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Abstract

This paper studies the use of statistical prognostics in predictions of short-term year-to-year evolution of GDP 
and other aggregate indices of the national accounts. It shows the utilisation of a non-stochastic prediction range 
to be used as a prediction tool that, to a certain extent, overcomes the validity of the ceteris paribus principle, 
on which most of the currently used stochastic approaches are based. The non-stochastic range is a resultant 
outcome of a wide assortment of time-series models; at the same time, a point forecast for short-term evolution 
is derived from the said assortment of models. We illustrate our methodology on a year-to-year evolution  
of GDP indices in France as a time series with a sufficiently large number of observations.

INTRODUCTION
The most significant economic indices that sensitively respond to the prevailing economic climate include, 
first and foremost, the gross domestic product (hereinafter GDP), but also other related aggregate indices 
of the national accounts; in particular, final consumption expenditure, gross capital formation, and exports 
and imports of goods and services. Monitoring these values statistically not only provides information 
on the current situation of the national economy, but can also be used in analysing its evolution as a basis 
for deriving short‒ and medium-term predictions.

Regarding the subsequent utilisation of such data for the purposes of estimating the performance  
of the economy, as well as providing a basis for creating the state budget, particular importance are 
predictions of short- and medium-term evolution of the said indices. The usual methods utilised  
in economically developed countries when estimating the GDP evolution for two to three years ahead 
are mainly based on predictions put forth by relevant expert groups, combined with econometric  
and statistical models. When creating state budgets, regression model approaches are also employed; 
either the concept of extrapolating the prevailing trend, or deriving the national accounts' aggregates 
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from a tightly related index that is already known, is closely monitored by the respective statistical office,  
and can be viewed as a suitable "prompt" to reveal the anticipated behaviour of the aggregates  
to be estimated.

The results achieved in this area entitle us to conjure that, under such circumstances, certain statistical 
methods become very important; namely those which are capable of providing the necessary information 
about the expected GDP evolution. The techniques for obtaining such predictions undoubtedly include 
methods used in time series analysis. Developments in statistical forecasting and its applications  
in economics extended the range of tools that can be used in macroeconomic decision-making.  
In the present paper, we study one of such approaches, which can be distinguished by a high success rate 
in short- and medium-term predictions.

1 METHODS OF TIME SERIES ANALYSIS AND PREDICTION PROCEDURES STUDIED  
 IN THE LITERATURE
Approaches that employ time series models in predicting a given index occur quite frequently  
in the literature. Some of these approaches have found their ways to being used in the practice  
of economics, for example, in the procedures used by governments and other authorities; others have not 
proved their worth. To a large extent, the success rate of a prediction model is implied by that model's 
ability to overcome difficulties related to the ceteris paribus principle (saying that the future will, under 
unchanged circumstances, be a continuation of the past). In the reality we encounter in economics,  
the ceteris paribus principle can hardly be maintained; or rather, it is nearly completely unmaintainable 
in practice. As a matter of fact, economic processes are subject to many different types of interventions, 
whether legislative (therefore non-stochastic, such as amendments to tax and other laws) or natural 
(such as the stages of the economic cycle, etc.). Frequently we encounter combinations and even 
mutual interactions between stochastic and non-stochastic interventions. All such aspects de facto deny  
the ceteris paribus principle. That is why we often encounter in the literature routines and tools aimed  
at overcoming that extrapolation principle, which is too unrealistic in practice.

Of course, we can find in the literature a great number of suggestions for utilising statistical techniques 
in predictions. The foundations for extrapolation techniques were laid by many authors and, even though 
some of their concepts date back quite a few years, they have not been abandoned. Let us mention,  
as just a few of many possible examples, the monographs by Theil (1966), Granger and Newbold (1986),  
and Pankratz (1991); in the Czech Republic it was Cipra (1986). We can generally observe that the use  
of non-stochastic deterministic approaches is less frequent than those based on probability theory  
and entropy. Even if a non-stochastic concept is employed, it often represents a certain modification  
of brainstorming methods. This approach is not new, as a matter of fact; its first occurrence dates 
back to the post-World-Word-II decade; for example, Osborn (1963) described a creative group 
technique as a specific method for predicting and decision-making. We will go in this direction 
below, but we will mutually confront not personal opinions, but results of potentially acceptable 
models of time series.

The developments go on; newer – and, in sense, perhaps more efficient – methods are sought to mutually 
intertwine the deterministic and stochastic principles. The present paper is also an attempt at an original 
combination of deterministic and stochastic concepts. We can take lessons from the literature, in which 
different non-traditional approaches can be encountered. Let us recall a recent concept published in 
Lui (2020), which provides an in-detail study of the relationship between deterministic and stochastic-
based interval predictions and attempts at bridging the gap between them with the aid of a certain hybrid 
approach. An Israeli geophysicist Eppelbaum (2013) derived estimates in the predictive model so that 
they were, predominantly, highly correlated with historic data, i.e., a reference variable with correlated 
evolution in time. Yachao et al. (2016) brought deterministic and probabilistic interval predictions 



2021

7

101 (1)STATISTIKA

(namely, for short-term prediction of electricity generation from wind) based on a decomposition  
of the variation mode.

A list of examples found in the literature indicates that the applications of the proposed techniques are, 
to a great extent, illustrated on data coming from the natural sciences. Economics is, however, a social 
science; its phenomenology is therefore completely different from that of the natural sciences. Moreover, 
it is marked with the existence of extensive behavioural elements. In this respect, the range of data-based 
experiments found in the literature is rather less abundant.

That is why we will apply our approach to an economic time series. Conceptual inspiration can  
be found even here: in order to gradually improve the quality of prediction, Tribbia and Baumhefner 
(2013) recommend that the facts of the situation be examined in general at first, and then set up the goal 
of the particular prediction from the phenomenological point of view. Later on, the phenomenological 
and non-deterministic aspects of the prediction should be intertwined at the given time horizon. We will 
try below to follow a similar line of thought: we will employ an assortment of models, thus introducing 
into our prediction uncertainty pertaining to each of those models. Subsequently we will reduce  
the uncertainty by deriving a compound solution based on all of the primarily used models. One  
of the main characteristics of such a prediction will be the fact that the uncertainty pertaining to each  
of the models will be reduced in the compound prediction range.

As can also be seen in the literature, the common denominator of such approaches is to derive a plausible 
prediction and, at the same time, to eliminate to the maximum possible extent the non-realistic ceteris 
paribus assumption. The main point here is to apply stochastic modelling in as wide a sense as possible, 
directed towards reflecting the effects of intervention attacks of diverse origin and nature. The weakest 
point of a similar approach is that the resulting prediction interval is usually too broad; consequently, 
its usefulness for the decision-making processes is dubious. Because of that, we will suggest a procedure 
below that should provide a more useful interval of the prediction.

2 TRADITIONAL REGRESSION APPROACH
Now we will derive the statistical prediction for the year-to-year evolution of any index. This technique 
is based on statistical tools inherent to analysis of one-dimensional time series. Let us begin with  
an overview of necessary basic notions.

The traditional regression-based approach to extrapolations of a time series yt, t = 1, 2, …, n, where 
n is the number of the (past) observations of the time series, is generally formulated as a requirement  
to begin the prediction with a suitable estimate for the future values yn+i, i = 1, 2, ..., N, where N is a selected 
positive integer characterising the length of the prediction. Of course, we can resolve this prediction 
problem with the aid of a model supposedly governing the behaviour of the relevant time series, yt.  
This is the so-called point prediction.

It is, however, a well-known fact that a point prediction is too authoritative about the future evolution 
of the index to be predicted. It is difficult to find a specific reason why a particular model should  
be singled out (incidentally, good results in interpolation – i.e., modelling the past evolution of the time 
series – need not be a sufficient guarantee for a good prediction). Moreover, the point prediction is utterly 
incapable of overcoming the ceteris paribus condition (of the future being a continuation of the past under 
circumstances that otherwise remain unchanged). This problem is viewed as very serious in economics. 
From the factual viewpoint, economic indices are very unstable variables; assuming that factors affecting 
their future evolution remain unchanged is in its substance absurd and stands in a deep contradiction 
with the substance of economics as a social and political science.

There are techniques which try to cope with the authoritative character of the point prediction; such 
techniques lead to interval predictions of future developments. In a vast majority of instances, such 
techniques are based on stochastically formulated and interpreted predictions with respect to a pre-set 
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level of confidence. Another problem arises at this moment. In addition to the fact that our prediction 
interval stems from a point prediction, encumbered with all its weaknesses (as mentioned above), two 
additional requirements must be met: the confidence level of the prediction must be sufficiently high  
(in practice not smaller than 90%); and, at the same time, the prediction interval must be reasonably 
narrow. Unless both these requirements are met, the prediction interval will be more or less useless  
in economic practice. It is well known that requirements for a high confidence level and a narrow prediction 
interval are in a mutual conflict. Not even an interval prediction is able to overcome the ceteris paribus 
principle (which will also be seen from our application below). Setting up an interval, we create a funnel 
trough which additional possibilities are "drawn" into the prediction. The usual price to pay for this aspect 
is an excessive breadth of possible values, which is difficult to interpret.

If we construct an estimate for the future value yn+i at time (n + i) as:

Pn+i – Δ < yn+i < Pn+i + Δ ,                                            (1)

where Pn+i is the point prediction for the time period n + i as estimated by any model, and Δ is the admissible 
error of the prediction; the latter depends on the selected confidence level of the prediction interval,  
as well as on the number and variability of the real observations from the past, yt. Inequality (1) is valid 
for the pre-set level of confidence (that is, with a certain – sufficiently large – value of probability); that  
is why we call it stochastic interval prediction. An interval prediction defined in this way is symmetric. 
Since the stochastic (probabilistic) interval prediction stems from three point predictions for which 
inequality (1) holds, the conditions determining the success of the interval prediction is the quality  
of the original point prediction Pn+i. The actual value of the index to be predicted for time n + i, i.e., yn+i, 
is "enveloped" by the stochastic prediction interval.

The particular form of the admissible error (that is, the stochastic confidence interval)  
of the prediction can, for example, be described by the following Formula for the linear trend model 
– cf. Cipra (1986):

                                        (1a)

where T is the quantile of Student's distribution with n – 2 degrees of freedom, n is the number  
of the past observations in the time series; the length (horizon) of the prediction is i = 1, 2, ..., N (we set  
N = 2 for the purposes of macroeconomic prediction in our case for practical reasons),

and  = the model estimate for the value of the time series yt, t = 1, 2,…, n.
There is, however, one significant drawback encumbering the construction of a stochastically argued 

prediction interval: even if the number of observations is sufficient and the selected model has a good 
quality (from the interpolation point of view), the prediction interval on an adequate level of confidence 
is too broad. This is bad news regarding the practical requirements we have put on predictions.
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3 CONSTRUCTION OF NON-STOCHASTICALLY ARGUED PREDICTION RANGE
Experience with predicting values of economic indices thus generally indicates that the resolution  
of the prediction problem needs more than a purely "regression-like" formulated short-term prediction. 
We have already mentioned several reasons for misgivings pertaining to a traditional regression concept 
to be applied in predicting macroeconomic evolution indices: a large (and, consequently, conflicting) 
assortment of point predictions for the same index; a practically useless breadth of the stochastically 
constructed interval predictions according to Formula (1) (or (1a) for the linear trend); and the traditional 
statistical assumptions are usually not valid for real economic data; etc.

There exists a certain generally positive outcome regarding these user-unfriendly situations; they,  
to a considerable extent, determine the acceptance of statistical predictions in the areas of macroeconomic 
studies, conjunctural surveys, etc. We must take into account a non-traditional approach to setting up 
our predictions, an approach within which the prediction interval (1) is argued not in a probabilistic, 
traditionally regression-driven way, but as follows:

Pn+i – δ1 < yn+i < Pn+i + δ2 ,                                             (2)

where the prediction range Pn+i – δ1 and Pn+i + δ2, i = 1, 2, ..., N, is understood as a resultant 
outcome of different point predictions on the basis of a large number of factually admissible models  
for the past behaviour of the respective time series (see Formulae 3 and 4 for the construction of deviations  
δ1 and δ2). An interval prediction defined in this way will not be symmetric with respect to yn+i.

Determination of the prediction according to general Formula (2) will be called a non-stochastic 
prediction range. Such a range is based on the idea that we can set up several (or many) models 
for a given time series, which may all properly describe the past behaviour of the respective series  
and be admissible from the factual and formal points of view. We must still keep in mind this important 
fact: a model providing a good-quality description of the past behaviour of a time series need not provide 
a good prediction of its future behaviour, due to possible changes in the conditions to which the time 
series is subject.

A strong point of the non-stochastic prediction range is its universal nature. In fact, in addition 
to stochastic models we can also utilise econometric models and combinations of both types for  
the construction of that range. The only condition is that, for the primary models, factual and formal 
admissibility should be guaranteed for the underlying problem; and there should be a realistic option 
to set up a higher number of such models. Extensive use of software enables us to set up many models, 
compute estimates in them, and compare their prediction outcomes.

Conceptually, such a construction of a non-stochastic prediction range is similar to the usual economic 
practice, in which different opinions concerning the future evolution are confronted with each other. 
Here we confront "opinions" ensuing from different models for the underlying time series. The prognosis  
is then a resultant outcome of all such "components". We will illustrate the construction of a non-stochastic 
prediction range on an example of year-to-year GDP indices time series in France. 

The construction itself goes in two steps; this approach can be understood as an algorithm  
and programmed as such.

Step 1: Selection of and estimates in models
First we set up a certain high number of statistical models of adequate quality and with good factual 
interpretations (in our case, models for the time evolution of the year-to-year GDP indices time series  
in France; for the sake of clarity, we sum up these models in Table A2 in the Appendix, where the estimated 
model shapes, denoted by M1, M2, …, through M22, are also shown). Our basic idea here is that each 
model represents an opinion ("winnowing our facts") ‒ in an analogy to the "normal human thinking 
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under uncertainty", which may take into account several admissible variants. Our prediction task can 
certainly be classified as such a situation. The selection of the models is the key stage of the prediction 
process, because these models lay the foundations for the prediction range. Hence we must responsibly 
consider factual and formal statistical viewpoints during the selection.

In our experience, it is purposeful to select between 10 and 30 models from different categories, such 
as smooth analytical trend functions for different types of exponential fitting, from the Box-Jenkins 
methodology, etc.; our criterion should be based on the quality and interpretation of the models.  
The character of the index to be predicted should also be reflected. No other restrictions should be 
considered. Of course, we must always keep in mind that a primary model that is "interpolation-good" 
is no guarantee for a good quality of prediction due to the unrealistic assumptions hidden in the ceteris 
paribus principle.

Step 2: Construction of prediction range and point prediction
Let us derive three values for each year in each of the models set up and tested according to Step 1  
(in our case, M1, M2, …, and M22: namely, point prediction Pn+i (that is, a year-to-year indices  
of the GDP growth for the years 2018 and 2019); the stochastic lower bound for the prediction, Lower 
95.0% Limit; and the stochastic upper bound for the prediction, Upper 95.0% Limit, both bounds  
at the 95% confidence level. For example, the mentioned three values will look as follows for Model M1:

Having selected 22 models, we can see that we would get 22 point predictions Pn+i for each  
of the years to be predicted, i.e., 2018 and 2019; and 22 stochastic interval predictions at the same time. 
Each of these predictions can be viewed as relevant, but they are numerically different from each other. 
This aspect is rather indeterminate with regard to subsequent considerations. That is why we will now 
show a way to arrive at non-stochastic predictions, while adequately using the specific information 
provided by each of the models we computed.

As regards point predictions Pn+i, we will derive a sole aggregated value of the point prediction based 
on all 22 models M1, M2, …, M22; namely, we take the average of those 22 values. In a way, this approach 
is an analogy to colloquia, in which opinions of relevant members are comprised. Here the 22 models 
stand for such members, and the result is described in the part 4.2. 

When setting up the interval prediction corresponding to Formula (2), we will first derive a sole 
aggregated lower bound δ1 from the Lower 95.0% Limit values of all models M1, M2, …, M22; namely, 
we will take their maximum, that is,

δ1 = max{Lower 95.0% Limit of M1, M2, …, M22}.                                             (3)

In a similar way, we then derive a sole aggregated upper bound δ2 from the Upper 95.0% Limit values 
as their minimum:

δ2 = min{Upper 95.0% Limit of M1, M2, …, M22}.                                            (4)

Table 1 Model M1. Random walk with a drift

Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

2018 1.022 060 0.984 296 1.059 830

2019 1.021 130 0.967 717 1.074 540

Note: Similarly for the remaining models, M2, M3, …, through M22, cf. Table A2 in the Appendix.
Source: Authors' own calculations
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In other words, this particular application of Formula (2) is based on the maximum stochastic lower 
bound and the minimum stochastic upper bound of the traditional prediction intervals (our result  
is again described in the part 4.2). As already mentioned above, an interval prediction defined in this 
way can no longer be symmetric, in contrast with the stochastic interval prediction.

4 APPLICATION OF THE MODEL
In order to verify our model of non-stochastic prediction range, we have chosen the time series  
of year-to-year GDP indices in France in the period from 1950 to 2019. This is a highly aggregated index 
occurring on French national accounts. Our main reason for this selection is the long time series we can 
use to illustrate our approach.

The developments in the French national economy over the course of nearly 70 years represent  
a diverse mixture of various influences (post-war recovery, cold war, adoption of euro, etc.), internal 
political decisions (taxation, monetary/fiscal interventions, changes in the play of political forces),  
as well as international economic interventions (oil crisis, local military conflicts, etc.).

4.1 Economic developments in France since the end of World War II
As already explained, we will make use of the French GDP data to illustrate our method of setting up 
the prediction.4 A factual description of the economic developments in France since the late 1940s 
until this date is important to help us provide effective interpretations and utilise the derived estimates  
and predictions.

The post-war period of the so-called French Fourth Republic (1945–1958) was characterised  
by relatively high economic growth, a high inflation rate and low unemployment rate. In the beginning 
of the post-war period, the Marshall Plan played the main role in the economic recovery. On the other 
hand, the Fourth Republic was politically rather volatile (the Prime Minister was changed 28 times  
in 12 years); this aspect did not contribute to the country’s economic stability.

4   The input data – year-to-year French GDP indices – is depicted in Figure 1 and numerically listed in Table A1  
in the Appendix.
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Figure 1  Year-to-year GDP indices, France
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Due to the destruction prevailing after the war, the government undertook the task to recover  
the French economy. Electric power plants, the coal industry, big bank and insurance companies, Renault, 
aerospace industry, etc., were nationalised. The nationalised sector was an important tool for implementing  
the government's economic policies. The first Monnet Plan was begun in 1947 (a programme for 
investments into the key industries and reduction of the economic dependency on abroad).  
The second Monnet Plan (1954–1957) was focused on public investments and ensuring higher productivity  
in material and human resources. A higher GDP growth rate in 1950 brought about a higher inflation 
rate. The subsequent slowdown in the economic performance after 1950 meant a gradual return  
to the normal production potential; adoption of a deflation policy also contributed to the slowdown. From 
1954, the GDP regular growth by more than 5% a year prevailed. Another slowdown and an onerous 
economic situation in the late 1950s were mainly caused by the colonial war in Algeria, the imminent civil 
war, and growing expenses on nuclear armament. Under the aggravated conditions, a new Constitution 
was written, the Fifth Republic was born and Charles de Gaulle was elected President of France for seven 
years in the office. In addition to the war in Algeria, another reason for the economic slowdown was  
the overall decline of the conjuncture.

After the new Constitution was approved by a referendum, a new plan was developed to put  
the French economy back on its feet, and substantial savings reduced the budget deficit but also  
the expenses incurred on the social care. The economic measure brought the French economy to a recovery 
in the early 1960s and the economic unbalance was eliminated. A faster economic growth stated in 1960, 
also in consequence of franc devaluation, which favoured sales of French goods on foreign markets.

In the mid-1960s, the French GDP dynamics went down because of decreasing wages and consumption. 
This situation later (in 1968) caused extensive strikes because employees' economic standing was worsening. 
A strike lasted several weeks and the economy was paralysed; the consequent drop in the production led 
to the smallest GDP growth rate value in the entire 1960s (4.5% year-to-year in 1968). Charles de Gaulle 
resigned his presidency at noon, April 28, 1969. The new political elite, headed by President Pompidou, 
adopted a new plan to stabilise the economy – the primary aspects included the support to exports  
and restriction on imports, reduction of the state budget deficit, and a substantial increase in taxes. 
Nonetheless, France did not avoid the financial crisis connected with the termination of the Bretton 
Woods system, which caused a monetary crisis of the franc.

The GDP growth had a descending trend after 1973. The French economy was hit by a recession  
and went to the bottom in 1975 (a deep drop caused by the Yom Kippur War and the subsequent oil 
crisis was accompanied by a high level of inflation and unemployment rates). In 1976, a new plan aimed  
at stabilising the franc and recovering the budget balance was adopted. The plan worked as expected 
and the inflation was temporarily stopped. The balance was recovered, but the high unemployment rate 
continued to prevail. The second oil crisis and a return of the high inflation rate (nearly 14% in 1980) 
were negative factors. All these facts and other economic-crisis phenomena affected the presidential 
elections in 1981. The political establishment increased the minimum wages, the lowest pensions,  
and the family benefits. Nearly all banks, insurance companies and key industries were nationalised.  
In the late 1980s, the state-intervention policies were being abandoned, with a continuing liberalisation  
of prices, and decreasing taxes. The average economic growth (measured by the GDP growth rate) 
achieved more than 3% per year.

The international situation (the Gulf War) with the world trade cooling off, growing oil prices, as well 
as procrastination of the necessary reforms, were the factors that caused another slowdown in the French 
growth rate. The economic developments in France after 1990 are characterised by stable year-to-year 
GDP growth, at an average rate of about 1.5%, a low inflation rate and consistently high unemployment 
rate. A critical point occurred at the 1992/1993 year break (the recession began in autumn of 1992  
and was relatively short).
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The beginning of the new millennium was marked with attenuation of the dynamics, caused  
by the drop in performance of the American economy and stock markets, while the oil prices were 
growing. A positive turn came in 2004, but the worldwide economic crisis of the years 2008 and 2009 
hit the economies of many countries heavily, including that of France. The French GDP was going 
down for five consecutive calendar quarters, the general government deficit was growing, and the drop  
in demand attenuated the price growth (it is called the 2008/2009 deflation). The consequences  
of the global crisis were not so bad for France as in the majority of big European economies thanks  
to the growing consumption by households and the fiscal stimuli for exports together with the moderate 
devaluation of the euro. The French economy recovered from the recession in the third quarter  
of 2009. The French economy again stagnated in 2012 (the GDP growth rate was 0.3% in that year),  
and the recovery was coming slowly. The year-to-year GDP growth got above 2% as late as in 2017.  
But it went back down to 1.7% in 2018 and to 1.3% in 2019.

4.2 Model of non-stochastic prediction range for estimated GDP evolution in France
The French GDP time series is long enough; hence we have been able to set up a large number of models 
and their variants. We have calculated our estimates of polynomial curves (including exponential ones), 
moving averages, stochastic models and exponential smoothing models, always verifying their statistical 
properties; if a model has been found to be statistically or factually unsuitable, it has immediately been 
discarded. In the end, 22 models have remained.

This collection of a large number of models has enabled us to gather different "statistical opinions" 
about the series to be predicted, including models that can "discount their memories" (in the sense  
of older observations having lower weights, such as the previously mentioned exponential 
smoothing). Table A2 in the Appendix sums up an overview of the models processed, including 
their parameters and statistical properties, as well as the predictions derived from them for  
the years 2018 and 2019 (for all models, both the point and interval predictions at the 95% level 
of confidence).

All these models were identified with the aid of only 68 items in the time series (from 1950 to 2017) 
‒ we "stored away" the actual values for the years 2018 and 2019. For each of the models we have, 
based on 68 observations, predicted the 2018 and 2019 values to compare such prediction results with  
the actual values (as the subsequent assessments of the predictions). In other words, we have thus "tested" 
each model's ability to predict.

Table A2 in the Appendix further states each model's estimated (modelled, theoretical) value for  
the latest actual observation, that is, 2017. The data listed in Table A1 in the Appendix says that  
the actual value of the year-to-year GDP index in France was y68 = 1.0123 in 2017; that is, the year-to-
year growth value was 1.23%.

A cursory glance at Table A2 in the Appendix reveals a paradox occurring when we use  
an isolated model from our selection to set up a point prediction for the GDP index in 2018  
or 2019. Individual values of point predictions listed in Table A2 show that each model naturally 
leads to a different prediction for the last "known" period (y68, i.e., 2017; as already stated, we 
have "stored away" the y69 and y70 values to be checked later.) Each of the models used pertains 
to its own dynamics. Judging from past behaviour, it would be very difficult to assess which 
model is more or less "acceptable" in comparison with others; to put it bluntly: anybody could 
choose anything.

Let us have a look at Model 18 in Table A2 in the Appendix – ARIMA (2, 1, 1), which was, by software 
Statgraphics Centurion software, assessed as the best among all of our 22 models. The models' quality 
levels were verified with the aid of the usual statistics, whose list and more detailed descriptions are given 
in the Appendix prior to Table A2.
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For the year 2018 or 2019, the 95%-level interval prediction of the year-to-year GDP growth index 
is approximately between 0.982 584 and 1.048 560, or between 0.976 179 and 1.048 050, respectively; 
in both instances, the span between the upper and lower bounds amounts to more than 6.6 percentage 
points. Expressed in absolute volumes, e.g., the French GDP was 3 108.7 billion EUR in 2018,  
and the 6.6% corresponds to 205 billion EUR. This means nearly 40% of the French gross fixed capital 
formation (which was 537.9 billion EUR in 2018). It does not make much practical sense to set up  
a prediction interval whose "uncertainty" amounts to nearly two-fifths of French annul investment volume.

As previously mentioned, we have "stored away" the actual values of the year-to-year French GDP 
growth index for the years 2018 and 2019. In 2018, this actual value was 1.017, meaning an increase  
in the GDP of 1.7%. In 2019, the actual value of the year-to-year index was 1.013, i.e., representing 
an increase of 1.3%. In both instances, the 95%-level stochastic confidence interval we have created  
is "successful" (and similar observations can be made about other models – cf. Table A2 in the Appendix). 
However, this interval is too broad for subsequent decision-making.

The non-stochastic prediction range is based on the selected models and their estimated 
year-to-year French GDP growth indices. Namely, we have the year-to-year indices expressed  
by the prediction intervals of the 22 models (the Lower 95.0% Limit and Upper 95.0% Limit, values  
in Table A2 in the Appendix). Let us now look up the maximum lower bound and the minimum upper 
bound of the year-to-year index prediction intervals in Table A2 in the Appendix (separately for 2018 
and 2019). These values are shown in Table 3 (as well as in Table A2 in the Appendix); they come from 
Model 5 (Exponential Trend: the minimum value of the Upper 95.0% Limit among all 22 models);  
and Model 13 (ARIMA (0, 0, 1): the maximum value of the Upper 95.0% Limit among all 22 models):

Comparing the lower and upper bounds for the prediction ranges in Tables 2 and 3, we can see that 
the span between them is smaller for the non-stochastically argued prediction range. In fact, this span  
is just 4.4 percentage points, as compared with 6.6 percentage points (at a 95% confidence level) valid  
for the best 2018 model, i.e., ARIMA (2, 1, 1). This is an improvement by one-third.

In this way, we have obtained a prediction range (as a difference between the upper and lower 
bounds) for the expected values of the year-to-year GDP indices in France for the years n + 1 = 2018  
and n + 2 = 2019. Let us denote by P69 the prediction for 2018, and by P70 that for 2019:

Table 2 Model M18 

Table 3 Max lower and min upper bounds

Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

2018 1.015 570 0.982 584 1.048 560

2019 1.012 110 0.976 179 1.048 050

Source: Authors' own calculations

Period Max (Lower 95.0% Limit) Min (Upper 95.0% Limit)

2018 0.993 472 1.037 310

2019 0.989 743 1.036 560

Source: Authors' own calculations



2021

15

101 (1)STATISTIKA

or

We have, for the sake of clarity, graphically enhanced a short end section in Figure 2, which depicts 
the year-to-year French GDP growth indices from 2005 to 2017; this enhancement helps us see  
the non-stochastic prediction rage for the years 2018 and 2019 (the lower and upper bounds of the non-
stochastic predictions are marked with dashed lines). At the same time, the actual year-to-year evolution  
of the French GDP indices is easier to see (the solid line).

The 2018 and 2019 data is represented by the actual values (the solid line again) – it is covered  
by the non-stochastic prediction range (the dashed lines).

From the pragmatic point of view, it is clear that the concept of the prediction range set up  
and argued in a non-stochastic way is more efficient than the traditional interval predictions, based 
on an isolated single model, whether best or just "good" ‒ in our case, on the ARIMA (2, 1, 1) process.  
The non-stochastically interpreted concept sets out the future evolution of the index to be predicted  
in a band that is much narrower; this reduces uncertainty in the user's decision-making.

In conclusion, let us point out one interesting phenomenon. It is known that many structural 
relationships are valid among different indices (such as the macroeconomic aggregates). In the case  
of macro-aggregates, it is of extraordinary importance to consider the relationship corresponding  
to the expenditure-based method for estimating the GDP:

GDP = FCE + GCF + E – I,                                             (5)

where FCE stands for the final consumption expenditure, GCF for the gross capital formation, 
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Figure 2  Non-stochastic prediction range – a segment of the French GDP time series (year-to-year volume indices  
 from 2001)

Source: Authors' own calculations, <www.insee.fr>
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E for exports of goods and services, and  I for imports of goods and services.5 A question arises whether 
the described method could also be used if we are interested not only in individual indices but also  
in their sum, e.g., according to Formula (5). It has turned out that the application of the prediction range 
is also useful for additive relationships. In other words, our approach is also consistent in structural  
or balance issues, in which aggregation/decomposition of individual indices plays a role.

In the end, let us address a logical question: what is the average value of the point predictions 
derived within all of the admissible 22 models? The data shown in Table A2 in the Appendix provide 
the average value for the 2018 prediction as P69 = 1.015 (an increase in the GDP by 1.5%), and for 2019  
it is P70 = 1.014 (an increase in the GDP by 1.4%). Let us compare these values with the actual values 
"stored" for the purposes of the prediction assessment: y69 = 1.017 for 2018, and y70 = 1.013 for 2019. This 
result indicates a very good fit; for the sake of interest, the values of the Theil coefficient, cf. Theil (1966), 
for the estimates in 2018 and 2019 as compared with the actual values equal TH = 0.15%.

CONCLUSIONS 
Having in mind the current empirical results, the utilisation of the prediction range in economics can  
be viewed as purposeful. General experience with the efficiency of the prediction range based on processing 
a large number of economic time series has revealed the fact that the success rate of this method is relatively 
high. Nearly 80% of all the ranges we have set up (mostly time series of financial and macroeconomic indices) 
were successful when later compared with the actual data. That is why the methodology for the prediction 
range can become a good corroborative technique in setting up estimates for indices of this type.

Of course, open questions to be addressed in the future remain in the presented outline of the setting 
up prediction range argued in a non-probabilistic way. In our example we considered a series of annual 
values. But series with seasonal components may be predicted as well, for example, quarterly aggregates 
from the national accounts, or completely different time series subject to seasonal fluctuations. Other 
open question is a methodology for choosing the models on which the non-stochastic prediction 
range is based. An ideal solution would be the creation of an algorithmic tool to automate, at least  
to a certain extent, the primary process of model selection and verification. Another important problem  
to be resolved is the question of evaluating the lower and upper bounds of the non-stochastic prediction 
range. For more complex traditional approaches, such as those considered by Theil (1966), an obstacle 
s implied by the non-stochastic character of such bounds; hence simple applications of Theil's processes 
may be disabled. For the moment, we have to put up with a simple way of evaluation by comparing  
the results with the actual values when assessing the predictions.

Another option would be to set up the non-stochastically argued prediction, whether a point or interval 
one, with the aid of the results of the primary models (here M1, M2, etc.) weighted, for example, with 
the interpolation quantity of individual models (even though we are aware that a suitable description  
of the past behaviour is only partly reflected in successful predictions). 

It will, indisputably, be a great challenge to process the reflection of the COVID-19 pandemic  
in the 2020 models, as well as the applications to the future years of 2022, 2023, etc., when the economic 
situation will be getting back to its normal state. It is obvious that it is impossible to predict the economic 
evolution for 2020. The pandemic intervention in the economic relationships is so extensive that 
there are no known models which would be able to cope with such predictions. When we get to the 
economic-recovery stage, it will be interesting to observe to what extent the non-stochastically argued 
predictions will be capable of estimating the degree of the economic recovery. This paper has been written  
in the period of massive manifestation of the coronavirus crisis, which is currently the dominant 
intervention process of the highest intensity. 

5   Cf., for example, Hronová et al. (2019).
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Table A1 GDP France (year-to-year volume indices) 

Table A2 Overview and comparison of models estimated for prediction purposes 

Year y/y Year y/y Year y/y Year y/y

1950 1.086 1970 1.061 1990 1.029 2010 1.019

1951 1.058 1971 1.053 1991 1.010 2011 1.022

1952 1.031 1972 1.045 1992 1.016 2012 1.003

1953 1.035 1973 1.063 1993 0.994 2013 1.006

1954 1.056 1974 1.043 1994 1.024 2014 1.010

1955 1.053 1975 0.990 1995 1.021 2015 1.011

1956 1.050 1976 1.044 1996 1.014 2016 1.011

1957 1.055 1977 1.035 1997 1.023 2017 1.023

1958 1.027 1978 1.040 1998 1.036 2018 1.017

1959 1.027 1979 1.036 1999 1.034 2019 1.013

1960 1.080 1980 1.016 2000 1.039

1961 1.050 1981 1.011 2001 1.020

1962 1.068 1982 1.025 2002 1.011

1963 1.062 1983 1.012 2003 1.008

1964 1.067 1984 1.015 2004 1.028

1965 1.049 1985 1.016 2005 1.017

1966 1.053 1986 1.023 2006 1.024

1967 1.049 1987 1.026 2007 1.024

1968 1.045 1988 1.047 2008 1.003

1969 1.071 1989 1.043 2009 0.971

Source: <www.insee.fr>

Table A2 in the Appendix lists the estimates within the models we have applied to the given time series, characteristics of their 
"interpolation quality", and the point prediction Pn+i for each model, together with the 95%-level interval prediction of the year-to-year  
GDP indices (or rather, Lower 95.0% Limit and Upper 95.0% Limit), for the years 2018 and 2019, followed by:
• the root mean squared error (RMSE),
• the mean absolute error (MAE),
• the mean absolute percentage error (MAPE),
• the mean error (ME),
• the mean percentage error (MPE).

M1. Random Walk with Drift
Forecast model selected: Random Walk with Drift = –0.000935166

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0189166 2018 1.02206 0.984296 1.05983

MAE 0.0135242 2019 1.02113 0.967717 1.07454

MAPE 1.31152

ME –4.63974E-17

MPE –0.0146858

APPENDIX
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M2. Constant Mean
Forecast model selected: Constant Mean = 1.03188

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0222124 2018 1.03188 0.987221 1.07654

MAE 0.0181363 2019 1.03188 0.987221 1.07654

MAPE 1.75631

ME –3.31434E-16

MPE –0.0456116

M3. Linear Trend
Forecast model selected: Linear Trend = 1.0591 – 0.000788999 · t 

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0159303 2018 1.00466 0.971913 1.03741

MAE 0.0118108 2019 1.00387 0.971083 1.03666

MAPE 1.14736

ME –2.36739E-16

MPE –0.023199

M4. Quadratic Trend
Forecast model selected: Quadratic Trend = 1.06239 – 0.0010706 · t + 0.00000408112 · t2 

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0159879 2018 1.00795 0.973848 1.04205

MAE 0.0117821 2019 1.00744 0.973088 1.04180

MAPE 1.14392

ME –2.72658E-16

MPE –0.0230321

M5. Exponential Trend
Forecast model selected: Exponential Trend = e(0.0574661–0.000762605·t)

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0159219 2018 1.00486 0.973425 1.03731*

MAE 0.0118242 2019 1.00409 0.972644 1.03656*

MAPE 1.14847

ME 0.000119753

MPE –0.011639

* = the minimum value among Upper 95.0% Limit values of all 22 models

M6. S-Curve Trend = exp (0.0263113 + 0.0685776 / t)

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0200434 2018 1.02768 0.988234 1.06870

MAE 0.0161746 2019 1.02767 0.988219 1.06869

MAPE 1.56663

ME 0.000188524

MPE –0.0183384
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M7. Simple Moving Average of three terms
Forecast model selected: Simple Moving Average of three terms

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0170942 2018 1.01504 0.976356 1.05373

MAE 0.0129897 2019 1.01504 0.976356 1.05373

MAPE 1.26549

ME –0.000988606

MPE –0.115514

M8. Simple Exponential Smoothing
Forecast model selected: Simple Exponential Smoothing with alpha = 0.2456

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0165784 2018 1.01318 0.980931 1.04544

MAE 0.0120414 2019 1.01318 0.979972 1.04640

MAPE 1.17237

ME –0.00259263

MPE –0.273068

M9. Brown's Linear Exp. Smoothing
Forecast model selected: Brown's Linear Exp. Smoothing with alpha = 0.1095

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0168608 2018 1.00960 0.976794 1.04240

MAE 0.0123323 2019 1.00911 0.975525 1.04269

MAPE 1.1999

ME –0.0014339

MPE –0.157938

M10. Holt's Linear Exp. Smoothing
Forecast model selected: Holt's Linear Exp. Smoothing with alpha = 0.1296 and beta = 0.0413

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0166783 2018 1.00785 0.975643 1.04005

MAE 0.0119991 2019 1.00722 0.974722 1.03972

MAPE 1.16662

ME –0.000206347

MPE –0.0420116

M11. Brown's Quadratic Exp. Smoothing 
Forecast model selected: Brown's Quadratic Exp. Smoothing with alpha = 0.0764

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.017078 2018 1.00915 0.975922 1.04237

MAE 0.0125613 2019 1.00865 0.974560 1.04273

MAPE 1.22117

ME 0.000030422

MPE –0.0152579
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M12. ARIMA (1, 0, 0)
Forecast model selected: ARIMA (1, 0, 0) with a constant. AR(1) = 0.671835; Constant = 0.338781

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0171491 2018 1.02607 0.991490 1.06065

MAE 0.01233 2019 1.02813 0.986473 1.06979

RMSE 0.0171491

ME –0.00059993

MPE –0.0837374

M13. ARIMA (0, 0, 1)
Forecast model selected: ARIMA (0, 0, 1) with a constant. MA(1) = –0.514135; Constant = 1.03217

RMSE 0.0187211 Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

MAE 0.0143691 2018 1.03120 0.993472** 1.06893

MAPE 1.39234 2019 1.03217 0.989743** 1.07459

ME –0.000302896

MPE –0.0638256

MPE –0.023199

** = the maximum value of the Lower 95.0% Limit among all 22 models

M14. ARIMA (1, 0, 1)
Forecast model selected: ARIMA (1, 0, 1) with a constant. 
AR(1) = 0.9447; MA(1) = 0.605663; Constant = 0.0573209

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0168699 2018 1.01816 0.984265 1.05206

MAE 0.0120234 2019 1.01918 0.983386 1.05497

MAPE 1.16948

ME –0.00177662

MPE –0.196771

M15. ARIMA (1, 1, 1)
Forecast model selected: ARIMA (1, 1, 1) with a constant.
AR(1) = 0.26381; MA(1) = 0.967834; Constant = –0.000579074

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0155851 2018 1.01001 0.978402 1.04162

MAE 0.0114333 2019 1.00601 0.973042 1.03897

MAPE 1.11316

ME –0.00149397

MPE –0.163421

M16. ARIMA (1, 1, 0) 
Forecast model selected: ARIMA (1, 1, 0) with a constant
AR(1) = –0.296046; Constant = –0.00117087

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0181952 2018 1.01828 0.981894 1.05466

MAE 0.0130038 2019 1.01850 0.974011 1.06300

MAPE 1.26397

ME –0.0000630604

MPE –0.0224724
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M17. ARIMA (0, 1, 1)
Forecast model selected: ARIMA (0, 1, 1) with a constant.
MA(1) = 0.975448; Constant = –0.000799191

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0160511 2018 1.00513 0.972545 1.03772

MAE 0.0116463 2019 1.00434 0.971736 1.03693

MAPE 1.13506

ME –0.00186452

MPE –0.200961

M18. ARIMA (2, 1, 1) – the best model
Forecast model selected: ARIMA (2, 1, 1).
AR(1) = 0.217349; AR(2) = –0.153627; MA(1) = 0.785371

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0161257 2018 1.01557 0.982584 1.04856

MAE 0.0116326 2019 1.01211 0.976179 1.04805

MAPE 1.13346

ME –0.0032293

MPE –0.332023

M19. ARIMA (1, 1, 2)
Forecast model selected: ARIMA (1, 1, 2) with a constant.
AR(1) = –0.167067; MA(1) = 0.501519; MA(2) = 0.458159; Constant = –0.000904754

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0155657 2018 1.01042 0.978757 1.04209

MAE 0.0115389 2019 1.00423 0.970864 1.03759

MAPE 1.12252

ME –0.00141871

MPE –0.156373

M20. ARIMA (2, 1, 2)
Forecast model selected: ARIMA (2, 1, 2) with a constant.
AR(1) = –0.166424; AR(2) = 0.0439958; MA(1) = 0.495085; MA(2) = 0.462624; Constant = –0.000867036

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.015673 2018 1.01067 0.978763 1.04258

MAE 0.0114815 2019 1.00499 0.971303 1.03867

MAPE 1.11703

ME –0.00130787

MPE –0.145634

M21. ARIMA (2, 1, 0) 
Forecast model selected: ARIMA (2, 1, 0) with a constant.
AR(1) = –0.404877; AR(2) = –0.336535; Constant = –0.0013624

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0172156 2018 1.01682 0.982146 1.05150

MAE 0.01284 2019 1.01392 0.973570 1.05428

MAPE 1.24743

ME –0.000187674

MPE –0.0350347
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M22. ARIMA (0, 1, 2)
Forecast model selected: ARIMA (0, 1, 2) with a constant. 
MA(1) = 0.610061; MA(2) = 0.351027; Constant = –0.000776596

Statistic Period Forecast Pn+i Lower 95.0% Limit Upper 95.0% Limit

RMSE 0.0154547 2018 1.01136 0.979949 1.04278

MAE 0.0115043 2019 1.00499 0.971277 1.03871

MAPE 1.11889

ME –0.00128165

MPE –0.142689

Source: <www.insee.fr>


