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Resume
Both the current cellular network and the planned 5G mobile network need 
to meet high dependability standards, very low latency requirements, larger 
capacity, better security and fast user communication. In order to support 
multiple independent tenants on the same physical infrastructure, mobile 
carriers are working towards end-to-end network resource allocation in 5G 
networks. Future communication networks will require data-driven decision 
making due to the increase in traffic and the accelerated performance of 5G 
networks. With the use of in-network deep learning and prediction, a "deep 
slice" model was built in this study to control network load efficiency and 
network availability. Even in the event of a network outage, the suggested 
model is capable of making wise selections and choosing the best network 
slice.
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range of applications, from ubiquitous internet access 
to driverless cars, will be made possible by them. 
The present COVID-19 pandemic age appears to have 
confirmed the value and significance of communication 
networks and related services [2]. 

With the advent of Beyond 5G systems, which offer 
cutting-edge services like holographic communications, 
Virtual Reality (VR), this function is anticipated to 
become even more important for implementation 
of a future digital society. An “IoT communication 
environment” may be realized by offering a quicker 
“mobile communication environment,” when the 
capacity and speed of data transmission and reception 
across the wired and wireless networks is equal. Such 
an ecosystem can deliver realistic media content 
in 4K, VR and 8K, while also ensuring low power 
consumption in Internet of Things devices and service 
reliability even in settings with many connected devices, 
thanks to cutting-edge technology like AR, VR, drones  
and smartphones [3].

The ITU-R divided the three main 5G mobile 
network services into three categories: ultrahigh speed 
and big capacity (Enhanced Mobile Broadband (eMBB), 

1 Introduction

The International Telecommunication Union (ITU) 
published a paper in February 2017 that outlined 
important requirements, including baseline standards 
for the technical performance for IMT-2020 for 5G mobile 
communication technology. The minimum bandwidth 
need for next-generation services is 1 GHz, the maximum 
data transfer rate is 20 Gbps and the smallest latency 
time is 1 ms. These are the basic needs for a variety of 
5G services as well as the technological requirements 
to achieve the three main goals of 5G: ultra-fast, super-
connection and ultra-low latency. Compared to 4G 
mobile communication, 5G mobile communication is 
more innovatively improved in terms of speed, employing 
protocol and network setups [1]. 

Twenty times quicker than current long-term 
evolution (LTE), the 5G wireless network is designed as 
a soft defined network (SDN), while the 5G core network 
has been switched from a centralized to a decentralized 
kind to reduce traffic transmission latency. Development 
of ubiquitous, digital services with anytime, everywhere 
connection will rely heavily on 5G networks. A wide 
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Trusted Execution Environment (TEE) and Network 
Softwarization. Security management with Security 
Service Level Agreements (SSLAs) and liability 
management are the key aspects of INSPIRE-5Gplus1 
platform. [7].

Suomalainen et al. proposed the most significant 
issue that arises from the direct use of ML ideas in the 
5G network infrastructure, which is weakened network 
security. In addition to providing potential vulnerabilities 
and attack pathways against the availability and 
integrity of 5G services, ML enables user surveillance 
and privacy violation assaults that were previously 
unattainable with conventional adversarial tactics. This 
work’s primary goal was to promote further study into 
the secure application of ML methods in 5G and other 
future wireless networks [8].

Waziri et al. proposed an enhanced reference 
monitor algorithm for the Software Defined Networking 
(SDN) controller for 5G security. Over 50 billion 
connections are anticipated, which the present 4G 
network cannot support. While ubiquitous mobile 
broadband is the primary goal of 4G networks, 5G 
technological characteristics will need to significantly 
improve. Software’s adaptability is essential for fulfilling 
unanticipated future service requirements. In this 
context, Software Defined Networking (SDN) has lately 
gained traction in the networking sector, albeit a precise 
standard on how to assess security risks on SDN for 5G 
has not yet been implemented. To implement the access 
control policy, this paper suggests using the 5-ENSURE 
architecture to integrate Reference Monitor (RM) with 
SDN controllers. The Study will also isolate and handle 
malicious packets in a distributed manner among nodes 
rather than only permitting or denying access based on 
access policy [9].

More than 50 billion connections are anticipated as 
a result, more than 4G can manage at this time. While 
ubiquitous mobile broadband is the primary focus of 4G 
networks, 5G technology requirements must significantly 
outpace those. To accommodate the unanticipated future 
service need, software flexibility is essential. In this 
context, Software Defined Networking (SDN) has just 
recently gained traction in the networking sector and 
a clear standard has not yet been set on how to assess 
the security risks on SDN for 5G. This study suggests 
using the 5-ENSURE architecture and combining 
Reference Monitor (RM) with SDN controllers to apply 
access control policies. [10].

Sciancalepore et al. proposed the development of 
three crucial network slicing building elements that 
are in charge of (i) traffic analysis and prediction 
per network slice, (ii) admission control choices for 
network slice requests and (iii) adaptive load forecast 
correction based on measured deviations. These findings 
demonstrate a trade-off between cautious forecasting 
setups and more aggressive ones, as well as extremely 
significant potential advantages in terms of system 
usage [11].

Ultra-Reliable Low Latency Communications (uRLLC) 
and Massive Machine-Type Communications (mMTC)), 
depending on the needs of each service in terms of 
bandwidth, speed and latency. The technology aspires 
to deliver up to 20 times the speed, 10 times the 
number of connections to IoT devices and 10 times the 
number of low-latency services, compared to 4G mobile 
communication technology. In addition to undertaking 
an examination of LTE security threats, the European 
Union Agency for Cyber security (ENISA) divided 5G 
network threat types into seven categories. It then 
used the CIA criteria to examine them as a threat 
landscape. Through the use of the 5G threat surface, 
5G America in the USA classified the possible security  
risks [4].

The biggest challenge for 5G is the sheer volume of 
networked devices, including vital infrastructure that 
must be utilized in a brand-new IoT paradigm with 
unequal resources. To achieve the desired functionality, 
challenges must be overcome, including protection 
against DoS attacks on end-user devices, protection 
against DoS attacks on radio interfaces, devices and 
networks, distributed control systems that require 
coordination to prevent Signal storms and protection 
against DoS attacks on infrastructure. Additionally, 
similar issues are highlighted by Next Generation 
Mobile Networks (NGMN) [5].

The remaining portions of this article are structured 
as follows: The existing work is presented in Section 
2. Section 3 present the proposed deep slicing in 5G 
wireless networks. The result analysis is presented in 
the section 4. Section 5 concludes the work.

2 Literature survey

Park et al. proposed the potential security 
risks that could exist in the 5G NSA network, they 
were examined, validated on the live network and 
recommendations for security improvements were made. 
In addition, authors examined the necessity for the new 
security strategies rather than conventional security 
methods and associated research and demonstrated 
the persistent weaknesses in the current mobile 
network system. 5G mobile communication network 
backgrounds and historical data collected to match 
with current situation to detect the threats in real-
world mobile networks in service. Before releasing the 
new services, it is vital to assess the potential security 
risks they may pose as well as appropriate mitigation  
strategies. [6].

Ortiz et al.  developed INSPIRE-5Gplus1 project, 
which is creating a smart, reliable and responsible 
5G security platform. This platform utilizes cutting-
edge methods for closed-loop and end-to-end security 
management in 5G and Beyond 5G networks, 
including Distributed Ledger Technologies (DLT), 
Machine Learning (ML), Artificial Intelligence (AI), 
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preprocessing. After a parameter has been normalized, 
apply statistical characteristics. Apply CNN network for 
categorization at the end.

3.1 Block diagram

Efficient resource utilization in 5G networks can 
improve the quality of the service in terms of connectivity, 
speed and quality etc. Frequency slicing can improve the 
resources’ utilization in networks. The proposed block 
diagram for resources’ utilization using slicing with CNN 
is shown in Figure 1. Initially, the network parameters 
are extracted to perform the resource utilization process. 
All the collected parameters are normalized using min 
max level to perform highly accurate feature extraction 
process. Statistical features are extracted to feed the 
CNN for training and classification further.

3.2 Preprocessing

3.2.1 Fog computing

Fog nodes in 5G are situated at the radio access 
network’s edge (RANs). Researchers from Cisco 
characterized fog computing as “a platform that provides 
compute, communication and data storage capabilities 
between end devices and standard cloud computing 

Feng et al. proposed a wireless network virtualization 
paradigm including the data plane, cognitive plane and 
control plane as its three components. To support the 
suggested concept, a unique control signaling method 
has been developed, as well. A hierarchical control 
method, based on the cell-clustering, has been employed 
with dynamically optimized resource consumption from 
the standpoint of network virtualization. To show how 
the schemes operate under the suggested paradigm to 
enhance resource efficiency and the user experience, two 
cases of application have been examined [12].

The main objectives of the proposed methods are
• Create a productive technique to improve the 

system’s overall effectiveness in terms of system 
throughput and energy efficiency.

• The interference in 5G networks and IoT systems is 
reduced or eliminated.

3 Proposed method

The risks and security issues the 5G ecosystem faces 
are largely the same as those that 4G/LTE users are now 
dealing with. To achieve the service level agreements for 
a variety of applications and services, 5G networks will 
also have unique requirements on throughput, latency 
and security, especially with a diversified ecosystem for 
the IoT devices [13]. Utilize the 5G network to obtain 
network parameter, employing the FoG computing for 

Figure 1 Block diagram of the proposed method
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Kurtosis: Kurtosis is a statistical metric used to 
assess how “tailed” a real-valued random variable’s 
probability distribution, given by:
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where μ4 is the fourth central moment and σ is the 
standard deviation. K denotes the kurtosis. 

Skewness: In probability theory and statistics, 
skewness is a measure of the asymmetry of the 
probability distribution of a real-valued random variable 
in regard to its mean. 

The skewness of a random variable X is the third 
standardized moment 3nu  defined as:
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where μ represents the mean, σ represents the standard 
deviation, E represents the expectation operator, 
μ3 is the third central moment and κt is the t-th  
cumulants. 

 
3.5 CNN

Three factors make the CNN’s structure: dataset 
quantity, quality and type. The many receptive layers 
can process elements of the input layer. These networks 
may be set up such that an output picture with a high 
resolution may be produced by creating an overlap 
of the input region. Convolutional neural networks 
(CNNs) are used for feature detection. Following feature 
extraction, a classifier is created using all the fully 
linked layers. Convolutional layers and pooling layers 
couple less frequently since a fully linked CNN is 
not required. It is regarded as CNN’s beating centre 
[17]. Convolution is used when the two mathematical 
functions are combined, with the outcome also being 
a function. By moving the filter, convolution is carried 
out over the input. The result of matrix multiplication 
for each place is added to the feature map, as a total 
[18]. The input picture for this layer is s*s*p, where s is 
the image’s height and width and p is a channel with 
many filters, each of which is t*t*q in size. The picture 
dimension is lower than t and q can be the same as  
channel s [19].

Pooling Layer: between the CNN and the 
convolution layer, there is an inclusion of a pooling 
layer. The major objective of this layer is to reduce the 
dimensionality to get minimal computation and fewer 
parameters. Max pooling is the most significant pooling. 
It is employed to select the highest value available in 
each window [20-23].

Fully Connected Layer: The Fully Connected 

platforms.” Although many issues have been solved 
by integrating cloud computing and end devices, the 
concentration of resources in cloud computing creates 
a significant disconnect between the IoT devices and 
the cloud [13-14]. The resulting massive communication 
latency and computing overhead will surely rise.

3.3 Parameter normalization

Data must be standardized in order to get the 
best results while learning the deep learning network 
parameters. The subsequent equation is applied to each 
feature in this work’s data normalization, using the 
min-Max method [15]. The general equation, used to 
perform the normalization process is given as:

normalization y y
y y
max min

min
= -

- , (1)

where y defines the data to be normalized, ymin is the 
value of minimum, ymax is the value of maximum.

3.4 Statistical features

Network characteristics gathered include the 
protocol’s packet size, the number of packets per flow, 
different payload patterns, the size of the payload and 
the protocol’s request time distribution [16]. Initial raw 
packet captures are transformed to network flows for 
simpler analysis in order to identify the characteristics 
from these profiles. The first packet defines the forward 
(source to destination) and backward (destination 
to source) directions for bidirectional flows created 
with CICFlowMeter. Therefore, they are estimated 
independently both for forward and backward directions, 
using the 83 statistical data acquired from the flows, 
such as time, number of packets, number of bytes and 
packet length.

3.4.1 Arithmetic features

Standard Deviation: The standard deviation in 
statistics is a metric for the variation of the distribution 
of a collection of data. The formula for the sample 
standard deviation is:

N x x1
1

ii

N

1

2v= - -
= r^ h| , (2)

where xn are the observed values, xr is the mean value, 
N is the number of observations.

Mean: By adding up all of the numerical values of 
the observations and dividing the result by the total 
number of observations, the mean of a set of observed 
data can be calculated. It is given in Equation (3). 
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a CoMP-enabled RAN) into many virtual networks 
is the definition of the idea of CoMP-enabled RAN 
slicing. The systematic diagram of RAN Slicing is shown  
in Figure 3.

4 Results and discussions

4.1 Dataset

uses the deep learning to achieve effective and 
dependable network slicing in 5G networks. It contains 
the day and time of each linking, which may also assist 
the network forecast of the amount of connections 
at any particular moment in the future and it would 
be knowledgeable of which networking slices will 
be obligatory or demanded by those links, based on 
information gathered from the previous data.

4.2 False positive rate

The percentage of negative test results that 
regardless result in positive test results is known as 
the false positive rate; it is the conditional probability 
of a positive test result given the absence of a specific 
event. The significance level is matched by the false 
positive rate. One less than the false positive rate is the 
test’s specificity.

Layer, which classifies input pictures as a last layer after 
convolutional and pooling, is used. Having neurons that 
are linked to the preceding layer performs activation 
activities in a layer that is completely connected. It will 
also offer information security to identify and categorize 
bad code in addition to malware detection. Figure 2 
depicts the structure of CNN.

3.6 RAN slicing

Slicing the radio access network (RAN) is a key 
idea for effectively distributing the current network 
infrastructure across several vertical applications. 
Running numerous logical or virtual networks 
as distinct business activities on a single RAN is 
characterized as RAN slicing. Every network slice is 
a separate logical network that has been designed 
to meet the quality-of-service (QoS) requirements of 
a certain application. Additionally, various sophisticated 
radio access technologies (RATs), including massive 
MIMO, coordinated multi-point (CoMP) transmission 
and full-duplex need to be investigated in order to 
meet the hard connectivity requirements. One of the 
most important RATs that satisfies the rigid reliability 
criterion for tactile applications is coMP transmission, 
which generates spatial variety with redundant 
communication channels. The division of a RAN using 
the CoMP transmission mechanism (referred to as 

Figure 2 Architecture of CNN

Figure 3 Systematic diagram of RAN Slicing
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Throughput: It is a gauge of how quickly a node can 
send data across a network. Throughput, then, is the 
typical rate of successfully delivering messages through 
a communication connection.

Packet Delivery Ratio: the proportion of packets 
successfully received by the destination node to those 
successfully sent by the source node. The packet delivery 
ratio is given as:

Packet Delivery Ratio Total number of packets send

Total number of packets received
= . (8)

Highlights of the DeepSlice simulation model’s 

4.3 Positive predictive value

The positive and negative predictive values are the 
proportions of occurrences in statistical and screening 
procedures that are really positive and genuinely 
negative findings (PPV and NPV, respectively). The 
effectiveness of a diagnostic test or other statistical 
metric is described by the PPV and NPV. The correctness 
of such a statistic can be inferred from a high result. As 
opposed to true positive and true negative rates, which 
are inherent to the test, the PPV and NPV also depend 
on the prevalence of the test. The equations for PPV and 
NPV are given in Equations (6) and (7), respectively.

. .
.

PPV
No of TP No F

No of TP
P

=
+

, (6)

Table 1 Highlights of DeepSlice’s simulation model’s features

Input type Packet Loss Rate Packet Delay Budget (ms) Normalized Duration (s)

Smart phone 10-2 60 257

IoT devices 10-2 50 54

Smart transportation 10-6 10 52

AR / VR / Gaming 10-3 50 534

Smart City / Home 10-2 10 100

Unknown Device Type 10-6 10 60

Figure 4 Performance of utilization without delay

Figure 5 Performance of utilization with delay
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without delay. Figure 5 depicts the performance of 
utilization with delay. Figure 6 displays the performance 
of load balancing with delay. Figure 7 depicts the effect 
of network utility on total bandwidth at a 10 ms delay 
bound. The impact of slice user density on the overall 
network utility is seen in Figure 8.

characteristics are listed in Table 1. As expected, each 
of these inbound requests is routed to one or more of 
the network slices. The first responders in an emergency 
may use smartphones to make phone calls, access the 
internet and send the text messages, all at once.

Figure 4 shows the performance of utilization 

Figure 6 Performance of load balancing with delay

Figure 7 Impact of the total bandwidth on the total utility of the network  
at 10 ms delay bound

Figure 8 Effect of the slice user density on the total utility of the network
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other previous works, the CNN-based RAN slicing 
approach used in this work delivers the high efficiency 
and secure data of the 5G network.
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5 Conclusions

To support the connecting of IoT devices, the 
5G network adopted a software-defined architecture, 
bringing technological advantages. In this work, the 
5G parameters from the 5G network were obtained and 
preprocessed using the Fog computing methodologies. 
Then the preprocessing parameter are normalized. 
Then, the feature is extracted using the statistical 
features, like standard deviation, mean, kurtosis, 
skewness from the normalized parameter. Finally, the 
CNN is trained by using extracted arithmetic features 
to perform highly accurate packet slicing process. While 
the 5G Security is a step forward, the vulnerabilities 
associated with interconnecting with the older networks 
against a considerably higher volume of data and 
applications continue to increase. When compared to 

References

[1] BHARDWAJ, A. 5G for military communications. Procedia Computer Science [online]. 2020, 171, p. 2665-2674. 
eISSN 1877-0509. Available from: https://doi.org/10.1016/j.procs.2020.04.289

[2] YESMIN, T., AGASTI, S., CHAKRABARTI, K. 5G security and privacy issues: a perspective view. In: ICT 
with intelligent applications. Smart innovation, systems and technologies [online]. SENJYU, T., MAHALLE, 
P.N., PERUMAL, T., JOSHI, A. (Eds.). Vol. 248. Singapore: Springer, 2022. ISBN 978-981-16-4176-3,  
eISBN 978-981-16-4177-0, p. 89-98. Available from: https://doi.org/10.1007/978-981-16-4177-0_12

[3] DANGI, R., JADHAV, A., CHOUDHARY, G., DRAGONI, N., MISHRA, M. K., LALWANI, P. ML-Based 5G 
network slicing security: a comprehensive survey. Future Internet [online]. 2022, 14(4), 116. eISSN 1999-5903. 
Available from: https://doi.org/10.3390/fi14040116

[4] SHI, W., XU, W., YOU, X., ZHAO, CH., WEI, K. Intelligent reflection enabling technologies for integrated and 
green internet-of-everything beyond 5G: communication, sensing and security. IEEE Wireless Communications 
[online]. 2022, Early Access, p. 1-8. ISSN 1536-1284, eISSN 1558-0687. Available from: https://doi.org/10.1109/
MWC.018.2100717

[5] KIM, H. 5G core network security issues and attack classification from network protocol perspective. 
Journal of Internet Services and Information Security (JISIS) [online]. 2020, 10(2), p. 1-15. ISSN 2182-2069,  
eISSN 2182-2077. Available from: https://doi.org/10.22667/JISIS.2020.05.31.001

[6] PARK, S., KIM, D., PARK, Y., CHO, H., KIM, D., KWON, S. 5G security threat assessment in real networks. 
Sensors [online]. 2021, 21(16), 5524. eISSN 1424-8220. Available from: https://doi.org/10.3390/s21165524

[7] ORTIZ, J., SANCHEZ-IBORRA, R., BERNABE, J. B., SKARMETA, A., BENZAID, CH., TALEB, T., ALEMANY, 
P., MUNOZ, R., VILALTA, R., GABER, CH., WARY, J.-P., AYED, D., BISSON, P., CHRISTOPOULOU, M., 
XILOURIS, G., MONTES DE OCA, E., GUR, G., SANTINELLI, G., LEFEBVRE, V., PASTOR, A., LOPEZ, D. 
INSPIRE-5Gplus: intelligent security and pervasive trust for 5G and beyond networks. In: 15th International 
Conference on Availability, Reliability and Security: proceedings [online]. 2020. ISBN 978-1-4503-8833-7, p. 1-10. 
Available from: https://doi.org/10.1145/3407023.3409219

[8] SUOMALAINEN, J., JUHOLA, A., SHAHABUDDIN, S., MAMMELA, A., AHMAD, I. Machine learning 
threatens 5G security. IEEE Access [online]. 2020, 8, p. 190822-190842. eISSN 2169-3536. Available from:  
https://doi.org/10.1109/ACCESS.2020.3031966

[9]  WAZIRI, J. U., OMOKHUALE, E. Development of enhance reference monitor algorithm for software defined 
networking (SDN) controller for 5G security. International Journal of Multidisciplinary Research and 
Growth Evaluation [online]. 2022, 3(3), p. 226-241. eISSN 2582-7138. Available from: https://doi.org/10.54660/
anfo.2022.3.3.15

[10] PRADHAN, D., SAHU, P. K., GOJE, N. S., GHONGE, M. M., TUN, H. M., RAJESWARI, R., PRAMANIK, S. 
Security, privacy, risk and safety toward 5G green network (5G-GN). In: Cyber security and network security 
[online]. PRAMANIK, S., SAMANTA, D., VINAY, M., GUHA, A. (Eds.). Scrivener Publishing LLC, 2022.  
ISBN 9781119812494, eISBN 9781119812555, p. 193-216. Available from: https://doi.org/10.1002/9781119812555.
ch9



H I G H L Y  S E C U R E  A N D  A C C U R A T E  D E E P  S L I C I N G  I N  5 G  W I R E L E S S  N E T W O R K S  F O R  E F F I C I E N T . . .  E23

V O L U M E  2 5  C O M M U N I C A T I O N S    3 / 2 0 2 3

[11] SCIANCALEPORE, V., SAMDANIS, K., COSTA-PEREZ, X., BEGA, D., GRAMAGLIA, M., BANCHS, A. 
Mobile traffic forecasting for maximizing 5G network slicing resource utilization. In: IEEE Conference on 
Computer Communications INFOCOM 2017: proceedings [online]. IEEE. 2017. ISBN 978-1-5090-5337-7,  
eISBN 978-1-5090-5336-0, p. 1-9. Available from: https://doi.org/10.1109/INFOCOM.2017.8057230

[12] FENG, Z., QIU, CH., FENG, Z., WEI, Z., LI, W., ZHANG, P. An effective approach to 5G: wireless 
network virtualization. IEEE Communications Magazine [online]. 2015, 53(12), p. 53-59. ISSN 0163-6804,  
eISSN 1558-1896. Available from: https://doi.org/10.1109/MCOM.2015.7355585

[13] EL-MEKKAWI, A., HESSELBACH, X., PINEY, J. R. Evaluating the impact of delay constraints in network 
services for intelligent network slicing based on SKM model. Journal of Communications and Networks 
[online]. 2021, 23(4), p. 281-298. ISSN 1229-2370, eISSN 1976-5541. Available from: https://doi.org/10.23919/
JCN.2021.000024

[14] OLADEJO, S. O., FALOWO, O. E. Latency-aware dynamic resource allocation scheme for multi-tier 5G network: 
a network slicing-multitenancy scenario. IEEE Access [online]. 2020, 8, p. 74834-74852. eISSN 2169-3536. 
Available from: https://doi.org/10.1109/ACCESS.2020.2988710

[15] SHAHRIAR, N., TAEB, S., CHOWDHURY, S. R., ZULFIQAR, M., TORNATORE, M., BOUTABA, R., MITRA, J., 
HEMMATI, M. Reliable slicing of 5G transport networks with bandwidth squeezing and multi-path provisioning. 
IEEE Transactions on Network and Service Management [online]. 2020, 17(3), p. 1418-1431. eISSN 1932-4537. 
Available from: https://doi.org/10.1109/TNSM.2020.2992442

[16] RAMRAO, J. V., JAIN, A. Dynamic 5G network slicing. International Journal of Advanced Trends in Computer 
Science and Engineering [online]. 2021, 10(2). ISSN 2278-3091. Available from: https://doi.org/10.30534/
ijatcse/2021/741022021

[17] ZHANG, Z., WANG, Q. Application status and prospects of 5G technology in distribution automation 
systems. Wireless Communications and Mobile Computing [online]. 2021, 2021, 5553159. ISSN 1530-8669,  
eISSN 1530-8677. Available from: https://doi.org/10.1155/2021/5553159

[18] XIAO, Y., ZHANG, J., JI, Y. Resource-efficient slicing with topology-level protection in optical access/aggregation 
networks for 5G and beyond. In: 2021 Optical Fiber Communications Conference and Exhibition OFC: proceedings 
[online]. IEEE. 2021. ISBN 978-1-943580-86-6, p. 1-3. Available from: https://doi.org/10.1364/OFC.2021.W1F.4

[19] AMATO, E., TONINI, F., RAFFAELLI, C., MONTI, P. A resource sharing method for reliable slice as a service 
provisioning in 5G metro networks. In: 2021 International Conference on Optical Network Design and Modeling 
ONDM: proceedings. 2021. ISBN 978-3-9031-7633-1, p. 1-3.

[20] WANG, X., LU, X., FU, M., LIU, J., YANG, H. Optimization for survivable 5G network slice provisioning 
with augmented infrastructure. In: 2021 9th International Conference on Communications and 
Broadband Networking: proceedings [online]. 2021. ISBN 978-1-4503-8917-4, p. 192-196. Available from:  
https://doi.org/10.1145/3456415.3456446

[21] HOSSAIN, A., ANSARI, N. 5G multi-band numerology-based TDD RAN slicing for throughput and latency 
sensitive services. IEEE Transactions on Mobile Computing [online]. 2021, Early Access. ISSN 1536-1233,  
eISSN 1558-0660. Available from: https://doi.org/10.1109/TMC.2021.3106323

[22] ZHOU, H., ELSAYED, M., EROL-KANTARCI, M. RAN resource slicing in 5G using multi-agent correlated 
q-learning. In: 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio 
Communications PIMRC: proceedings [online]. IEEE. 2021. ISBN 978-1-7281-7587-4, eISBN 978-1-7281-7586-7, 
ISSN 2166-9570, eISSN 2166-9589, p. 1179-1184. Available from: https://doi.org/10.1109/PIMRC50174.2021.9569358

[23] KAYTAZ, U., SIVRIKAYA, F., ALBAYRAK, S. Hierarchical deep reinforcement learning based dynamic RAN 
slicing for 5G V2X. In: 2021 IEEE Global Communications Conference GLOBECOM: proceedings [online]. 
IEEE. 2021. ISBN 978-1-7281-8105-9, eISBN 978-1-7281-8104-2, p. 1-6. Available from: https://doi.org/10.1109/
GLOBECOM46510.2021.9685588

https://doi.org/10.23919/JCN.2021.000024
https://doi.org/10.23919/JCN.2021.000024

