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1. Introduction 

Evolutionary games provide a very flexible tool for 

modelling the long-term dynamic effects related to the 

strategic interaction of agents not necessarily endowed 

with the highest degree of rationality. In these models, 

agents follow strategies and evaluate their goodness in 

relation to the payoffs obtained over time. The success 

of each available strategy, therefore, follows a 

Darwinian evolution process and has as a dynamic 

prototype the replicator equation; see Weibull (1985) 

for an extensive overview. This dynamic approach has 

been employed in various economic contexts, including 

behavioural finance (Brock and Hommes, 1997) and 

industrial organization. In the latter field, Droste et al. 

(2002) propose a simple example of duopoly to 

evaluate the fitness of using expensive Nash strategies 

with respect to more myopic (and cheaper) strategies. 

Interestingly, Schaffer (1989) shows that in an 

evolutionary setting, profit-maximizing firms are not 

always the best survivors, provided that firms have 

effective market power (in a more general setting this 

can also be deduced from the results in Heifetz et al., 

2007). In analogous models, Bischi et al. (2015) and 

Cerboni Baiardi et al. (2015) elaborate on the use of 

different behavioural rules and their adoption according 

to an evolutionary approach and with different 

information costs. We refer the reader to Bischi et al. 

(2010) for a complete overview of dynamic oligopoly 

models. 

These models were also used to study the use of 

alternative production technologies with backward-

looking agents (Lamantia et al., 2018), forward-looking 

agents (Lamantia and Radi, 2018) or in contexts of 

technologies with different environmental impacts 

(Lamantia and Radi, 2015; Lamantia, 2017). Another 

relevant example concerns the competition in mixed-

type oligopolies, in which some companies can also add 

to their objective part of the well-being of the 

community through Corporate Social Responsible 

(CSR) practices; Kopel et al. (2014) has shown that if 

the level of internalization of CSR in the company’s 

objective function is not too high, then it might be 

convenient from a strategic point of view for the 

company to maximize an objective function that 

considers both profits and part of the firm’s CSR. These 

results are then extended in Kopel and Lamantia 

(2018), which proposes an evolutionary setup with 

more than two firms to consider the effect of increasing 

competitive pressure in long-run outcomes of the 

model. 

In this paper, we consider a different perspective 

related to information held by companies. Léonard and 

Nishimura (1999) have shown how mistaken beliefs 

can persist and create dynamic outcomes that are 

different from the standard outcomes observed in 

similar games with full information. Their approach 

assumes that at least one firm distorts the demand 

function and has full information on the other quantities 

of the game. Similarly, Chiarella et al. (2002) adopt a 

related setup to investigate the different possible 

equilibria in a continuous-time model where firms may 

adopt misspecified demands. Bischi et al. (2007) 

propose an analogous model with misspecified 

demands and learning with heterogeneous levels of 

distortion. Jin (2001) has proposed a related model, in 

which monopolistic competition under bounded 

rationality is addressed by assuming that firms may 

assess (often incorrectly) the slope of the demand 

function. 

In this paper, we first show what happens in the one-

shot competition between companies that may or may 

not be informed about market demand in an extremely 

simple setup, that of a duopoly with linear demand and 

linear costs. Note that firms may purposely disregard 

information on market demand – that is, they can distort 

demand for strategic reasons. Although it may seem 

counterintuitive, it is not always the case that 

maximizing profit by assuming full knowledge of 

market demand leads to competitive advantage for a 

company. In fact, in the case of an overestimation of the 

demand, this distortion creates a commitment effect for 

the company that in the competition can lead to greater 

profits for the company that distorts the demand 

compared to the firm that maximizes based on effective 

demand. This type of effect is similar to what happens 

in delegation models in which the manager has a 

compensation scheme different from own profits (e.g. 

market share, revenues), which creates a commitment 

effect for more aggressive market behaviour (Vickers, 

1985; Fershtman and Judd, 1987; Sklivas, 1987). In an 

evolutionary setup, this phenomenon has recently been 

studied by De Giovanni and Lamantia (2016).  
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After describing the static model, we consider its 

dynamic extension through an evolutionary game 

employing the setup proposed in Droste et al. (2002). 

At each time period, two firms are extracted from a 

large population of firms and interact by deciding the 

amounts to be played according to the previous model 

of quantity competition. Firms, even if identical, can 

use real market demand or its distorted version; 

however, the validity of each strategy (whether 

informed or not) is established using the real profit 

obtained, following a so-called indirect evolutionary 

approach (Königstein and Müller, 2000; Alger and 

Weibull, 2013). In this way, the fraction of companies 

either distorting information or not is updated 

dynamically based on the results of this competition 

game, which is then iterated over time. While in the 

case of underestimation it is always convenient for 

companies to use real market demand, in the case of 

overestimation this effect depends on the level of 

distortion to the demand. In fact, it is possible that it is 

always more convenient to overestimate the demand (if 

the level of overestimation is not too high) or vice 

versa, to use the real demand (if the level of 

overestimation is very high). For intermediate 

distortion levels, mixed-type cases arise, in which the 

game assumes an anti-coordination form. More 

generally, such behavioural heterogeneity can be 

observed when a pre-commitment stage takes place in 

which firms may select a given behavioural rule; see 

Chirco et al. (2013) for a discussion on this point. 

The last part of the analysis sheds light on welfare 

resulting from these results. We show that, not 

surprisingly, the aggregate profit of the industry is 

always greater if all companies do not distort demand. 

However, total welfare, understood as the sum of total 

profits and consumer surplus, is always maximized 

when companies overestimate the demand. This effect 

is due to the more aggressive behaviour of firms that, 

although reducing total profits, allow consumers to 

purchase goods at a lower market price. 

This paper is organized as follows. Section 2 states 

the basic model assuming a static perspective. Section 

3 extends this setup to an indirect evolutionary setting 

by introducing replicator dynamics. The main results 

for market outcomes are fully studied as a function of 

the parameters of the model. Section 4 provides a 

welfare analysis of the outcomes of the model. Section 

5 provides the conclusions. 

2. Model 

Consider the following one-shot duopoly game. 

Suppose two firms producing homogeneous goods. 

Linear demand is postulated so that the selling price p 

is given by the following linear inverse demand 

function: 

 p = 𝐴 − 𝑞1 − 𝑞2, (1) 

where 𝑞𝑖 denotes the quantity delivered by firm i and 

𝐴 > 0 is referred to as the choke price (maximum 

selling price of the good). For the sake of simplicity, the 

same linear technology is employed so that production 

cost is simply 𝑐(𝑞) = 𝑐𝑞, with 𝐴 > 𝑐 ≥ 0 and fixed 

costs are disregarded. Firm’s i profit is thus given by  

𝜋𝑖 = 𝑞𝑖(𝐴 − 𝑐 − 𝑞1 − 𝑞2). (2) 

Through the standard arguments, the Cournot–Nash 

equilibrium of the game is easily obtained as the 

production plan where each of the two firms produces 

and delivers to market the following quantity 

𝑞𝑆𝑆 =
𝐴 − 𝑐

3
, 

thus obtaining profits 

𝜋𝑆𝑆 =
1

9
(𝐴 − 𝑐)2. 

Now, following Léonard and Nishimura (1999), 

suppose that both firms distort true demand by 

underestimating or overestimating the true inverse 

demand function. Following their suggestion, we 

assume that firms select the perceived demand function 

from a one-parameter family of demand functions such 

that firms are able to assess the specific shape of inverse 

demand but they are not able to know its scale exactly. 

In particular, the expected price is given by the 

following distorted inverse demand 

 𝜀p = 𝜀(𝐴 − 𝑞1 − 𝑞2), with 𝜀 > 0. (3) 

Note that for 0 < 𝜀 < 1 the expected price is lower 

than the actual price – that is, the firms underestimate 

the true price. Instead, for 𝜀 > 1 the demand is 

overestimated. For 𝜀=1, firms use the true inverse 

demand given in (1). As in this case, firm i believes that 

its profit is given by 

 𝜋𝑖 = 𝑞𝑖(𝜖(𝐴 − 𝑞1 − 𝑞2) − 𝑐).  (4) 

The Cournot–Nash equilibrium of the game when both 

firms distort the inverse demand is then given by 

𝑞𝐷𝐷 =
1

3
(𝐴 −

𝑐

𝜖
) , 

which is the quantity that both firms deliver to the 

market. Notice that when 𝜖 > 1 it always holds that 

𝑞𝐷𝐷 > 0. When 0 < 𝜀 < 1, it is 𝑞𝐷𝐷 > 0 provided that 
𝑐

𝐴
< 𝜀 < 1. As for profits, because the actual selling 

price is determined through the true inverse demand 

(1), firms end up gaining the following profits: 

𝜋𝐷𝐷 = 𝑞𝐷𝐷(𝐴 − 𝑐 − 2𝑞𝐷𝐷) = 

=
(𝐴𝜖 − 𝑐)(𝐴𝜖 + 𝑐(2 − 3𝜖))

9𝜖2
. 

Now suppose that just one firm distorts true 

demand, while the opponent uses the true linear form 

of the inverse demand. By following the previous 

arguments, the firm that distorts demand sets the 
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quantity by maximizing (4), whereas the competitor 

that employs the true demand maximizes (2). The 

(asymmetric) Cournot–Nash equilibrium that arises, in 

this case, is given by the following quantities 

𝑞𝑆𝐷 =
𝐴𝜖 + 𝑐 − 2𝑐𝜖

3𝜖
 

and 

𝑞𝐷𝑆 =
𝐴𝜖 + 𝜖𝑐 − 2𝑐

3𝜖
, 

where 𝑞𝑖𝑗  denotes the quantity delivered to the market 

by a firm of type i when its competitor is of type j, 𝑖, 𝑗 ∈
{𝑆, 𝐷}. Here S means a standard firm (a firm that uses 

the actual inverse demand function (1)), whereas D 

stands for a distorting firm (a firm that uses the 

distorted inverse demand function (3)). In the 

following, we refer to a firm that does [not] distort the 

(inverse) demand function as a D-firm [S-firm]. 

With the consequent meaning of the symbols, in the 

mixed duopolistic case, a standard firm (S-firm) gains 

profits given by 

𝜋𝑆𝐷 =
(𝐴𝜖 + 𝑐 − 2𝑐𝜖)2

9𝜖2
, 

when playing against a distorting firm (D-firm), and a 

D-firms obtains 

𝜋𝐷𝑆 =
(𝐴𝜖 − 𝑐(2 − 𝜖))(𝐴𝜖 − 𝑐(2𝜖 − 1))

9𝜖2
, 

when its competitor is an S-firm. 

Notice that for 𝜀 = 1 the various expressions reduce 

to the standard textbook case without distortion. 

It is then easy to prove the following proposition, 

which provides the economically meaningful ranges of 

parameters that we will then assume in the following. 

Proposition 1 [Nonnegativity of equilibrium 

production]. 

When: 

▪ at least one firm underestimates inverse 

demand, that is, when 0 < 𝜖 < 1, then all 

Cournot–Nash equilibrium quantities are 

positive provided that 
2𝑐

𝐴+𝑐
< 𝜖 < 1; 

▪ at least one firm overestimates inverse 

demand, that is, when 𝜖 > 1, and: 

o 𝐴 < 2𝑐, then the Cournot–Nash 

equilibrium quantities are positive 

provided that 1 < 𝜖 <
𝑐

2𝑐−𝐴
; 

o 𝐴 ≥ 2𝑐, then the Cournot–Nash 

equilibrium quantities are always 

positive. 

Table 1 collects the relevant equilibrium quantities 

of the game at hand when the first player is a row-

player. 

Table 1 Cournot–Nash Equilibrium quantities  

 S D 

S 𝑞𝑆𝑆 =
𝐴 − 𝑐

3
 𝑞𝑆𝐷 =

𝐴𝜖 + 𝜖𝑐 − 2𝑐

3𝜖
 

D 𝑞𝐷𝑆 =
𝐴𝜖 + 𝜖𝑐 − 2𝑐

3𝜖
 𝑞𝐷𝐷 =

1

3
(𝐴 −

𝑐

𝜖
) 

The corresponding profits are summed up in the 

following matrix represented in Table 2, which has the 

following form: 𝜋 = [
𝜋𝑆𝑆 𝜋𝑆𝐷

𝜋𝐷𝑆 𝜋𝐷𝐷
]. 

Table 2 Profits at Cournot–Nash Equilibrium  

 S D 

S 𝜋𝑆𝑆 =
1

9
(𝐴 − 𝑐)2 𝜋𝑆𝐷 =

(𝐴𝜖 + 𝑐 − 2𝑐𝜖)2

9𝜖2  

D 
𝜋𝐷𝑆 = 

=
(𝐴𝜖 − 𝑐(2 − 𝜖))(𝐴𝜖 − 𝑐(2𝜖 − 1))

9𝜖2
 

𝜋𝐷𝐷 = 

=
(𝐴𝜖 − 𝑐)(𝐴𝜖 + 𝑐(2 − 3𝜖))

9𝜖2
 

In the following section, we extend this one-shot 

game to a repeated setup, in which firms playing the 

game are drawn from a population of firms where the 

share of D-firms and S-firms is dynamically updated 

according to an indirect evolutionary process whose 

fitness is represented by the accrued profits in Table 2. 

3. Evolutionary setting 

Consider a large population of firms. At any point in 

time, two firms are drawn at random to play the game 

discussed in the previous section, thus obtaining profits 

summarized in matrix 𝜋 reported in Table 2. Given a 

specific parameter setting, the conditions for the 

nonnegativity of the Cournot–Nash equilibria are 

assumed to be satisfied, as specified in Proposition 1. 

Let r(t) denote the actual share of firms that do not 

distort inverse demand (clearly the complementary 

fraction 1-r(t) represents the share of firms distorting 

inverse demand). Assuming that the dynamics of the 

share of S-firms follow a replicator equation (for 

details, see Weibull, 1995; Cressman, 2003), we can 

obtain the following differential equation that models 

the evolutionary competition between S-firms and D-

firms: 

�̇� = 𝑓(𝑟) = 𝑟 ([
1
0

]
𝑇

𝜋 [
𝑟

1 − 𝑟
] − [

𝑟
1 − 𝑟

]
𝑇

𝜋 [
𝑟

1 − 𝑟
])= 

               =  𝑟 𝑐(1−𝑟)(1−𝜖)(𝑐(3+𝑟(𝜖−1)−4𝜖)+𝐴𝜖)

9𝜖2 .               (5) 

Note that even if firms distort true demand, 

evolutionary pressure follows the  accrued profit by 

either strategy – that is, an indirect evolutionary 

approach is here adopted (for details, see Königstein 

and Müller, 2000; Alger and Weibull, 2013). Consider 

the evolutionary model described by the replicator 
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equation (5). The next proposition collects all of the 

main results of its dynamics. 

Proposition 2 [Dynamics of the Replicator 

Equation for the D-S game].  

Underestimation. Assume that firms either 

underestimate inverse demand using (3) with 0 < 𝜖 <
1 or employ the true inverse demand (1). Moreover, the 

nonnegativity constraints on Cournot–Nash 

equilibrium quantities are satisfied as indicated in 

Proposition 1. Strategy S then always dominates 

strategy D. In this case, replicator equation (5) admits 

only the two boundary equilibria: r0=0 (unstable) and 

r1=1 (locally asymptotically stable). 

Overestimation. Assume that firms either 

overestimate inverse demand using (3) with 𝜖 > 1 or 

employ the true inverse demand (1). Moreover, the 

nonnegativity constraints on Cournot–Nash 

equilibrium quantities are satisfied as indicated in 

Proposition 1.  

▪ Strategy S dominates strategy D 

o for any 
2𝑐

3𝑐−𝐴
< 𝜖 <

𝑐

2𝑐−𝐴
 if 𝐴 < 2𝑐; 

o for any 𝜖 >
2𝑐

3𝑐−𝐴
 if 2𝑐 ≤ 𝐴 < 3𝑐; 

o replicator equation (5) admits two 

boundary equilibria: r0=0 (unstable) 

and r1=1 (locally asymptotically stable). 

▪ Strategy D dominates strategy S 

o for any 1 < 𝜖 <
3𝑐

4𝑐−𝐴
 if 4𝑐 > 𝐴; 

o for any 𝜖 > 1 if 4𝑐 ≤ 𝐴; 

o replicator equation (5) admits two 

boundary equilibria: r0=0 (unstable) 

and r1=1 (locally asymptotically stable). 

▪ Neither D nor S dominates the other 

o for any 
3𝑐

4𝑐−𝐴
< 𝜖 <

2𝑐

3𝑐−𝐴
 if 𝐴 < 3𝑐; 

o for any 𝜖 >
3𝑐

4𝑐−𝐴
 if 3𝑐 ≤ 𝐴 < 4𝑐; 

o replicator equation (5) admits three 

equilibria: the two boundary equilibria 

r0=0 (unstable) and r1=1 (unstable) and 

the inner equilibrium 

𝑟∗ =
𝐴𝜖 + 3𝑐 − 4𝑐𝜖

𝑐(1 − 𝜖)
∈ (0,1) 

(locally asymptotically stable). 

Proposition 2 highlights how, in this simple model, 

overestimation leads to a richer dynamic scenario than 

underestimation. In fact, underestimation can only be 

                                                      
1 Equilibrium 𝑟∗, is locally asymptotically stable as it holds 

that 𝑓′(𝑟∗) < 0, where 𝑓(. ) is the left-hand-side of replicator 

equation (4). 

compatible with the standard behaviour of non-

distorting the (inverse) demand when firms set their 

equilibrium quantities: with underestimation, in fact, 

strategy S always dominates strategy D. 

Overestimation, however, is compatible with any 

possible scenario: the dominance of one pure strategy 

over the other (be it S over D or vice versa) or no 

dominance at all of a pure strategy over the other. This 

is because, with overestimation, firms tend to behave 

more aggressively and this behaviour may spread over 

the population of firms, as specified in the previous 

proposition so that, in the long run, we observe a 

polymorphic configuration share 𝑟∗ where both 

strategies are played with positive probability. 

When strategy S dominates strategy D, that is, when 

𝜋𝑆𝑆 > 𝜋𝐷𝑆 and 𝜋𝑆𝐷 > 𝜋𝐷𝐷, the only fixed point of the 

replicator equation (5) are r0=0 (all firms distort inverse 

demand), which is unstable, and r1=1 (no firms distort 

inverse demand), which is locally asymptotically 

stable. This means that, starting from a generic initial 

condition 𝑟(0) ∈ (0,1), the (continuous-time) 

dynamics of replicator equation (5) converge 

monotonically to r1. Notice that underestimation of 

(inverse) demand is never profitable for firms: in fact, 

if firms underestimate (inverse) demand, they behave 

less aggressively than standard firms and always end up 

with fewer profits. Thus, in an evolutionary framework, 

this kind of behaviour should disappear if the game is 

played over and over by firms randomly drawn from 

the population of players. 

When strategy D dominates strategy S, that is, when 

𝜋𝐷𝐷 > 𝜋𝑆𝐷 and 𝜋𝐷𝑆 > 𝜋𝑆𝑆, replicator equation (5) also 

has two equilibria: r0=0 (all firms distort inverse 

demand), which is locally asymptotically stable, and 

r1=1 (no firm distorts inverse demand), which is 

unstable. In this case, starting from a generic initial 

condition 𝑟(0) ∈ (0,1), the evolutionary dynamics 

converge monotonically to r0: all firms in the 

population will eventually overestimate (inverse) 

demand. 

When the game is Hawk-Dove (neither D 

dominates S nor S dominates D), that is, when 𝜋𝑆𝐷 >
𝜋𝐷𝐷 and 𝜋𝐷𝑆 > 𝜋𝑆𝑆, the differential equation (5) admits 

three equilibria: r0=0 and r1=1, which are both unstable, 

and 𝑟∗ ∈ (0,1), which is locally asymptotically stable.1 

The fact that 𝑟∗ is locally asymptotically stable means 

that a generic trajectory with initial condition 𝑟(0) ∈
(0,1) will converge to 𝑟∗, which is a polymorphic 

configuration where both S-firms and D-firms coexist 

in the population. The game classification in the bi-
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dimensional parameter space (A,) for c=0.3 is 

proposed in Figure 1. Finally, Figure 2 presents the 

analogous information in the three-dimensional 

parameter space (A,,c). 

 

Figure 1 Game classification in the bi-dimensional parameter 

space (A,) for c=0.3. Grey [Green] region represents 

combinations of parameters (A,) such that the replicator 

dynamics converge to r1=1 [r0=0] with all S-firms [D-firms]. 

In the red region, no pure strategy dominates, and 

evolutionary dynamics converge to the inner equilibrium with 

a share of S-firms given by 𝒓∗ ∈ (𝟎, 𝟏). The white region 

depicts combinations of parameters (A,) such that Cournot–

Nash quantities are negative and thus ruled out by Proposition 

1. 

 

Figure 2 Game classification in the three-dimensional 

parameter space (A,,c). For the meaning of the different 

colours, see the Figure 1 caption. 

4. Welfare analysis 

Up to now, we have considered the long-run 

configuration of the evolutionary system and 

considered under which conditions the evolutionary 

                                                      
2 It can be shown that when underestimation occurs and P 

dominates S, then both firms would be better off if they 

distorted demand. 

oligopoly game will end up in a state where at least one 

firm may find it useful, for strategic considerations, to 

distort the knowledge of the (inverse) demand function. 

Recall that this may only happen when overestimation 

occurs. Thus, in this section, we will focus on the case 

of overestimation (𝜖 > 1) and briefly analyse the main 

consequences of this information distortion in terms of 

welfare. 

The first result states, not surprisingly, that a 

configuration in which both firms distort the 

knowledge of demand, which is likely to occur as 

specified in the previous section, leads to an inefficient 

outcome for the industry. In other words, the system 

may be trapped in a prisoner’s dilemma-like situation, 

in which all firms may consider it beneficial to distort 

information on market demand (as D dominates S), but 

in the long run firms are worse-off than in a 

configuration where no information distortion occurs.2 

Proposition 3 [Prisoner’s Dilemma Trap]. 

Assume that strategy D dominates strategy S, as 

specified in Proposition 2. Then aggregate industry 

profits are lower when both firms distort (inverse) 

demand than if both firms would employ the correct 

demand. 

The previous proposition can be proven by 

comparing aggregate industry profits in the two cases 

and noting that when D dominates S the following 

inequality holds: 

𝜋𝐶𝐶 > 𝜋𝑆𝑆. 

Next, we consider and compare consumer surplus 

𝐶𝑆(𝑄) =
𝑄

2
 

in the various configurations of the game, where Q is 

the total output in the market. Direct calculation gives 

the consumer surplus levels reported in Table 3. 

Table 3 Consumer Surplus at Cournot–Nash 

Equilibrium  

𝐶𝑆𝑆𝑆: = 𝐶𝑆(2𝑞𝑆𝑆) =
2

9
(𝐴 − 𝑐)2 

𝐶𝑆𝐷𝐷: = 𝐶𝑆(2𝑞𝐷𝐷) =
2

9
(𝐴 −

𝑐

𝜖
)2 

𝐶𝑆𝑆𝐷: = 𝐶𝑆(𝑞𝐷𝐷 + 𝑞𝑆𝑆) =
(𝑐 − 2𝐴𝜖 + 𝑐𝜖)2

18𝜖2  

It is straightforward to observe that under 

overestimation it is 𝐶𝑆𝐷𝐷 > 𝐶𝑆𝑆𝑆. A graphical 

comparison of the level of consumer surplus is depicted 

in Figure 3. 
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Figure 3 Consumer surplus as a function of the level of 

distortion  for A=1 and c=0.3 with two S-firms (blue line), 

two D-firms (green curve), and with one D-firm and one S-

firm (mixed case, red curve). 

Finally, let us consider total welfare, measured by 

summing up total industry profits and consumer 

surplus. The next proposition shows that welfare is 

always maximized when both firms distort the inverse 

demand. 

Proposition 4 [Total Welfare]. 

Assume that 𝜖 > 1. Then both in the case in which 

strategy D dominates strategy S and in the case in 

which strategy S dominates strategy D (see Proposition 

2), total welfare is always maximized when both firms 

distort information. 

The previous proposition can be proven by 

comparing total welfare in the two different scenarios 

of all S-firms and all D-firms, and noting that in the 

cases in which a given strategy dominates the other one 

it always holds that 

𝐶𝑆𝐷𝐷 + 2𝜋𝐷𝐷 > 𝐶𝑆𝑆𝑆 + 2𝜋𝑆𝑆 .  

The last inequality shows the enhancing effect of 

information distortion on welfare. This result can be 

explained by noticing that under overestimation of 

(inverse) demand, information distortion reduces 

overall industry profits (see Proposition 3). In turn, this 

effect is beneficial for consumers, as it reduces the 

market power of the oligopolists, and is reflected in the 

enhancing effect of information distortion on consumer 

surplus. As the latter effect prevails over industry 

profits, total welfare is thus increased by information 

distortion. 

A graphical representation of total welfare in the 

different scenarios is depicted in Figure 4. 

 

Figure 4 Total welfare as a function of the level of distortion 

of inverse demand  for A=1 and c=0.3 with two S-firms (blue 

line), two D-firms (green curve), with one D-firm and one S-

firm (mixed case, red curve). 

5. Conclusions 

In this paper, we have presented a simple indirect 

evolutionary model to evaluate the effect of demand 

distortion in oligopolistic competition. In particular, in 

the case of an overestimation of (inverse) demand, 

firms are led to more aggressive market choices that 

make the competition tougher. This can lead the market 

to situations that resemble a prisoner’s dilemma, as all 

firms are weakened by the fierce competition, which, in 

turn, makes the end consumers better off. The model 

proposed in the paper is deliberately very simple from 

the point of view of the market structure in order to 

show that this type of effect can also be found with an 

extremely simple microeconomic structure. Several 

aspects of the paper could be subjected to a more in-

depth investigation – for example, hypothesizing that 

firms produce non-homogeneous goods or compete on 

price. A further open question concerns how the 

increase in market competition, understood as the 

number of oligopolists present in the market, impacts 

the main results of the model. 
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