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Abstract

Volatility Target (VolTarget) strategies as underlying assets for options embed-
ded in investment-linked products have been widely used by practitioners in re-
cent years. Available research mainly focuses on European-type options linked to 
VolTarget strategies. In this paper, VolTarget-linked options of American type are 
investigated. Within the Heston stochastic volatility model, a numerical study of 
American put options, as well as American lookback options linked to VolTarget 
strategies, is performed. These are compared with traditional American-type de-
rivatives linked to an equity index. The authors demonstrate that using a Volatility 
Target strategy as a basis for an embedded American-type derivative may make 
any protection fees significantly less dependent of changing market volatilities. 
Replacing an equity index with the VolTarget strategy may also result in reducing 
guarantee fees of the corresponding protection features in a highly volatile market 
environment. 
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INTRODUCTION 

In the recent years, providers of structured products, in particular 
investment-linked products, face various challenges that result from 
extreme market environments. These market environments are char-
acterized by very low interest rates, as well as by quickly changing 
market volatilities. In such market conditions, very often the key pa-
rameters of investment-linked products become unstable and change 
significantly with time. This makes investment-linked products less 
attractive to potential investors. 

One way to address the above problem is to modify an invest-
ment concept (risky asset), which is used as a basis for an invest-
ment-linked product (such as S&P 500 or other equity index). The 
modified investment concept is a Volatility Target (VolTarget) 
strategy linked to the basic risky asset. A VolTarget strategy is a 
combination of a basic risky asset (e.g. S&P 500 index) and a risk-
less asset (e.g., a government bond) taken in certain proportions 
and dynamically rebalanced so that the overall portfolio volatility 
stays under control. 

Between 2015 and 2018, one could observe an increase in interest 
rate levels on the US market. This increase allowed for higher risk 
budgets in investment-linked products, which some product provid-
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ers used to differentiate their solutions from the competition by introducing new and innovative fea-
tures within their capital-protected investment solutions. As one of the results of this process, new 
investment-linked products that contain embedded American-type derivatives linked to VolTarget 
strategies emerged on the market. The present paper is one of the first academic reviews studying the 
VolTarget effect in investment-linked products with embedded American-type options. 

The paper is organized as follows. Section 1 describes the literature review. Section 2, we describe 
typical investment-linked products with embedded American options and provide motivation for 
studying VolTarget strategy-linked options of American type. In section 3, we briefly describe the 
VolTarget mechanism. In section 4, we recall the basic properties of the Heston market model with 
stochastic volatility and describe the way the model is used for our numerical simulations. In sec-
tion 5, we review the least-squares method of Longstaff and Schwartz for pricing American-type op-
tions. The results of our numerical simulations are presented in the following section, before we give 
concluding remarks in the final section.

1. LITERATURE REVIEW

In existing literature, the VolTarget approach 
has been mostly considered either as an asset 
allocation method or as an underlying strategy 
for European-type derivatives. One of the first 
reviews of this allocation logic can be found 
in Krein and Fernandez (2012) or Benson et al. 
(2014). Also, Zakamulin (2014) considered vol-
atility driven asset allocation concepts in more 
details. In Kim and Enke (2018), artificial neural 
networks are used in order to predict market vol-
atility. This approach is applied in order to im-
prove risk-return profiles of investment products.

In Albeverio et al. (2013), the VolTarget mecha-
nism is considered from an academic perspective 
for the first time both as an investment instru-
ment and as an underlying asset for a European 
option embedded in an investment product with 
guarantee. Albeverio et al. (2018) investigate an 
extension, which allows to choose the volatili-
ty target level depending on interest rate levels. 
Advantages and limitations of using a VolTarget 
strategy in such products are presented. 

2. INVESTMENT PRODUCTS 

WITH EMBEDDED 

AMERICAN OPTIONS 

American options are used by practitioners as 
embedded instruments in structured investment 
products with capital protection, mutual funds, as 

well as in investment-linked contracts in order to 
offer minimum guaranteed benefits. Motivated 
by this new use of American options, we decid-
ed to have a deeper look into investment-linked 
contracts with protection elements. We will make 
some simplifying assumptions (such as no run-
ning fees and a guarantee fee is paid in addition to 
the contract) in order to demonstrate the essential 
idea without going into a lot of technical details. 

Let us consider the following version of an invest-
ment-linked contract: At time 0,t =  a policy-
holder pays an amount M  and chooses an index 
fund or a mutual fund in which the premium will 
be invested. Let us denote the fund value at time t  
by .

t
F  Then, 

0
.F M=  

Additionally, at time 0,t =  the policyholder de-
cides whether an annual guarantee will be included 
into the contract. Suppose the policyholder wants 
to add this feature to his/her investment-linked 
contract. Let P  stand for a percentage protection 
level. Typically, the protection level is offered at 
80%, 90% or 100% of the investment (this corre-
sponds to 0.8,P =  0.9P =  and 1,P =  respec-
tively). This means that at any time τ during the 
contract life, the account value of the policyholder 
equals the fund value ,Fτ  but at least 100%P ⋅  
of the investment amount at the beginning of the 
year: 

1
,

k
P F −⋅  where [ )1,k kτ ∈ −  is the moment 

of time during the k-th year of the contract. Let us 
denote by Aτ  the account value at time .τ  Then, 
we have for any [ )1, :k kτ ∈ −  

( )1
max , .

k
A F P Fτ τ −= ⋅  (1)
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In order to include the minimum benefit guaran-
tee into the investment-linked contract, the poli-
cyholder has to pay an additional amount of money 
(a guarantee fee) at the beginning of each year. The 
guarantee fee 

1k
G −  paid at the beginning of the 

k-th year is determined at time 1k −  as a fair price 
of a certain American option issued at that time 
and expiring in one year. Let us explain this part 
more in detail. 

It is straightforward to see that formula (1) may be 
rewritten as follows:

( )1
max ,0 .

k
A F P F Fτ τ τ−= + ⋅ −  (2)

The second term in the above expression repre-
sents the payoff at time [ )1,k kτ ∈ −  of a one 
year American put option on the underlying fund 
F  issued at time 1t k= −  with the strike price 

1
.

k
K P F −= ⋅  In order to receive the amount 
(2) at time ,τ  the investor should purchase the 
American put option described above for its fair 
price at time 1t k= −  in addition to his/her cur-
rent investment 

1
.

k
F −  Let us denote the fair price 

of the option by 
1
.

k
P −  This amount represents the 

guarantee fee paid at time 1:t k= −  

1 1
.

k k
G P− −=  (3)

Let us consider the following example that illus-
trates this discussion. 

Suppose a 45-year old client is interested in an 
investment-linked solution with an investment 
horizon of 15 years. Suppose the client’s initial 
investment into a chosen fund is 

0
100,000.F =  

The investor chooses to have his/her investment 
protected with the protection level 0.8.P =  So 
he/she needs to purchase a one year American 
put option on the underlying fund with the 
strike price  

0
0.8 100,000 80,000.P F⋅ = ⋅ =  

Suppose that the fair price of that American 
put option at time 0t =  equals 1% of the in-
vestment amount: 

0
0.01P =  

0
1,000.F =  So the 

guarantee fee paid by the client at time 0t =  is 

0 0
1,000.G P= =  

Suppose that after the first year, the un-
derlying fund has grown by 10% (after all 
fees). This means that the American put op-
tion issued at time 0t =  expires worth-

less. The investment amount at time 1t =  is 

( )1 0
1.1 110,000.F F= ⋅ =  At this point, the cli-

ent decides that hi/she wants to continue into 
the next year with the same protection level of 
80%. So he/she buys a new one year American 
put option on the underlying fund with the 
strike price 

1
0.8 110,000 88,000.P F⋅ = ⋅ =  

Suppose that the fund volatility went down 
compared to 0,t =  but the market interest rate 
stayed the same. So the option price went down 
compared to 0t =  and it is now 0.8% of the in-
vestment amount: 

1 1
0.008 880.P F= ⋅ =  The 

guarantee fee paid by the client at time 1t =  is 

1 1
880.G P= =

Further, suppose after the second year, the under-
lying fund has lost 30% of its value, i.e. ( )2

0.7F =  

1
77,000.F =  However, since the investor has 

purchased a minimum benefit guarantee, his/her 
portfolio only loses 20% of its value. Indeed, since 
the underlying fund’s value at time 2t =  is below 
the strike price of 88,000, the American put op-
tion at time 2t =  pays 88,000 − 77,000 = 11,000. 
So the account value as of time 2t =  is 

( )2 2 1 2 1
88,000.A F P F F P F= + ⋅ − = ⋅ =  This is 

equivalent to a 20% loss. 

A structured product with a so-called high-water-
mark lock-in, which has an embedded American 
lookback option, is one way to design this profile. 
In that case, at any time ,τ  the account value is 
the current fund value ,Fτ  but at least 100%P ⋅  
of the highest achieved account value since the 
beginning of the year:  

1
max ,

k S S
P Fτ− ≤ ≤⋅  where 

[ )1,k kτ ∈ −  is the moment of time during the 
k-th year of the contract. In this case, the account 
value Aτ  for any [ )1,k kτ ∈ −  takes the follow-
ing form: 

( )
1

max , max .
S

k s

A F P Fτ τ τ− ≤ ≤
= ⋅   (4)

Similar to the case of a minimum benefit guaran-
tee, in order to include the high-watermark lock-
in protection into the investment-linked contract, 
the investor has to pay a guarantee fee at the be-
ginning of each year. The guarantee fee 

1k
G −  paid 

at the beginning of the k-th year is determined at 
time 1k −  as a fair price of an American float-
ing-strike lookback option issued at that time and 
expiring in one year. Let us explain this part more 
in detail. 
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Let us rewrite formula (4) in the following way: 

( )
1

max  max ,0 .
S

k s

A F P F Fτ τ ττ− ≤ ≤
= + ⋅ −  (5)

The second term in the above expression repre-
sents the payoff at time [ )1,k kτ ∈ −  of a one year 
American lookback option on the underlying fund 
F  issued at time 1t k= −  with the strike price  

1
max .

S
k s

K P F
τ− ≤ ≤

= ⋅  In order to receive the amount 
(5) at time τ, the investor should purchase the 
American lookback option described above for its 
fair price at time 1t k= −  in addition to his/her 
current investment 

1
.

k
F −  Let us denote the fair 

price of the option by .
LB
P  This amount repre-

sents the 
1

LB

k
P −  guarantee fee paid at time 1:t k= −

1 1
.

LB

k k
G P− −=  (6)

Typical investment-linked contracts have a life 
time between five and up to twenty years depend-
ing on market practice and local tax regulations. 
As was explained earlier, every year a product 
provider determines a new guarantee fee depend-
ing on the market environment at the renewal 
date of the contract by evaluating the embedded 
American put option or American lookback op-
tion on the underlying risky asset. This may lead 
to significant changes in guarantee fees from year 
to year due to the changing market environments. 
In particular, market volatility, as well as market 
interest rate, may play a significant role in these 
fluctuations of the guarantee fee. Unstable and 
changing guarantee fees reduce the attractive-
ness of an investment-linked contract in the eyes 
of a potential investor. Additionally, higher mar-
ket volatilities normally would lead to higher op-
tion prices and as a result to higher guarantee fees. 
Product providers are interested in new approaches 
that keep under control the guarantee fees of in-
vestment-linked contracts and would limit the in-
fluence of market environments on guarantee fees. 

One way to address this problem is to replace the 
underlying risky asset of an investment-linked con-
tract with a Volatility Target (VolTarget) strategy 
linked to the same risky asset as in the original con-
tract. In this article, we focus on investment-linked 
products with guarantee levels smaller or equal 
100%, which we saw more often as a result of a com-
parable low interest rate environment. Recently, 
such solutions were more often using embedded 

derivatives of American type. We illustrate the idea 
that using a Volatility Target strategy as underlying 
assets in such a product framework reduces the in-
fluence of market volatilities on American option 
prices. This in turn results in more stable guaran-
tee fees of investment-linked contracts that have 
American options embedded in their design. 

3. VOLATILITY TARGET 

MECHANISM 

The Volatility Target (VolTarget) concept is based 
on the idea to dynamically adjust a portfolio aim-
ing to control the volatility of the strategy. For a 
portfolio consisting of risky and riskless assets, 
the allocation of assets is decided on rebalancing 
dates, taking into account the ratio between the 
realized volatility of the chosen risky asset and a 
volatility target. In this paper, we assume a con-
stant volatility target, an extended version allow-
ing the volatility target to fluctuate over time is 
considered in Albeverio et al. (2018). 

The VolTarget portfolio construction is outlined 
in the following steps. For further details, we refer 
to Albeverio et al. (2013). 

An investor chooses the values of the following 
constants: the volatility target VT  and a maxi-
mum portfolio leverage .L  These constants are 
usually chosen in accordance with a particular ap-
plication or in line with some levels observed for 
historical time series. 

At each point in time ,
k
t  1,  2,...,k =  when the 

portfolio is rebalanced, one determines the real-
ized volatility ( )r k

V t  of the underlying risky as-
set. Then, the portfolio is split between riskless 
and risky asset using the portfolio weights 

1
α  and 

2
α  following the equation below: 

( ) ( )1
min ; ,

k

r k

VT
t L

V t
α

 
=   

 
 (7)

( ) ( )2 1
1 .

k k
t tα α= −  (8)

During the time period [ )1
,  
k k
t t +  the portfolio 

weights 
1

α  and 
2

α  are constant, before they are 
updated at the next portfolio rebalancing time 

1
.

k
t +
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L  is the maximum leverage factor of the strategy. 
This parameter should avoid an excessive exposure 
of the strategy to the risky asset in a market envi-
ronment with low volatility. In practice, the fac-
tor L  is between 1 and 2. The case 1L =  is called 
from practitioners Volatility Capped (VolCap) 
portfolios instead of VolTarget portfolios. 

4. FINANCIAL MARKET 

MODEL 

In this study, we assume that the risky asset dy-
namics are described by the Heston stochastic 
volatility model (see Heston, 1993), i.e. the risky 
asset dynamics follow the stochastic process 

( ){ }
0 t T

S t
≤ ≤

 satisfying the equation: 

( ) ( ) ( ) ( ) ( ) ,S
dS t rS t dt t S t dW tσ= +  (9)

with r  being the risk-free interest rate and ( )S
W t  

being a standard Wiener process. The dynamics of 
the stochastic volatility ( ){ }

0 t T
tσ

≤ ≤
 in equation 

(9) can be described by:

( ) ( )( )
( ) ( )

2 2

,

d t v t dt

t dW tσ σ

σ β σ

σ σ

= − +

+

 (10)

where 0β >  is the mean long-term volatili-
ty, 0v >  is the rate at which the volatility re-
verts toward its long-term mean and the volatili-
ty of the volatility is denoted by 0.σσ >  Further, 

( )W tσ  is a standard Wiener process correlated 
with ( )S

dW t  with the constant real-valued cor-
relation .ρ  In order to ensure that the process 

( ){ }2

0 t T

tσ
≤ ≤

 is strictly positive, we will assume 
that the Feller condition 2

2v σβ σ>  holds (see 
Albrecher et al., 2007). 

By making use of this description of the pure risky 
asset S, our core interest lies on a VolTarget port-
folio linked to the risky asset .S  To describe this 
portfolio in more detail, we consider a stochastic 
process ( ){ }

0
.

t T
V t

≤ ≤
 As introduced before-hand, 

we assume that the VolTarget portfolio follows a 
rebalancing rule time instances 

1 2
,
n

t t t< < <  
0

k
t T< <  ( )1, , .k n=   On each interval 

[ ]1
, ,
k k
t t +  ( )0, , ,k n=   the stochastic process 

( ){ }
0 t T

V t
≤ ≤

 is given by:

( ) ( ) ( ).k k
V t S t B tβ γ= +  (11)

We assume that ,
k

β  
k
γ  are real-valued and 

constant for each 0, , .k n=   Furthermore, 
( ){ }

0 t T
B t

≤ ≤
 reflects the bond process based on 

the constant interest rate .r  By construction of 
the VolTarget portfolio, 

k
β  and 

k
γ  fulfill the 

condition: 

( ) ( )lim lim ,  1, , .
kk

t tt t

V t V t k n
+− →→

= =    (12)

Based on this framework, we are going to run a nu-
merical analysis to price American-type options 
linked to the pure risky asset S  and we will com-
pare these figures with derivatives of American 
type, which use a VolTarget portfolio V  as under-
lying having S  as a risky asset. 

5. PRICING AMERICAN-TYPE 
OPTIONS BY THE LEAST 

SQUARES METHOD 

For pricing American-type options in our nu-
merical simulations, we have chosen the least 
squares method (LSM) introduced by Longstaff 
and Schwartz in 2001. For further development of 
the method, we also refer e.g. to Hilpisch (2015), 
Huynh et al. (2008). 

In this section, we recall the main idea of the meth-
od and touch upon some implementation details. 

A holder of an American option at any exercise 
time makes a decision whether to exercise the 
option or not, based on comparison of the pay-
off from immediate exercise with the option 
continuation value. The payoff from immediate 
exercise can be determined straightforwardly 
as soon as the value of the underlying asset be-
comes known. 

The option continuation value is determined 
by the conditional expectation (given the un-
derlying asset values) of the payoff from keep-
ing the option and not exercising it at this 
point in time. Evaluating the option continua-
tion value is the key issue in pricing American-
type derivatives. 
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The least squares method (LSM) of Longstaff 
and Schwartz is based on the idea that the con-
ditional expectation in question can be estimat-
ed by projecting (or, more precisely, regressing) 
the realized payoffs from keeping the option on 
basis functions of the underlying asset price val-
ues. In Longstaff and Schwartz (2001), a recur-
sive procedure is developed where the continu-
ation option value is estimated for each exercise 
date starting from the option expiration date 
and going backward in time on simulated un-
derlying asset price paths. 

This way for each simulated asset price path, an 
optimal exercise strategy is determined and a 
set of cash f lows (or payoffs) generated along 
each path is estimated. Then, the American op-
tion price at time zero is determined as an aver-
age of all discounted payoffs from each underly-
ing asset price path. 

The choice of the set of basis functionc for the 
regression procedure described above is an im-
portant issue. Longstaff and Schwartz (2001) 
suggest a variety of choices, starting from 
simple power functions 

2
1,  ,  ,S S   and up 

to Laguerre, Hermite, Legendre, Chebyshev, 
Gegenbauer, and Jacobi polynomials. To im-
plement the LSM, a finite number of the basic 
functions is used. 

After simulating a certain number of the under-
lying asset price paths, only the paths where the 
option is in the money are used for building op-
timal exercise strategies. 

6. NUMERICAL  

EXPERIMENTS 

In this section, we provide the results of our nu-
merical simulations. We use the LSM method of 
Longstaff and Schwartz (Longstaff & Schwartz, 
2001) to price American put options (subsection 
6.1), as well as American lookback options with 
floating strike price (subsection 6.2). As was indi-
cated at the end of Section 4, we provide prices for 
options of two types: (a) with the underlying as-
set being a pure risky asset; (b) with the underly-
ing asset being a VolTarget portfolio linked to the 
same risky asset as in case (a). 

The risky asset under consideration follows the 
Heston model with stochastic volatility (section 4). 
The following parameter values are used within 
our simulation: 

1.25,v =  0.04,β =  0.2,σσ =  0.5,ρ = −  
0.03.r =  

Table 1 contains the initial values of the risky asset 
volatility σ(0) > 0, which are used within the nu-
merical analysis. 

Table 1. Risky asset annual volatility level used as 
basis for numerical studies on American options

Risky asset 
volatility σ(0)

0.10 0.20 0.30 0.40 0.50

In line with the description given in equa-
tion (9)-(10), we will simulate 1,000 paths for 
the risky asset S  assuming a starting value 

( )0 100S =  and considering the different vola-
tility levels from Table 1. We assume that any 
dividends are re-invested in the strategy and we 
do not consider any transaction costs. 

Correspondingly, we shall simulate the associa-
ted path of the VolTarget portfolio V  with the 
initial value ( ) ( )0 0 100V S= =  for each path 
of the risky asset .S  A volatility target level of 

0.2VT =  and a maximum leverage 2L =  are 
assumed. The VolTarget portfolio is rebalanced 
monthly. 

For all American options considered in this sec-
tion, we assume a life time of 1 year, and within 
our numerical analysis, we assume that the op-
tions can be exercised at any trading day. 

Following Huynh et al. (2008), for the basis func-
tions in the LSM method (see section 4), we use 
three power functions: 

2
1,  ,  .S S  

6.1.	Comparison	of	the	American		
put	option	prices

In the context of American options that are em-
bedded into investment-linked products (see sec-
tion 2), we consider an American put option with 
the payoff function at time τ  as follows:
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( ) ( )( )max 0 ,  0 ,B P S Sτ τ= ⋅ −  (13)

where [ )0,1τ ∈  with 1 standing for one year.

Table 2 gives the numerical prices for American 
put options on the pure risky asset described 
above for the initial volatility levels varying be-
tween 10% and 50% annually, and for protection 
levels P  between 80% and 100%. In this case, the 
protection level of 80% ( )0.8P =  corresponds to 
the strike price of 80, and the protection level of 
100% ( )1.0P =  corresponds to the strike price of 
100. Let us recall that the lifetime of each option 
is 1 year, and the initial underlying asset price is 

( )0 100.S =

Table 2. American put option prices with the 
pure risky asset as an underlying

Protection 
level in %/σ(0)

0.10 0.20 0.30 0.40 0.50 RPR

80 0.03 0.96 3.29 5.75 9.16 1.00

85 0.13 1.66 4.44 7.75 11.06 0.99

90 0.43 2.91 6.05 9.48 12.99 0.97

95 1.24 4.67 7.81 12.21 16.12 0.92

100 2.94 6.81 10.95 14.84 18.57 0.84

As expected, one observes in each column an in-
crease in the put option prices when the protec-
tion level (and therefore the strike price) increases. 
Also, in each row the put prices increase with the 
increasing initial volatility level of an underlying 
asset. 

The last column in Table 2 contains the Relative 
Price Range (RPR) for each protection level. To ob-
tain the RPR, we determine the difference between 
the put price corresponding to ( )0 0.50σ =  and 
the put price assuming

 
( )0 0.10.σ =  This value 

is divided by the put price, which corresponds 
to ( )0 0.50.σ =  For example, the RPR of 0.99, 
which occurs in the second row, has been calculat-
ed as follows: (11.06–0.13)/11.06 = 0.99. 

The data in Table 3 represent the corresponding 
numerical prices of the American put options 
where the underlying asset is a VolTarget portfolio 
linked to the same risky asset as in Table 2. 

Table 3. American put option prices linked to the 
VolTarget strategy

Protection level 
in %/σ(0)

0.10 0.20 0.30 0.40 0.50 RPR

80 0.86 1.82 2.06 2.18 2.75 0.69

85 1.56 2.89 3.23 3.32 3.98 0.61

90 2.69 4.35 4.40 5.16 5.54 0.51

95 4.42 6.27 6.76 6.85 7.55 0.42

100 6.67 8.43 8.56 9.32 10.11 0.33

In Table 3, similar to the data in Table 2, one ob-
serves an increase in the put prices in each row, 
as well as in each column. However, the RPR val-
ues in Table 3 are significantly lower than those 
in Table 2. In particular, the RPR in Table 3 is on 
average 45.85% lower than that in Table 2. 

Additionally, option prices in Table 3 that corre-
spond to higher levels of initial underlying asset 
volatility are much lower than those in Table 2. For 
example, comparing the option prices that corre-
spond to ( )0 0.40,σ =  one observes the follow-
ing. When an underlying asset is a VolTarget port-
folio (Table 3), option prices are on average 49.12% 
lower that those where an underlying asset is a 
pure risky asset (Table 2). 

In order to visualize some of our numerical re-
sults, we have included the spider diagram that 
shows the American put option prices that cor-
respond to the protection level of 100% in each 
of the tables (see Figure 1). The blue line corre-
sponds to the case of a pure risky asset as an un-
derlying, while the red line represents the case of 
an American put option linked to the VolTarget 
strategy. The graph illustrates that the VolTarget-
linked American put option prices are signifi-
cantly less dependent on changing market vola-
tilities than the prices of American put options 
linked to a pure risky asset. 

6.2.	Comparison	of	the	American	
lookback	option	prices	

In this subsection, we consider American float-
ing-strike lookback options, having in mind 
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their application as embedded options in invest-
ment-linked products with high-watermark lock-
in (see section 2). 

Our main interest will be in floating-strike look-
back options of American type that have the fol-
lowing payoff at time τ ∈ [0,1):

( ) ( )( )
0

ùùù=
LB

s

B P S s Sτ τ
τ

≤ ≤
= ⋅ −  (14)

Table 4 gives the numerical prices for floating-strike 
lookback options of American type linked to a pure 
risky asset for the initial volatility levels varying be-
tween 10% and 50% annually, and for protection 
levels between 80% and 100%. Again, the lifetime 
of each option is 1 year, and the initial underlying 
asset price is ( )0 100.S =

Table 4. American floating-strike lookback option 
prices linked to the pure risky asset

Protection 
level in %/σ(0)

0.10 0.20 0.30 0.40 0.50 RPR

80 0.03 1.84 5.62 10.76 16.97 1.00

85 0.21 3.36 8.47 14.27 21.94 0.99

90 0.79 5.42 11.45 18.78 27.61 0.97

95 2.54 8.71 16.21 24.62 32.38 0.92

100 6.12 13.45 21.26 29.33 39.64 0.85

We see that, similar to the case of American put 
options, the floating-strike American lookback 
option prices increase with increasing protection 
level. Also, the lookback option prices increase 
with the increasing initial volatility level of an un-
derlying asset. In addition, comparing prices in 
Tables 2 and 4, we see that the lookback feature 
makes these options significantly more expansive 
than American put options. 

Figure 1. American put option prices with a maturity 

 of one year and a protection level of a 100%
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The last column in Table 4 contains the Relative 
Price Range (RPR) for each protection level, sim-
ilar to the case of the American put option prices 
presented in subsection 6.1. 

The data in Table 5 represent the corresponding nu-
merical prices of the American lookback options 
where the underlying asset is a VolTarget portfolio 
linked to the same risky asset as in Table 4. 

Table 5. American floating-strike lookback option 
prices with the VolTarget portfolio as an underlying

Protection 
level in %/σ(0)

0.10 0.20 0.30 0.40 0.50 RPR

80 1.37 3.22 3.72 3.96 4.57 0.70

85 2.99 5.30 5.81 6.51 6.89 0.57

90 5.17 8.54 8.62 9.24 10.56 0.51

95 8.12 12.21 12.25 13.37 14.33 0.43

100 13.05 16.54 17.55 18.84 19.82 0.34

In Table 5, similar to the data in Table 4, one ob-
serves an increase in option prices in each row, as 
well as in each column. However, the RPR values 
in Table 5 are significantly lower than those in 
Table 4. On average, the difference is about 46.02%. 

Similar to the case of American put options 
considered in the previous subsection, the 
prices of American lookback options linked to 
the VolTarget portfolios are overall lower than 
those that correspond to the pure risky asset as 
an underlying, for higher levels of initial risky 
asset volatility. For example, let us compare the 
option prices that correspond to ( )0 0.40σ =  
in Table 5 with corresponding prices in Table 4. 
When an underlying asset is a VolTarget port-
folio, option prices are on average 49.98% lower 
that those when an underlying asset is a pure 
risky asset. 

Figure 2. American lookback option prices with a maturity  
of one year and a protection level of 100%
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For visualization of our numerical results, please 
see the spider diagram in Figure 2 that shows the 
prices of the American floating-strike lookback 
options that correspond to the protection level of 
100% in each of two tables. Again, one can easily 
see that the VolTarget-linked derivatives are less 
dependent on changing market volatilities than 
their standard counterparts. 

6.3.	Summary	of	the	numerical	
experiments	

Our numerical results presented in subsections 6.1 
and 6.2 demonstrate that replacing a pure risky 
underlying asset with its VolTarget counterpart in 
American-type derivatives (namely, in American 
put options and in American floating-strike look-
back options) results in the following: 

• for initial volatility levels that are higher than 
the chosen target volatility level, American 
option prices in the case of a VolTarget un-
derlying asset are overall lower than the cor-
responding option prices, which are linked to 
a pure risky asset; 

• American option prices are significantly less 
dependent on the fluctuations of the mar-
ket volatility, when an underlying asset is a 
VolTarget portfolio compared to the case of a 
pure risky asset as an underlying; 

• our numerical results for American derivatives 
with a VolTarget strategy as an underlying demon-
strate similar trends as in our previous research 
on VolTarget-linked options of European type 
(see Albeverio et al., 2013; Albeverio et al., 2018). 

CONCLUDING REMARKS 

On the current market of structured products and especially investment-linked products, one observes a 
wide use of VolTarget strategies in financial products with and without guarantees. Initially, VolTarget strat-
egies have been used as underlying assets for European options that were embedded in investment-linked 
products. Currently, investment-linked products with embedded American-type options linked to VolTarget 
strategies started to emerge on the market. Practitioners use VolTarget strategies in order to make the key 
product parameters less dependent on market environments. This article is one the first attempts to consider 
the new version of VolTarget-linked options of American type from an academic perspective. 

In this paper, we focused on American put options, as well as on American lookback options, linked to 
VolTarget strategies. These options occur as embedded derivatives in investment-linked products with 
guarantees. For such products, an embedded option price corresponds to a guarantee fee paid by an in-
vestor who purchases an investment-linked product. 

For our numerical simulations, we have used the Heston stochastic volatility market model. For numeri cal 
pricing of American-type derivatives, we have utilized the least squares method of Longstaff and Schwartz. 

Our numerical experiments demonstrate that in case of an American-type derivative with a VolTarget strat-
egy as an underlying asset, the corresponding guarantee fee of the investment-linked products may be re-
duced and made significantly less dependent on changing market volatilities. These results are in line with 
previous research on VolTarget strategies, which are used as underlying of European-type derivatives. 
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