimate the 
basic reproduction number R0, providing insights 
into virus transmission dynamics (Zuhairoh, et al., 

2021). Additionally, the SVIRD model 
(susceptible, vaccinated, infected, recovered, 
dead), which incorporates vaccination status, has 
been instrumental in predicting multiple pandemic 
waves and improving the accuracy of epidemic 
forecasting (Zuhairoh, et al., 2024). These 
examples highlight the broad applicability of 
multi-state models in both insurance and public 
health, where they serve as critical tools for 
managing risk and uncertainty. 

In the following sections, we will specifically 
focus on certain types of illnesses – incurable 
critical illnesses and their modelling. 

3. Developing and Application of 
Multi-state Models of Stochastic 
Processes in Insurance 

3.1. Methodology  
The 'Healthy - Dead' two-state model is a simple 
mathematical model used in epidemiology or 
biostatistics to describe a population in which each 
individual is in one of two possible states: 'Healthy' 
or 'Dead' (Andersen & Ravn, 2023). The equivalent 
model 'Alive - Dead' (also known as the mortality 
model or the basic survival model) is the simplest 
multi-state model applied in insurance. 

By extending this model to include the 
'Critically Ill' state, we develop a three-state model 
aimed at modelling the product “Incurable Critical 
Illness Rider”. We will evaluate the quality and 
completeness of the collected data to ensure their 
suitability for applying a multi-state stochastic 
model. Using theoretical insights from the 
modelling of stochastic processes with the Markov 
property, we will construct a three-state model and 
use it to calculate the premium for a client in a 
specific age category.  

The three-state ICIM model offers significant 
advantages in the accuracy of premium calculation 
and risk modelling for critical illnesses, as it 
includes the intermediate state of 'ill'. This state 
accounts for the fact that an insured individual may 
remain in this condition for an extended period 
before death occurs. Such an extension of the 
traditional two-state model results in a more 
precise calculation of premiums.  

At the same time, the ICIM model is a 
'narrowing' of the classical four-state model for 
critical illness cover, where state (4) represents 
'Death from other causes'. Since the probabilities of 
transitioning to state (4) do not affect the 
transitions between states in the ICIM model, ICIM 
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proves to be the most suitable for modelling the 
'critical illness rider' product.  

This model will also be used to analyse the 
impact of various parameters on premium 
calculation. As a result, in addition to determining 
the standard annual net premium for the incurable 
critical illness rider, we aim to address our research 
questions as well. 

3.2. Data analyses  
The data used in this study were obtained from an 
unnamed insurance company currently operating 
in Slovakia, which is a subsidiary of a foreign 
insurer. The dataset comprised information on the 
number of insured individuals in the insurance 
portfolio by age (as relevant to the research), 
gender, health status, survival, and death. The 
annual data captured the number of individuals at 
the start and end of each year for specific critical 
illnesses (though not all), as well as any disabilities 

caused by these illnesses. The dataset also included 
specific real-world probabilities of transitioning 
from a 'healthy' state to a 'critically ill' state and 
from a 'critically ill' state to a 'deceased' state across 
different age groups. These probabilities were 
derived from the insurer’s historical data, enabling 
reliable modelling of transitions between health 
states within the analysed groups. As a result, the 
data meet all the necessary criteria for the 
application of a multi-state stochastic model. 

Based on the insurance company's data, we can 
conclude that the probabilities of contracting a 
critical illness for the age groups 50 – 64 years are 
very low. A major role in this is played by early 
diagnosis, which has improved over the last decade 
due to increased awareness and the need for 
preventive examinations. On the other hand, the 
annual probabilities of remaining in a state of 
critical illness are relatively high. This is due to 
medical advances in the treatment of critical 
diseases, as well as improved care for patients.

 
 
Table 1   Annual transition probabilities 

Age 
x 

11
xp  12

xp  13
xp  11 12 13

x x xp p p+ +  22
xp  23

xp  22 23
x xp p+  

50 0,997237 0,000723 0,002040 1 0,871638 0,128362 1 
51 0,996966 0,000802 0,002232 1 0,867415 0,132585 1 
52 0,996674 0,000896 0,002430 1 0,859097 0,140903 1 
53 0,996329 0,000987 0,002684 1 0,851596 0,148404 1 
54 0,995964 0,001100 0,002936 1 0,847211 0,152789 1 
55 0,995581 0,001216 0,003203 1 0,843891 0,156109 1 
56 0,995191 0,001350 0,003459 1 0,839551 0,160449 1 
57 0,994718 0,001499 0,003783 1 0,836322 0,163678 1 
58 0,994201 0,001641 0,004158 1 0,833285 0,166715 1 
59 0,993606 0,001815 0,004579 1 0,826912 0,173088 1 
60 0,992940 0,002034 0,005026 1 0,824793 0,175207 1 
62 0,992239 0,002226 0,005535 1 0,823071 0,176929 1 
63 0,991568 0,002428 0,006004 1 0,820843 0,179157 1 
64 0,990849 0,002681 0,006470 1 0,816619 0,183381 1 

Source: The authors processing based on specific data from an unnamed insurance company 
 

3.3. Construction of the Three-state Model 
For our purposes, we will extend the two-state 
'Healthy - Dead' model to include an additional 
state: critically ill. This introduces the possibility 
of recovery, thus a reverse transition from the 'Sick' 
state back to the 'Healthy' state. We will assume the 
illness is due to an incurable critical illness (ICI), 
thereby limiting the mutual transition between the 
'Healthy' and 'Sick' states, with no reverse 
transition possible (see Figure 1). This model, for 
ease of reference in the article, will be called the 
Incurable Critical Illness Model (ICIM). The three-

state ICIM model is a 'narrowing' of the four-state 
model for critical illnesses covers, in which state 
(4) is 'Death from other causes' (Haberman & 
Pitacco, 1998).  

 
Figure 1   Three-state Model of Incurable Critical Illness  

Source: The authors 
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However, as the article will focus on the 'critical 
illness rider' product, the probabilities of transition 
to state (4) will not impact this product. 

We consider a time-inhomogeneous Markov 
chain ( ){ }; 0S x x≤ < ∞  with a finite state space, 

where ( )S x  we denote the state of the process at 

time x. In our case { }( ) 1, 2, 3S x ∈ . 
The model has three states:  

(1) – Healthy, 
(2) – Sick (ill with an incurable critical illness),  
(3) – Death. 

Generally, when considering a finite number of 
states (n), the symbol a b

t xp  denotes the conditional 
probability             

{ }( ) ( ) ; , 1,2,3, ,ab
t xp P S x t b S x a a b n = + = = ∈  

that is, the probability that the process was in state 
(b) at time x + t given that it was in state (a) at time 

.x  This stochastic process can be described as 
Markovian – we assume that the transition 
probabilities are not influenced by information 
about the state of the process prior to time .x  

For state (k) and given probabilities, the 
following properties apply: 

• state (k) is absorbing, meaning that once the 
process enters state (k), it remains there 
indefinitely. For all ages x  and time t, it 
holds that:  

1kk
t xp =  and 0kb

t xp =  for all k b≠  (1) 
• for all ages x, time t, and fixed a, it applies 

that:  

 
1

1
n

a b
t x

b
p

=
=  (2) 

The stochastic processes described by our ICIM 
model can be understood as continuous Markov 
processes. Therefore, individual transitions 
between states can be characterized by transition 
intensities ab

x tμ + , with the following conditions: 

 0

t
ab
x s ds

ab
t xp e

μ +−
=  (3) 

To calculate individual probabilities, we can 
use differential equations, as mentioned in the 
books by Dicskon et al. (2009) and Škrovánková & 
Simonka (2021). For further actuarial calculations 
for the given product, we will consider time t in 

years, thus treating transition probabilities as 
deterministic data. 

According to the directed edges (transitions) 
between nodes (states) in our ICIM model (Figure 
1), we can denote the transition probabilities as 
follows: 

11
t xp  – the probability that a person who was 
healthy at age x  remains healthy at age x t+  

12
t xp  – the probability that a person who was 
healthy at age x  becomes ill by age x t+  

13
t xp  – the probability that a person who was 
healthy at age x  dies by age x t+  

22
t xp  – the probability that a person who was ill at 
age x  remains ill by age x t+  

23
t xp  – the probability that a person who was ill at 
age x  dies by age x t+  

Given the states and transitions between them 
(Figure 1), the following holds: 

21 0t xp = , 32 0t xp =  and 33 1t xp =  
Based on property (2) for time t in our model, 

we obtain: 
11 12 13 1t x t x t xp p p+ + =  and 22 23 1t x t xp p+ =  

As we discussed in the earlier parts of the 
article, it is crucial for an insurance company to set 
appropriate premiums for a specific product. 

We will focus on calculating the annual net 
premium xP . The calculations will be based on real 
data provided by the insurance company (Table 1), 
ensuring that the results accurately reflect the 
relevant circumstances derived from the provided 
data. 

3.4. Application of ICIM model 
We will apply our ICIM model to create critical 

illness rider. This involves a rider for incurable 
critical illness (ICI), under which the insurer will 
pay the insured person a regular annual advance 
payment of €10,000 as long as they remain in this 
state and do not die. The price for this product is 
the standard annual premium set by the insurer, 
paid by potential clients from the inception of the 
insurance contract while they are in a healthy state. 
The rider will only be offered to individuals from 
the age of 18, and the maximum duration of the 
insurance is until the age of 65.  
Note: Beyond this age, a potential client becomes 
a risk, i.e., the probability of contracting a critical 
illness is too high for the insurer. 
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To calculate the annual net premium, we will 
use the following formula:  

64
11 12 1 22

1,64 ( )
0

11
,64

x
t

t x x t x t x t
t

x
x x

D p p v ä
P

ä

−
+

+ + + − +
=

−

⋅ ⋅ ⋅ ⋅
=


 (4) 

where 
D – advance annual payment (in our case  
€10,000) 

11
t xp  – probability of an x-year-old person 
remaining in state (1) 'healthy' until age x t+  

12
x tp +  – annual probability of an x t+ -year-old 

healthy person transitioning to state (2) 'Sick' at age 
1x t+ +  

v – discount factor 
1

1
v

i
=

+
, where i is the interest 

rate (in our case 0.7%) 
22

1,64 ( )x t x tä + + − +  – temporary annuity-due 1x t+ + -

year-old person with a term of ( )64 x t− +  years 

with probabilities 22
t xp  of remaining in state (2) 

'Sick' 
11

,64x xä −  – temporary annuity-due x -year-old 

person with a term of 64 x−  years with 
probabilities 11

t xp  of remaining in state (1) 
'Healthy'. 

These annuities should be calculated according 
to formulas mentioned in the books by Bowers et 
al. (1997) and Krčová et al. (2022). 

We will consider a 50-year-old person, 
calculate the amount of the standard net premium 
for them, and in the next part, analyse the impact 
of changes in some probabilities on its amount. It 
is assumed that the life insurance company has the 
following annual transition probabilities (for 
remaining in the same state and transitioning to 
another state) for ages 50 to 64. 

To calculate the standard net premium for a 50-
year-old person, probabilities of remaining in the 
state will also be needed. These are calculated for 
all ages x and time 0t ≥  using annual probabilities 
(Gerber, 1997) 

 1 2 1
ab ab ab ab ab

t x x x x x tp p p p p+ + + −= ⋅ ⋅ ⋅ ⋅  (5) 
After substituting all the values into equation 

(4), we obtain the amount of the standard annual 
net premium for a client today aged 50 years 

 50 €52.19P =  (6) 
The calculated premium is not high in relation to 
the insurance benefits (payments) paid out. If we 
consider that the transition annual probabilities 
from a healthy to a sick state (see Table 1) are very 
small, it is clear that such a situation is not a great 
risk for the insurer. 

3.5. Analysis of the impact of input 
parameters on the premium calculation 
In creating and pricing its new product, the 
insurance company closely analyses the impact of 
input parameters on the premium amount in an 
effort to maintain its stability, solvency, and 
profitability.  

From equation (4) it is evident that the amount 
of the premium is influenced not only by the 
transition probabilities but also by the actuarial 
interest rate. We will not explore the impact of its 
changes in this article; instead, we will focus on the 
effects of changing probabilities.  

We will consider several scenarios and analyse 
the impact of changes in the annual probabilities of 
transition from a 'Healthy' state to a 'Sick' state, and 
the probabilities of remaining in the 'Sick' state, on 
the amount of the standard net premium.  

The standard net premium (6) will serve as the 
reference premium. Changes in the annual 
probability of transition from the 'Healthy' to the 
'Sick' state, whether an increase (+) or a decrease 
(–) in percentages, with the annual probability of 
remaining in the 'Sick' state unchanged, as well as 
the amount of the annual net premium are 
presented in Table 2.  
 
Table 2   The impact of changing the annual probability of 
transition to the state 'Sick' on the net premium amount for a 
50-year-old person 

Scenario Rate of change 12
xp  (%) P50 

1 - 20% €41.75  
2 -10% €46.97  
3 0% €52.19  
4 10% €57.41  
5 20% €62.63 

Source: The authors 

 
A reduction in this probability indicates that 

potential clients are healthier than those previously 
recorded in the insurance company's data, and vice 
versa. According to scenarios 1 and 2 in Table 2, 
clients would pay less annually than the original 
premium. From the insurance company's 
perspective, this is advantageous and contributes to 
increased profitability of the product. For example, 
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with a 10% reduction in the annual probability of 
becoming 'ill', clients would only pay 90% of the 
original premium. Conversely, if health conditions 
deteriorate (as in scenarios 4 and 5 of Table 2), the 
original premium would be lower than necessary, 
potentially resulting in losses from the product's 
sale. 

Further analysis of the product will consider the 
change in the annual probability of remaining in 
the 'Sick' state, while the annual probability of 
transition from the 'Healthy' to the 'Sick' state 
remains unchanged. The results are presented in 
Table 3.  
 
Table 3   The impact of changing the annual probability of 
remaining in the state 'Sick' on the net premium amount for 
a 50-year-old person 

Scenario Rate of change 22
xp  (%) P50 

1 - 20% €35.33 
2 - 10% €42.29  
3 0% €52.19  
4 10% €66.82  
5 20% €89.24  

Source: The authors 

 
A decrease (increase) in this probability 

indicates that critically ill clients die quicker 
(slower) than reflected in the insurance company’s 
data. From the various scenarios, it is evident how 
the price of the product would change relative to its 
reference value. For instance, with a 10% reduction 
in the annual probability of remaining in the 'Sick' 
state, clients would only need to pay 81.03% of the 
original premium, thus allowing the insurance 
company to offer the product cheaper and 
potentially increase its competitiveness if needed. 
With a 20% reduction in the annual probability, 
clients would pay only 67.70% of the original 
premium, whereas a 20% increase would result in 
a 20% higher payment. 

As the lower annual probability of remaining in 
the 'Ill' state means that funds from unclaimed 
benefits stay with the insurer, the product becomes 
more profitable. Conversely, if improvements in 
medical care and advancements in medical science 
led to a statistically higher annual probability of 
remaining in the 'Sick' state, i.e., a 'beneficiary', the 
insurer would need to find additional financial 
resources from its own funds to cover benefit 
payments. This increases the risk of 'loss' from 
selling this product. 

Let's consider four additional possible scenarios 
(Table 4). We will contemplate changes in the 
annual probability of transition from a 'Healthy' to 

a 'Sick' state (e.g., due to deteriorated or improved 
living conditions) and changes in the annual 
probability of remaining in the 'Sick' state (e.g., due 
to worsening or improving healthcare depending 
on the country where the client resides). 
 
Table 4   The impact of changes in both annual probabilities 

12
xp  and 22

xp  on the net premium amount for a 50-year-old 
person 

Scenario Rate of 
change 

12
xp  (%) 

Rate of 
change 

22
xp  (%) 

P50 ΔP50 (%) 

1 - 10% -10% €38.06  -40,83% 

2 10% -10%  €46.52  -26,99% 

3 0% 0% €52.19  0% 

4 - 10% 10% €60.13  10,86% 

5 10% 10% €73.50  15,21% 

Source: The authors 

 
From Table 4, it is clear that changes in both 

annual probabilities have a significant impact on 
the change in the amount of the reference premium. 
Scenario 1 is considered the best case from the 
insurer's perspective. The insurer could thus save 
financial resources, invest them appropriately, and 
distribute a portion of the return to policyholders, 
for example, in the form of an additional share of 
the profit. Conversely, scenario 5 could be 
detrimental to the insurer. Therefore, the insurer 
should be cautious when entering into insurance 
contracts, and clients should at least complete a 
questionnaire that includes questions related not 
only to health but also to profession and individual 
lifestyle. 

3.6. Discussion 
The results of our study indicate that the 
implementation of the three-state model (ICIM) for 
calculating critical illness insurance premiums 
offers significant benefits to the insurance sector, 
particularly in the development of products with 
riders for terminal critical illnesses. Modelling for 
specific age groups suggests that this approach 
provides more accurate risk estimates, enabling 
more effective premium determination. 

In contrast to the traditional two-state 'Healthy-
Dead' model, which does not account for the 'ill' 
state, the ICIM incorporates this intermediate state, 
providing more accurate risk estimates related to 
incurable critical illnesses. Furthermore, compared 
to the more complex four-state model, which 
distinguishes between deaths from critical illnesses 
and deaths from other causes, the ICIM offers a 
simpler yet more precise interpretation of financial 
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risk for insurers. Differentiating between causes of 
death does not add significant value to premium 
calculation when the primary focus is on insuring 
risks associated with long-term critical illnesses. 
The ICIM focuses solely on this key factor, 
simplifying the model without sacrificing 
accuracy, while enabling insurers to manage 
claims costs more effectively. As a result, the ICIM 
strikes a balance between simplicity and accuracy, 
delivering better outcomes in premium calculation 
for products targeting incurable critical illnesses. 

Our qualitative data analysis revealed that in the 
50-64 age group, the probability of developing a 
critical illness is relatively low, which can be 
attributed to early diagnosis and greater awareness 
of preventive check-ups. Conversely, the 
likelihood of remaining in a critical illness state is 
relatively high due to advances in medical care and 
treatment for individuals with critical illnesses.  

The impact of model parameters on premium 
calculation was explored in the quantitative 
analysis, where we identified several key factors. 
For the ICIM model, the annual probability of 
transition from the “Healthy” to the “Sick” state 
and the probability of remaining in the “Sick” state 
are of fundamental importance. Our scenario-based 
simulations demonstrate that a reduction in the 
probability of transitioning to the “Sick” state 
lowers the premium, contributing to the 
competitiveness of the insurance product. 
However, an increase in this probability may lead 
to losses for the insurer, highlighting the need for 
careful monitoring and adjustment of insurance 
products.  

Additionally, we examined the effect of 
changes in the probability of remaining in the 
“Sick” state. If this probability decreases, for 
example, due to a deterioration in the insured’s 
health, the premium will decrease, allowing the 
insurer to achieve higher profitability. On the other 
hand, an increase in this probability, for instance, 
due to medical advances, could lead to a higher 
financial burden for the insurer, as claims payouts 
would become more frequent and extended. 

3.6. Results and limitations 
Based on data obtained from an unnamed 
insurance company operating in Slovakia, we 
applied the ICIM (Incurable Critical Illness Model) 
to calculate the pure premium for a rider product 
covering "critical illnesses – incurable critical 
illnesses." In this paper, we present the results of 
scenario-based simulations and the calculation of 
the annual pure premium for a client aged 50 today. 

To calculate the annual pure premium, we used 
annual transition probabilities and a discount factor 
of 0.7%. The resulting pure annual premium for a 
50-year-old policyholder was calculated at €52.19, 
which served as the reference value for this age 
group in our subsequent analysis. 

The analysis of the impact of changes in input 
parameters, specifically the annual probabilities of 
transitioning from the "Healthy" to the "Sick" state 
and the probabilities of remaining in the "Sick" 
state, illustrates how corresponding percentage 
decreases or increases in these probabilities affect 
the final pure annual premium. For example, a 10% 
reduction in the probability of remaining in the "ill" 
state leads to a decrease in the pure premium to 
€42.29, representing a reduction of 23.41% 
compared to the reference value. 

The final analysis evaluates scenarios where 
both probabilities – transitioning to the "Sick" state 
and remaining in the "Sick" state – change 
simultaneously. These simulations highlighted the 
significant impact of changes in clients' health 
status on the stability and profitability of the 
product for the insurer. In the most optimistic 
scenario from the insurer’s perspective (Table 4 – 
Scenario 1), the insurer would be able to achieve 
considerable savings and enhance the 
competitiveness of its product. 

The study also identified several limitations, 
including reliance on historical data, which may 
not fully reflect future trends and changes in health 
outcomes. Furthermore, the models used may not 
entirely capture the rapid advancements in medical 
science or shifts in demographic trends, both of 
which can significantly impact the incidence and 
progression of critical illnesses. As insurance 
markets and the associated risks constantly evolve, 
it is crucial to regularly analyse and update the 
parameters of insurance event models. This also 
involves monitoring and processing a large volume 
of new data, from the perspective of the insurance 
company at the Not Small – Not Big Data (NoS-
NoB, defined by Schmidt (2024)) level, revising 
models, and adapting them according to the 
internal requirements of the insurance company. 

Conclusion 
The article demonstrated the advantages of using 
stochastic models in managing insurance products. 
By extending the traditional 'Healthy-Dead' model 
to a three-state 'Healthy-Sick-Dead' model, where 
the illness is due to an incurable critical illness, we 
introduced the Incurable Critical Illness Model 
(ICIM). Using the ICIM, we were able to more 
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accurately model and predict the risks associated 
with incurable critical illnesses. This approach 
enables insurance companies to set supplementary 
insurance valuations more effectively. It more 
precisely reflects actual risks, thereby contributing 
to the financial stability and solvency of the 
insurance company in accordance with European 
Union standards and regulations.  

The results of the analysis showed that changes 
in transition probabilities have a significant impact 
on the net premium. For instance, reducing the 
probability of transitioning from the 'Healthy' to 
the 'Sick' state leads to a lower premium, which can 
allow the insurance company to offer more 
competitively priced products. Conversely, 
improvements in healthcare, which increase the 
probability of remaining in the 'Sick' state, can lead 
to higher expenses for the insurance company, 
highlighting the need for careful estimation of 
these parameters.  

Moreover, the study revealed that changes in 
these transition probabilities can significantly 
affect the financial stability of insurers. 
Adjustments in health status transitions can either 
reduce costs and increase product competitiveness 
or raise expenses, emphasising the importance of 
regular model updates to reflect evolving health 
conditions. Accurate estimation of these 
probabilities is necessary for maintaining solvency 
and financial stability.  

While the ICIM model offers significant 
advantages in modelling critical illnesses and 
calculating premiums, several limitations need to 
be considered. The model’s reliance on historical 
data implies that the accuracy of the results could 
be affected by the availability and quality of these 
data. Moreover, although the three-state model is 
effective for analysing transitions between health 
states, it does not take into account additional 
factors, such as advancements in healthcare 
technology, which could substantially affect the 
expected duration of critical illness.  

In the future, extending this model by 
incorporating additional parameters or adapting it 
to account for evolving health conditions would 
allow for more accurate premium calculations. 
Such improvements could enhance the financial 
stability of insurers while ensuring more equitable 
insurance terms for clients.  

In conclusion, we can state that stochastic 
models represent a powerful tool for optimising the 
processes of managing insurance products and 
supplementary insurances, leading to a better 
understanding of risks and more efficient risk 

valuation arising from insurance contracts. This is 
key for insurance product management, long-term 
success, and the stability of insurance institutions. 
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