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Abstract Mechanical correlation bias is inherent in audit pricing studies when independent variables
(X) are derived from firm level audit fees (Y). Such variables are endogenous by construction leading to
biased estimates, since (mechanically) X determines Y and Y determines X. After reviewing the extant
auditing/accounting literature where mechanical correlation obtains we employ mathematical derivations
and simulations to quantify the bias associated with a range of mechanically correlated market competi-
tion and industry specialist variables. Since auditor market competition variables are important to regulators
and antitrust authorities, we analyze the mechanical correlation issue with regard to an extant study which
introduces a novel measure of audit market competition (derived from audit fees). The study provides evi-
dence that smaller incumbent auditors are pressured into offering lower fees when competing against a large
local audit firm. However, when the current client’s audit fee is ‘decoupled’ from this new competition mea-
sure to mitigate bias, it is statistically insignificant in our multivariate regression analysis. Additionally, we
employ auditee sales and total assets to construct proxies for competition variables (which are not mechan-
ically correlated) and find them to be statistically insignificant. We conclude with suggestions of how to
address the issue of mechanical correlation in future studies.

Keywords: Audit pricing; Competition measures; Endogeneity; Mechanical correlation; Mathematical coupling; Proxy
variables; Simulations

1. Introduction

Empirical questions related to how audit markets function, the pricing of auditors’ industry spe-
cialization, and the impact of market competition on audit fees have been widely addressed in the
audit pricing literature. Empirical evidence reported on these issues is important for companies
seeking higher quality audits by industry specialists (Craswell et al., 1995; Ferguson & Stokes,
2002), whilst evidence on the effects of auditor market competition variables on audit pricing is
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of key import to regulators and antitrust authorities that seek to understand the implications of
a market dominated by a few large audit firms (e.g. DeFond & Zhang, 2014; McKinnon, 2015).
Auditor competition variables have been constructed to capture the nature of competition within
various market boundaries/industry sectors and with reference to industry specialism (Ferguson
et al., 2003; Francis et al., 2005). In modeling audit pricing, extant studies derive their mea-
sures of industry specialization and market competition from aggregations of firm level audit
fees. These measures are endogenous due to mechanical correlation1 between the dependent and
independent variables, leading to biased estimates.

Mechanical correlation occurs where an explanatory variable (X) is derived from the depen-
dent variable (Y), leading to X being endogenous by construction. More specifically, Y
determines X since Y and X are related mathematically. As highlighted in the next section, in the
accounting literature the classic (and intuitive) example of mechanical correlation is where Y and
X share a common denominator. Mechanical correlation is present in accounting studies which
employ mean values of the dependent variable to construct an explanatory variable to proxy for
peer group effects. However, prior audit pricing studies have not sufficiently considered this form
of mechanical endogeneity.

As described in Section 2, a number of empirical approaches have been advocated to alleviate
the bias associated with mechanically correlated variables. These include estimation with the
instrumental variable (IV) two-stage least squares approach (2SLS), using the lag of X in place
of X, developing a proxy explanatory variable for X (in audit pricing research based on client
size) and ‘decoupling’ (see below) the direct empirical link between the mechanically correlated
dependent and independent variables.

After employing mathematical derivations to quantify mechanical correlation bias, we employ
simulation analysis in an audit pricing setting, using a range of market share variables constructed
from firm level audit fees. Inter alia, we find that (concordant with our mathematical derivations)
the mean bias attributable to mechanical correlation is substantial and persists across all vari-
ables; but that bias reduces when employing company size-based proxy variables or decoupled
ones. In accord with expectations, generally, the bias reduces inversely with market size (in terms
of the number of observations in each market).

Employing contemporary data, we then examine mechanical correlation with reference to the
recent empirical study of Chu et al. (2018). These authors develop a new market measure con-
structed from audit fees (DIFFERENCE), which is designed to capture auditor competition in
local U.S. MSA-industry markets. Their empirical findings indicate that, to retain clients, smaller
audit firms are pressured into lowering their audit fees to prevent clients from switching to a
larger competitor within an MSA-industry market.

Our contribution is threefold. First, we highlight the important issue of endogeneity in extant
audit pricing and other accounting studies where mechanically correlated variables are preva-
lent. Second, using mathematical derivations and simulations in a simplified setting, we assess
the bias associated with variables that are mechanically correlated with audit fees, together with
their decoupled and company size-based counterparts. Finally, we follow extant research by
including alternative specifications for DIFFERENCE in our multivariate regression analysis.
Specifically, we sever (decouple) the direct link between an observation’s value in the explana-
tory variable and dependent variable and employ alternative client size-based measures which
are not mechanically correlated with audit fees. Using decoupled and sized-based specifications,
along with simulations analysis, enables an assessment to be made of the bias associated with

1Other terms used in the literature to describe the same phenomenon of mechanical correlation include mathematical
coupling (in biomedical research) and endogenous by construction.



Audit Market Measures in Audit Pricing Studies: The Issue of Mechanical Correlation 3

mechanically correlated variables in audit pricing studies. We provide the full Stata code and
instructions that facilitates the replication of our analysis.

The remainder of this paper is organized as follows. Section 2 provides background informa-
tion relating to our study, with reference to the issue of mechanical correlation in audit pricing
research and the wider accounting and finance literature. The mathematical derivations and sim-
ulation results are presented in Section 3, followed by our empirical study in Section 4. The
paper concludes in Section 5 with a brief discussion of the salient points to emerge from the
analyzes.

2. Background and the Issue of Mechanical Correlation

In this section we describe the endogeneity bias caused by mechanical correlation and its impli-
cations for audit pricing studies. In addition, we highlight the different forms of mechanical
correlation evident in the wider accounting and finance literature, together with the pros and
cons of the methods used to address the consequential bias. We then review a specific stream
of audit pricing literature where mechanical correlation is a potential issue. We conclude with
a summary of the implications of mechanical correlation bias in audit pricing research and the
suggested methods which can be used to address this bias.

2.1. The Problem of Mechanical Correlation

Mechanical correlation between a dependent and explanatory variable can be defined as a situa-
tion when the relationship between two variables is induced mechanically, such that the variables
are related by a deterministic mathematical link; and at least part of their statistical relationship
is an artefact of this link. With reference to medical studies, Archie (1981, p. 296) writes that
‘mathematical coupling’ (mechanical correlation) occurs when ‘one variable either directly or
indirectly contains the whole or components of the second variable.’ Recognizing the existence
of this phenomenon is important when making causal inferences. This is because if a dependent
variable is mathematically coupled (mechanically correlated) with an explanatory variable and
their relationship is modeled using regression or correlation analysis, biased variable parameters
result (Archie, 1981).

In the standard regression case, if variation in the dependent variable (Y) leads to variation of
an independent variable (X), then X will be endogenous due to ‘reverse causation’ (simultane-
ity) producing biased parameters estimated by the least squares (OLS) method (for accounting
examples, see Adams & Ferreira, 2008 and Whisenant et al., 2003). Hence in the standard case,
it is likely that X is endogenous due to reverse causation; whereas in the case where Y is used to
create X, we know Y must determine X to some degree because of mechanical correlation.

The standard solution to ameliorate the endogeneity bias caused by mechanical correlation is
by employing the IV 2SLS estimator. For instance, Biggar et al. (2018, p. 29) use the estimator
when investigating the relationship between a mechanical correlated variable in the context of the
pricing policies of utilities. However, as discussed below, it is well known in the accounting lit-
erature, that it is often problematic (if not impossible) to obtain a credible instrument (Larcker &
Rusticus, 2010); and this especially holds in the presence of mechanical correlation.

2.2. Mechanical Correlation in Accounting Studies

The classical case of mechanical correlation is the common denominator specification, where
the dependent variable and explanatory variables are expressed as ratios and share a common
denominator, such that Y = A/B and X = C/B. It is interesting to note that, as early as the
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nineteenth century, Pearson (1896) first identified this form of mechanical correlation, which he
referred to as ‘spurious correlation’. Lev and Sunder (1979) were the first to highlight this issue
in accounting research. More recently, Glasscock et al. (2021) stress that the use of variables
with common denominators is still prevalent in the extant accounting literature, including in
‘leading’ accounting journals. Examples include regression estimates for the following depen-
dent variables, where accounting ratio variables are mechanically correlated: corporate earnings
(Sougiannis, 1994), stock market valuation (Han & Manry, 2004), future cash flows (Lee, 2011),
market to book value ratio (Trueman et al., 2000), valuation models for internet firms (Keating
et al., 2003) and corporate leverage (Sogorb-Mira, 2005).

Another type of mechanical correlation that has received a lot of attention in the literature is
the relationship between the change in a variable computed as a difference between the follow-
up (X1) and the initial value (X0), more specifically, the regression of the change (Y = X1 − X0)
on the initial value (X0). Tu and Gilthorpe (2012) provide an extensive review of the issue along
with the solutions. However, we are not aware of this type of analysis being used in the field of
accounting and finance.

A further form of mechanical correlation which occurs in the accounting and finance literature
is where X is generated from average values of Y within specific groups. Here, each observa-
tion is allocated average values of Y for the group to which the observation belongs2 and has a
constant value for each observation within a group. This has been (incorrectly) used in account-
ing studies to control for fixed effects in regression models (Gormley & Matsa, 2014, p. 618).
The average value of Y is often employed as the explanatory variable in accounting studies3

that analyze the impact of ‘peer’ (group) effects on the dependent variable. For instance, Malik
et al. (2019) examine the influence of peer groups (X) on Corporate Social Responsibility (CSR)
expenditure (Y); where each peer group member (including the company in question) is allocated
the average value of CSR expenditure (from Y) for that specific group (within X).

Further examples include Machokoto et al. (2022), who investigate whether a company’s
working capital management is influenced by its peers, Ouimet and Tate (2020), who exam-
ine peer effects in relation to individual investments and Matsunaga (1995) who analyze peer
effects related to employee stock options. Wang et al. (2021) use the median value of Y with
a view to mitigating the mechanical correlation associated with the mean of Y4, with reference
to peer effects and bank loans. Further, when investigating peer effects on corporate disclo-
sure decisions, Seo (2021, p. 4) employs a decoupled version (below) of the average value
of Y ‘to avoid a mechanical correlation’. A similar approach is used by Machokoto et al.
(2022, p. 8).

In the accounting and finance literature, the problem of mechanical correlation is addressed in
a number of studies by severing the direct link between an observation’s value in the explanatory
variable and its value in the dependent variable. This is achieved by excluding from the calcula-
tion of the explanatory variable the value of the dependent variable, for each observation in turn.
We term the procedure ‘decoupling’. In this context, Durnev et al. (2003, p. 80) state that ‘both
the market return and broad industry return . . . are value-weighted averages excluding the firm
in question. This exclusion prevents any spurious correlations between firm returns and industry
returns in industries that contain few firms’. Moreover, Wahal and Yavuz (2013, p. 144) stress
that ‘we exclude stock i in calculating the return of the style portfolio to avoid any mechani-
cal correlation between stock i and the style portfolio’. Further examples where decoupling is

2Group averages (X) are clearly mechanically correlated, since variation in Y leads directly to variation in X.
3For literature reviews of peer effects on various corporate outcomes, see Seo (2021) and Machokoto et al. (2022).
4Given variation in Y should lead to some variation in the median of Y, this approach is unlikely to be bias free.
Furthermore, the median has a different interpretation to the mean and hence may be unsuitable theoretically.
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implemented, include Matsunaga (1995) who adopt this approach when estimating the value of
employee stock options and Adrian and Brunnermeier (2016), who develop a new measure of
systemic risk.

Even though the decoupling approach is widely employed, it is not a silver bullet for the
mechanical correlation problem. Firstly, even if the decoupled variable could be justified by
theory and be employed instead of the original mechanically correlated variable, though it is
highly likely to reduce bias substantially, it may not eradicate it completely (Ouimet & Tate,
2020). As illustrated in Section 3, this is because variation in Y may still lead to at least some
(residual) variation in decoupled X. Secondly, if on the basis of theory the hypothesized relation-
ship for X is inappropriate for decoupled X, the estimated coefficient for the decoupled X will
be biased to some degree due to measurement error.

In attempting to circumvent the endogeneity associated with explanatory variables in panel
data, many accounting/finance studies (e.g. Wang, 2012) employ the lag of the variable of inter-
est, in place of its contemporaneous value. Unfortunately, as demonstrated in detail by Reed
(2015) and Bellemare et al. (2017), this invariably leads to the lagged variable being endogenous
due to correlated error terms which will be the case even if the lagged variable is appropriate
on the grounds of theory. If, on the other hand, a lagged structure implies a different causal (and
theoretical) relationship, the estimate will be biased because of measurement error. In this con-
text, all the audit pricing studies referenced in this paper specify a hypothesized (and related
empirical) contemporaneous relationship.

2.3. Mechanical Correlation in Audit Pricing Research

The manifestation of mechanical correlation in extant (and potential future) audit pricing
research, where measures of market competition and industry specialization are based on audit
fees, is of high import. In this research, the incumbent auditor’s market share (or its func-
tion) based on audit fees is used to explain audit fees. However, the mechanical correlation and
related issues this presents have not been fully addressed. For instance, many studies have exam-
ined whether various concentration measures (including the Herfindahl-Hirschman index) which
are derived from aggregations of audit fees, are associated with price premiums (for literature
reviews see LSE Enterprise, 2008; and Huang et al., 2016). Examples of market concentration
studies include Oxera (2006), LSE Enterprise (2008), Kallapur et al. (2010), Huang et al. (2016)
and Eshelman and Lawson (2017).

In a similar vein, a growing number of studies have investigated whether auditor industry
specialist variables (based on audit fees) are related to audit fees (for literature reviews see Chu
et al., 2018 and Bae et al., 2019). Examples include Dutillieux and Willekens (2009), who exam-
ine whether auditor industry specialists earn fee premiums; Bills et al. (2015), who investigate
whether auditor specialists in local and national markets are rewarded with fee premiums and
Chang et al. (2022), who explore how client product similarity influence audit pricing decisions
of industry specialists. In all of these studies, mechanical correlation will result in biased esti-
mates for the variable of interest (and potentially other variables as well), since the measures of
auditor specialization and market concentration are based on audit fees.

Some audit pricing studies (Carson, 2009; Francis et al., 2005; Gunn et al., 2019; Minutti-
Meza, 2013), use (proxy) client size-based (sales or total assets) variables in place of those based
on audit fees. This appears to be an attractive approach since such measures are not mechani-
cally correlated with audit fees. However, size proxies are subject to similar limitations as those
pertaining to the decoupling method described above. This will be the case if the theoretical
expectations (and causal inferences) relating to explanatory variables derived from audit fees
differ from (or are inappropriate for) those obtaining to size-based proxy variables. For instance,
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when computing industry specialization variables, it has been stated that audit fees capture audi-
tor effort better than client size proxies (Audousset-Coulier et al., 2016).5 Specifically, relative
to the ‘true’ value of (albeit endogenous) market variables derived from audit fees, proxy ones
based on client size are subject to measurement error bias.

Importantly, mechanical correlation is likely to have a larger impact in smaller groups, or
when an individual observation is influential. This latter point was made by López-Espinosa
et al. (2012, p. 3153) who employ the decoupling procedure to ‘prevent’ mechanical correlation
‘not only when the total number of institutions n in the sample is not particularly large, but also
when a single institution has a significant weight in relation to the whole system even if n is fairly
large.’ A similar point is made by Minutti-Meza (2013, footnote 24), who states that ‘using fees
to calculate market share may be problematic in cases where the number of companies in a city–
industry combination is small’. Ceteris paribus, bias is likely to be more substantial in smaller
market groups, because the weight attached to an individual auditor in a variable’s formulation
diminishes as market size increases.

In this context, Francis et al. (2005) posit that U.S. auditors compete in relatively small audit
markets determined by geographical metropolitan statistical areas (MSA) and 2-digit SIC codes.
They found that fees are significantly higher if a Big 5 auditor is jointly the city-level industry
leader and the national industry leader. Furthermore, in terms of MSA-industry market share
based on audit fees, Numan and Willekens (2012) employ a new variable (DISTANCE) and find
that Big 4 auditors increase fees as the distance from their closest competitor lengthens. These
authors also include a further variable (industry portfolio share), which is derived from audit
fees, in their regression model.6 Finally, Chu et al. (2018) develop a new market measure con-
structed from audit fees (DIFFERENCE), which is designed to capture auditor competition in
local MSA-industry markets. Consistent with the hypothesized relationship, Chu et al.’s (2018)
empirical findings indicate that, to retain clients, smaller audit firms are pressured into low-
ering their audit fees to prevent these clients from switching to a larger competitor within an
MSA-industry market.

2.4. Summary and Implications

The mechanical correlation (endogeneity) bias associated with audit market measures employed
in audit pricing studies is likely substantial, given all their elements are comprised of audit fees.
Put another way, we cannot say (statistically) that their OLS parameter estimates support hypoth-
esized relationships. The standard approach to ‘identify’ the ‘true’ (unbiased) parameters for an
endogenous variable (X) is via IV 2SLS estimators. However, locating an appropriate IV - which
is (not weakly) correlated with X, but which is uncorrelated with Y, other than via its relationship
with X - has proved exacting (if not impracticable) in accounting studies (Larcker & Rusticus,
2010). In the absence of a valid instrument, although not being definitive, we advocate using
decoupled and size-based variables as sensitivity measures to gauge the potential bias associated
with the original variable.

However, on the assumption that these alternative measures are not theoretically appropriate,
we stress that they are subject to limitations. Specifically, neither measure identifies the ‘true
causal effect’, as does the IV estimator if implemented correctly. In the case of client size-based

5‘According to previous theoretical arguments, we could expect that the use of audit fees as a calculation variable to
compute ISP (industry specialization) measures could capture auditor effort better than client assets or sales, because
audit fees are a function of the client size, complexity, and riskiness, while sales and assets are simple client-size measures
that are not as closely associated with audit effort.’ (Audousset-Coulier et al., 2016, p. 146). We are grateful to the
anonymous referee who brought this point to our attention.
6The inclusion of more than one mechanically correlated variable may also lead to multicollinearity issues.
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proxies, auditee sales/total assets are substituted for their audit fee components. Clearly, proxy
size variables do not suffer from mechanical correlation; but they are subject to measurement
error bias. The higher the correlation between the original variable and its size-based proxy, the
lower will be the bias.

In the case of decoupled variables, the aim is to eradicate mechanical correlation. However,
unlike client size proxies, the formulation of decoupled market measures differs from the original
construct (variable), in that the audit fee for each auditor is excluded in turn in its computation.
Again, this clearly leads to measurement error. As previously discussed, we expect mechanical
correlation of the original market measures to be more pronounced in smaller market groups.
However, it may be that the measurement error associated with decoupled variables is more
prominent in smaller market groups.

Trying to fill the gap in the empirical audit pricing literature, our study explores the bias
associated with mechanically correlated variables derived from market shares that have been
developed or employed in very small markets where the bias due to mechanical correlation is
likely to be substantial. Assuming that the decoupled and size-based measures are not justified
by economic theory, we will explore the extent of the bias due to measurement error when the
decoupled and size-based measures are employed instead of the original ones.

3. Mathematical and Simulation Analysis

In this section, we derive the bias emanating from a group average variable (see Section 2),
along with its decoupled and size-based counterparts. Employing simulations in an audit pricing
framework, we then analyze the mechanical correlation bias associated with a range of market
measures, relative to the measurement error bias of their decoupled and size-based alternatives.
As stressed above, we assume that the latter alternative measures (constructs) may not be justified
by economic theory and hence are subject to measurement error.

3.1. Deriving the Bias of a Mechanically Correlated Variable based on Group Sums

As described previously, mechanically correlated measures based on group sums of the depen-
dent variables are employed in auditing and accounting research as independent variables. In this
section, we derive the bias emanating from the simplest function of the group sum, the group
average. We examine the performance (biases) associated with decoupled and size-based mea-
sures as described above. Note that, unlike market share variables (the ratio of two group sums),
the analysis of the group average is mathematically tractable.7 Our analysis is based on Gormley
and Matsa (2014) who analyze the bias arising from the use of group averages of the dependent
variable when attempting to eradicate time invariant heterogeneity (fixed effects). Employing the
mathematical framework of Gormley and Matsa (2014), we specify the following structure:

yi,j = αxi,j + βGAi,j + ui,j (1)

var(ui,j) = σ 2
u , μu = 0

var(xi,j) = σ 2
x , μx = 0

cov(xi,j, ui,j) = cov(xi,j, ui,−j) = 0

Following Gormley and Matsa (2014), we assume that there is a random sample of N groups,
the group size k is small, and the number of groups N is large. The first index, i indexes groups,

7We are grateful to the Editor for raising this issue.
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and runs from 1 to N ; whereas the second index, j indexes observations within each group, and
runs from 1 to k. u is the random error term with zero mean and constant variance, possibly
correlated within groups but independent and identically distributed (i.i.d.) across groups, and x
is the additional explanatory variable.8 Similar to the random error, we assume that its variance
is constant; and that the values can be correlated within groups but are i.i.d. across groups. The
random error u and the explanatory variable x are assumed to be uncorrelated. As per Gormley
and Matsa (2014), we assume the explanatory variable x has zero mean and the intercept in
equation (1) is zero to simplify the analysis. The formula for group average (GAi,j) is given by:

GAi,j = 1

k

k∑
g=1

yi,g

Hence equation (1) takes the following form:

yi,j = αxi,j + β
1

k

k∑
g=1

yi,g + ui,j (2)

It is easy to see in equation (2) that the group average GAi,j and yi,j are mechanically corre-
lated, since the group average contains yi,j. Thus, variation in yi,j clearly leads to variation in
the group average and both the group average and the dependent variable yi,j are determined
simultaneously. Consequently, the OLS estimator of the coefficient β will be biased. Note that
conceptually (behaviorally), we are not suggesting that there is a continuous deterministic loop-
ing relationship between Y and GA, which does not occur in practice. Rather, as per the standard
omitted variable issue, we derive the bias associated with the (endogenous) coefficient of GA,
viewed as arising from mechanical correlation (GA being correlated with the regression error
term). Conceptually, this can be viewed as peer group effects (GA) on audit fees (Y), where Y is
in levels, rather than logarithms.

It is instructive to express the group average and the dependent variable as a function of the
explanatory variable x and the random error u. As illustrated in Appendix 1 in the online supple-
mentary materials, if the absolute value of the coefficient β is less than unity (|β| < 1) then it
can be shown that:

yi,j = αxi,j + αβ

(1 − β)

1

k

k∑
g=1

xi,g + β

(1 − β)

1

k

k∑
g=1

ui,g + ui,j (3)

And the group average is equal to:

GAi,j = 1

k

k∑
g=1

yi,g = α

(1 − β)

1

k

k∑
g=1

xi,g + 1

(1 − β)

1

k

k∑
g=1

ui,g (4)

The bias of the OLS estimator of the group average coefficient is caused by its correlation with
the contemporaneous error term ui,j and the correlation is apparent from equation (4).

8Even though the additional explanatory variable x makes the analysis more complicated, it facilitates the analysis of the
OLS estimator for the coefficient β in equations (1) or (2), and the corresponding estimators when the decoupled group
average or size-based group average are employed instead of the group average, all within a single framework.

https://doi.org/10.1080/09638180.2023.2214169
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The OLS estimator will yield upwardly biased and inconsistent estimates of the parameter β9

(see Appendix 2 of the online supplementary materials for the derivation):

β̂GA = β + [1 + (k − 1)ρuj,u−j ](1 − β)

α2 σ 2
x

σ 2
u

k−1
k [1 + (k − 1)ρxj,x−j ](1 − ρxj,x−j) + [1 + (k − 1)ρuj,u−j ]

(5)

As discussed in Section 2, if the explanatory variable is based on group sums of a dependent
variable, one of the most widely used methods to address the mechanical correlation is decou-
pling. In case of the group average, if we exclude the contemporaneous value of the dependent
variable y for each observation in turn in the explanatory variable (the deterministic link between
the dependent variable and the group average), we get the decoupled group average (GADC):

GADCi,j = 1

k − 1

k∑
g=1,g �=j

yi,g (6)

Obviously, the decoupled group average measures the original group average with error; and
hence induces measurement error bias. Moreover, and consistent with expectations (above), the
decoupled group average exhibits some residual mechanical correlation with the contemporane-
ous error term. To see this, we need to substitute the true expression for yi,j from equation (2)
into formula (6):

GADCi,j = α
1

k − 1

k∑
g=1,g �=j

xi,g + αβ

(1 − β)

1

k

k∑
g=1

xi,g + β

(1 − β)

1

k

k∑
g=1

ui,g + 1

k − 1

k∑
g=1,g �=j

ui,g

(7)

Hence, like the group average, the decoupled group average also covaries with the error term,
although the covariance is smaller.10 Thus, the OLS estimator will be biased even in the absence
of measurement error. Assuming the data-generating process is given by equation (1), equation
(8) reveals that the formula for the decoupled estimator is relatively complicated and in general
the estimator is biased and inconsistent11 (see Appendix 3 of the online supplementary materials
for derivations):

β̂GADC = β +

−α2β(k−β)

k(k−1)

σ 2
x

σ 2
u

+ α2β(−k2+2k+kβ−2β)

k(k−1)

σ 2
x

σ 2
u
ρxj,x−j + α2β(k−β)

k
σ 2

x
σ 2

u
(ρxj,x−j)

2

+ β(k+β−2)

k−1 + k2−k−kβ−β2+2β

k−1 ρuj,u−j

1
1−β

[
α2(k−β)2

k(k−1)

σ 2
x

σ 2
u

+ α2(k−2)(k−β)2

k(k−1)

σ 2
x

σ 2
u
ρxj,x−j

− α2(k−β)2

k
σ 2

x
σ 2

u
(ρxj,x−j)

2 + (β2−2β+k)

k−1 + k2−2k−β2+2β

k−1 ρuj,u−j

]
(8)

As discussed above, to avoid mechanical correlation in the audit pricing studies, client size (total
assets or sales) was employed instead of audit fee in formulas for market shares. Consequently,
the size-based market share measures were used instead of the original ones to make inference

9Even though it is not the main focus of this study, the OLS estimate of the coefficient α is biased towards zero (see
Appendix 2 of the online supplementary materials).
10As shown in Appendix 1 of the online supplementary materials, the term standing in front of the contemporaneous
error term in equation (7) is β

(1−β)k and since |β| < 1, this is smaller than the term 1
(1−β)k in equation (4).

11In a similar vein, the decoupled estimator of the coefficient α is biased if the true value of the coefficient is different
from zero (see Appendix 3 of the online supplementary materials for details).

https://doi.org/10.1080/09638180.2023.2214169
https://doi.org/10.1080/09638180.2023.2214169
https://doi.org/10.1080/09638180.2023.2214169
https://doi.org/10.1080/09638180.2023.2214169
https://doi.org/10.1080/09638180.2023.2214169
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about the original parameters using OLS12 as substitutes. The size-based group average (GAX )
has the following formula:

GAXi,j = 1

k

k∑
g=1

xi,g (9)

Even though it is clearly free from correlation with the error term, it quantifies the original group
average with imprecision; and so its estimated parameter will be biased due to measurement
error. It turns out that the size-based estimator for the coefficient β is indeed biased and incon-
sistent, whenever the term α

1−β
is different from unity (i.e. α + β = 1)13, or the true value of the

coefficient β is different from zero (see Appendix 4 of the online supplementary materials for
derivations), so that:

β̂GAX = α

1 − β
β = β + β(α + β − 1)

1 − β
(10)

Looking at the above formulas, under general conditions, inferences relating to any of these vari-
ables – the original, decoupled or size-based group average – are biased. However, the estimated
parameters for the decoupled and size-based constructs are likely to be closer to the true values
compared to those obtained using the original mechanically correlated variables. Having derived
these formulas, we now explore the comparative bias of the three estimators using simple charts.

As our derivations show, the estimators depend on six parameters: the true value of the coef-
ficient α, the true value of the coefficient β, group size (k), the ratio of variance x to variance u
(σ 2

x /σ 2
u ), the within-group correlation of variable x (ρxj,x−j), and the within-group correlation of

the random error u (ρuj,u−j ). As displayed graphically in Figure 1, we vary these parameters one
at a time to demonstrate how the bias changes for the group average and its decoupled and size-
based counterparts. We use the following default values: α = 0.5, β = 0.1, k = 4, σ 2

x /σ 2
u = 25,

ρxj,x−j = 0.3 and ρuj,u−j = 0.1.14 The charts are presented in Figure 1.
In accord with expectations (see Section 2), Panel A in Figure 1 reveals that the variation in

group size (k) has a large impact on the bias associated with the original group average variable.
Specifically, if the group size is small, the original group average estimator exhibits substantial
positive bias and deviates the most from the true value of the β coefficient. In contrast, the
decoupled estimator, though also exhibiting positive bias, is relatively close to the true value
of β, though the biases converge as the group size increases.15 As shown in Panel A, the size-
based estimator is unaffected by the group size because it depends solely on the true values
of parameters α and β. It exhibits negative bias since the sum of the default true values of the
parameters α and β is less than unity (see equation (10)). Importantly, in absolute terms, for given
default true values of the coefficients α and β, the bias associated with the original estimator is
substantially larger than that obtaining to its size-based counterpart.

12In the following text, we term this situation ‘size-based’ estimator.
13A potential reason why the estimator for the coefficient β is the α

1−β
multiple of its true value (see equation (10)), could

lie in the fact that the group average for the variable x appears in formula (4) for the normal group average multiplied
by the term α

1−β
. Secondly, and quite interestingly, the estimator for the coefficient α is unbiased (see Appendix 4 of the

online materials for derivations).
14Our choice of the default values reflects (to a large extent) the values in the dataset used in our empirical study (see
section 4). However, we have prepared an interactive tool where an interested reader can experiment with various values
of the six underlying parameters and observe how the relative performance of the estimators change (see Appendix D for
details).
15In unreported analysis we found that, if the within-group correlation of the random error u is zero, both estimators
converge to the true β value, so their biases decrease with growing group size. The interested reader can verify this using
the interactive tool that we provide (see Appendix D for details).

https://doi.org/10.1080/09638180.2023.2214169
https://doi.org/10.1080/09638180.2023.2214169
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Figure 1. Comparative statics of the bias for original (mechanically correlated), decoupled and size-based group aver-
age. This figure shows the analytical solutions for the mean estimated values of the parameter beta from the equation
yi, j = αxi, j + βGAi, j + ui, j (equation (1)) for the original group average (GA); and where the decoupled group average
or the x-based (size-based) group average are employed in place of GA. The estimates are functions of six parameters:
group size k (default value 4), the ratio of variances of the variable x and the error term u (default value 25), the with-
in-group correlation of the variable x (default value 0.3), the within-group correlation of the error term u (default value
0.1), the true value of the parameter alpha (default value 0.5) and the true value of the parameter beta (default value
0.1). The individual panels show how the estimated values change by varying a specific parameter value while holding
the remaining parameters constant at their default values. In each chart, the vertical dashed line indicates the default
parameter value.

As displayed in Panel B, the relative variation of variable x and the error term u affects the
original and decoupled estimators adversely when the proportion of variances is small. Then,
both the original and the decoupled estimators are biased but the value of the decoupled estimator
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is much closer to the true value, especially when the ratio of variances exceeds 20. Again, the
size-based estimator is unaffected by changes in the relative variation of x and u.

Panel C reveals that the degree of within-group correlation of x affects the bias of the original
and the decoupled estimators adversely when the degree of correlation is relatively high (greater
than 0.7). Nevertheless, the bias of the decoupled estimator is much smaller than the original
estimator. On the other hand, (as shown in Panel D), the within-group correlation of the random
error u affects the bias of both estimators adversely across the whole range of values. The increase
in bias is monotone for both estimators and again the decoupled estimator exhibits less bias than
the original estimator. The bias of the size-based estimator is unaffected by the within group
correlation of either variable x or the random error u, it is constant and remains negative.

The bias of all three estimators is affected by the true values of the parameters α and β as
shown in panels E and F respectively. Panel E reveals that the bias associated with the three
estimators decreases as the true value of α increases. In addition, all three estimators converge to
the true value of β as α increases; but while the original and the decoupled estimators converge to
the true value from above (their bias is positive), the size-based estimator converges from below
(its bias is negative). Panel E also shows that the absolute value of bias for both the decoupled
and the size-based estimators is smaller than the absolute value of bias of the original group
average.

As far as the dependence of the estimators on the true value of β is concerned, Panel F reveals
that the larger is its true value, the closer the original estimator is to it. The decoupled estimator,
though exhibiting slight non-linearity, is relatively close to the true value across all range of
values. Again, the decoupled estimator is significantly less biased than the original one. The
behavior of the size-based estimator is more complex, in that its bias is highly non-linear (curvy).
Specifically, it is close to the true value if β is very small, exhibits the negative bias for values
below 0.5, but then the bias flips sign once the true value of β reaches 0.5. As the true value of β

increases further, the value of the estimator explodes. As shown in equation (10), this is because
the denominator of the bias moves closer to zero.

In summary, for a wide variety of scenarios, the analysis demonstrates that the bias of the
decoupled and size-based variables is substantially smaller than that of the original construct.
Hence these findings provide some support for the use of size-based and decoupled variables as
sensitivity measures in empirical research to deal with the problem of mechanical correlation.
Second, the bias of the original estimator is at its largest for the smallest group size. Third, the
decoupled estimator is consistently closer to the true value than the original estimator. Finally,
the size-based estimator is only affected by the true values of parameters α and β, with the sign
of the bias being determined by whether their sum is greater or smaller than unity.

3.2. Simulation Analysis

We now turn our attention to mechanically correlated variables based on market shares that
are employed in audit pricing research, which contain smaller market groups, as described pre-
viously. These are RATIO, LEADER, DISTANCE and DIFFERENCE.16 The first variable,
RATIO, is a measure of the market share of an incumbent auditor within a given group. It is
defined as the total value of Audit_fee attributed to Auditor_id within a group, divided by the
total Audit_fee for that group. The second measure, LEADER, follows Francis et al. (2005) by

16We have not included the well-known concentration measure HHI in this analysis because it differs from the analyzed
measures in several important respects. Firstly, HHI is the same for all auditors in an audit market, whereas the analyzed
measures usually differ for each auditor. Secondly, unlike the analyzed measures, the squared value of market share is
employed in its formulation. Thirdly, we are unaware of any study that employs HHI as the main independent variable
within the framework of small MSA-industry markets.
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generating a binary variable which indicates the Auditor_id with the highest market share in each
group.17 The third measure, DISTANCE, follows Numan and Willekens (2012) by quantifying
the smallest absolute difference between the Audit_fee market share attributed to Auditor_id and
the Audit_fee market share attributed to its closest competitor within each group. Finally, we fol-
low Chu et al. (2018) and compute DIFFERENCE as the difference between the market share of
the largest Auditor_id based on Audit_fee and the market share of Auditor_id within each group.
The full formulas for all measures along with numeric examples are presented in Appendix A.

As noted above, given they are expressed as a ratio of two group sums, these market measures
are more complex than a simple group average. At the same time, in audit pricing models, the
dependent variable (along with the auditee size one) is usually in the form of natural logs. Finally,
there are maximum, minimum, or absolute value operators in the formulas of some of these
variables. These features make mathematical derivations equivalent to those of the group average
unrealistic and even intractable.

However, though the mathematical derivations may be unfeasible, random simulations can be
employed to explore the bias associated with employing the mechanically correlated measures
that are functions of market share, in the context of an audit pricing model. Using randomly gen-
erated data, we demonstrate that mean bias of the mechanically correlated market share variables
is substantial and persistent, especially in small groups - where it is easy to obtain statistically
significant results even if the true effect (coefficient) is zero. We also show that the decoupled
and size-based measures do not suffer from the latter. Moreover, we find that these alternative
measures are closer to the true value when the true value is different from zero.

We simulate the following data generating process:

ln(yi, j) = α ln(xi, j) + β MEASUREi, j + ui, j (11)

Where ln(y) is the natural log of audit fees, ln(x) is a client size variable18, MEASURE is one
of four market variables described above and u is the error term. Firstly, when the true value of
the coefficient β is zero, we explore the bias associated with original, decoupled and size-based
market variables for increasing group sizes. To this end, in a fixed group structure with group
sizes ranging in multiples of 2 from 4 to 128 observations per group19, we randomly generate
a dependent variable ln(yi) and a subgroup indicator (Auditor_id) to compute the market share
measures for each group..20 In this part, we generate simulated samples where the true effect
(coefficient) of the original variable is zero21, so that values for y would be computed only as a
function of the explanatory variable x and the error term u:

ln(yi,j) = α ln(xi,j) + ui,j (12)

17In unreported analyzes, we also used the variable SPECIALIST - indicating an auditor with market share greater than
10%, 20% or 30%, following the definitions used in Craswell et al. (1995) and Numan and Willekens (2012); and the
results were consistent with those for LEADER.
18We use both variables x and y in the form of natural logs, because (as is standard) this specification was employed in
the studies of Francis et al. (2005), Numan and Willekens (2012) and Chu et al. (2018).
19We provide simulations across this wide range of group sizes, to examine bias in a number of market scenarios. Inter
alia, it enables an assessment to be made of whether (as predicted) bias is lower in larger markets.
20This is repeated 1000 times for each group size, assuming there are at most 4 subgroups (auditors) in each group. The
setup reflects the situation where Big 4 auditors compete for clients. The detailed description of the simulation framework
is presented in Appendix B.
21Our procedure is in principle similar to the famous Granger and Newbold (1974) study; in that the data are simulated
with no effect and hence the OLS estimate equals the bias.
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Hence, to assess the bias associated with the market variables, we estimate the OLS regression
parameters for the following model22:

ln(yi,j) = μ + α ln(xi,j) + β MEASUREi,j + ui,j (13)

and observe the coefficient β and its standard error; noting again, that for an unbiased estimator,
the mean estimated coefficient (β) would be zero.

Panels A to D in Table 1 present the simulation results. Each panel presents the statistics for
the estimates of the coefficient β by group size for each of the four measures described above.
The statistics include the mean bias23 in the coefficient β and the percentage of simulations
where the estimated coefficient β was positive or negative and statistically significant at the
5% significance level. We first examine the ratio of group sums (RATIO). These groups are
usually nested whereby the denominator is the sum of all fees for the whole audit market, while
the numerator is the sum of audit fees collected by the incumbent auditor in that same audit
market. In audit pricing studies, focused on auditor specialization or competition, the variable
corresponds to the market share of the incumbent auditor or share of its returns generated in a
specific group. Even though the market share itself is rarely used as a standalone explanatory
variable, the share of the incumbent auditor’s returns generated in a specific group has been
employed.24 Nevertheless, it is instructive to explore its bias, given it is an important component
of other relevant market measures.

As shown in Table 1, all four original market measures are subject to substantial bias. Con-
sistent with our derivations for the group average variable (above), the degree of bias is most
pronounced in smaller groups; but dissipates as group size increases (as do percentages of sam-
ples where the coefficients are statistically significant). In contrast, the bias associated with the
decoupled and size-based variables exhibits bias near to zero for all group sizes.

More specifically, Panel A shows that the mean bias of RATIO decreases monotonically
with group size, ranging from 0.323 in the smallest group (n = 4) to 0.257 in the largest one
(n = 128). Even though the true effect of RATIO is zero, its OLS coefficient is positive and
statistically significant in all simulated samples up to and including where the group size is 16.
Moreover, for the largest group, it is positive and statistically significant in 64.8% of the ran-
dom samples. On the other hand, the mean bias associated with the decoupled and size-based
measures is close to zero for all group sizes; and the percentage of random samples where the
estimated coefficients are statistically significant fluctuates around 5%.

Panel B reveals that the OLS coefficient of LEADER gradually decreases from 0.155 for group
size 4 down to 0.028 for group size 128. Reflecting this, its coefficient is statistically significant
in 100% of the simulated samples for the smallest group, falling to 35.1% for the largest one.
For both the decoupled and size-based versions of LEADER, their bias is again very close to
zero and the percentage of random samples where the estimated coefficients are statistically
significant ranges from 3.3% to 7.5%.

However, against the trend, Panel C reveals that mean bias for DISTANCE initially increases
with the group size, reaches a maximum for group size 16 and then decreases as group size
increases. For group sizes from 4 to 16, the estimated coefficient for DISTANCE is posi-
tive and statistically significant in more than 92% of the simulated samples. For the largest

22As noted in tables 1 and 2, constant terms are included in the model, but their parameters are unreported for brevity.
23The mean bias is computed as a difference between the mean estimated coefficient in 1000 random samples and its
true value.
24For instance, Numan and Willekens (2012) used industry portfolio share - computed as the ratio of returns of the incum-
bent auditor generated in an MSA-industry to the returns generated in the MSA as one of their independent variables of
interest. Therefore, the analysis of RATIO is informative regarding industry portfolio share variable.
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group, it is positive and statistically significant in only 26.9% of them. As with the other
variables, the bias associated with decoupled and size-based measures is close to zero for all
group sizes. For both these variables, the percentage of random samples when the coefficients
are statistically significant increases with group size, ranging from about 6% to 30%; and is

Table 1. Estimation results using simulated data for group sizes.

Panel A: RATIO

Group size (k) 4 8 16 32 64 128

Original Mean bias in β 0.323 0.318 0.303 0.283 0.271 0.257
β is positive & significant∗ 100.0% 100.0% 100.0% 99.8% 92.1% 64.8%
β is negative & significant∗∗ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Decoupled Mean bias in β − 0.001 − 0.001 − 0.000 − 0.002 − 0.001 − 0.008
β is positive & significant∗ 2.3% 3.0% 3.0% 2.4% 2.6% 3.1%
β is negative & significant∗∗ 3.6% 3.3% 3.2% 3.2% 2.6% 3.2%

Size-based Mean bias in β − 0.000 − 0.001 − 0.000 − 0.000 − 0.000 − 0.002
β is positive & significant∗ 1.8% 2.2% 2.1% 2.1% 2.8% 2.1%
β is negative & significant∗∗ 4.1% 2.6% 2.2% 2.7% 3.0% 3.0%

Panel B: LEADER

Group size (k) 4 8 16 32 64 128

Original Mean bias in β 0.155 0.114 0.082 0.057 0.040 0.028
β is positive & significant∗ 100.0% 100.0% 99.9% 92.0% 65.9% 35.1%
β is negative & significant∗∗ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Decoupled Mean bias in β − 0.001 − 0.000 − 0.000 0.000 − 0.000 0.000
β is positive & significant∗ 2.7% 2.6% 3.0% 2.6% 3.0% 3.7%
β is negative & significant∗∗ 3.4% 2.8% 4.5% 2.4% 3.7% 3.7%

Size-based Mean bias in β 0.000 − 0.000 − 0.000 − 0.000 − 0.000 − 0.001
β is positive & significant∗ 2.0% 2.6% 1.5% 1.6% 1.9% 2.7%
β is negative & significant∗∗ 2.4% 2.7% 3.1% 1.7% 2.0% 2.6%

Panel C: DISTANCE

Group size (k) 4 8 16 32 64 128

Original Mean bias in β 0.125 0.208 0.217 0.185 0.159 0.120
β is positive & significant∗ 98.0% 99.7% 92.6% 55.1% 34.3% 26.9%
β is negative & significant∗∗ 0.0% 0.0% 0.0% 0.2% 2.0% 9.9%

Decoupled Mean bias in β − 0.001 − 0.000 − 0.001 − 0.006 0.006 − 0.007
β is positive & significant∗ 3.1% 4.6% 4.9% 5.7% 11.2% 13.8%
β is negative & significant∗∗ 3.7% 4.8% 4.8% 5.7% 9.6% 16.3%

Size-based Mean bias in β − 0.001 0.000 0.000 − 0.000 − 0.002 0.002
β is positive & significant∗ 3.1% 3.2% 3.7% 4.5% 6.3% 12.9%
β is negative & significant∗∗ 4.1% 3.0% 4.4% 6.2% 7.0% 11.6%

Panel D: DIFFERENCE

Group size (k) 4 8 16 32 64 128

Original Mean bias in β − 0.340 − 0.285 − 0.244 − 0.215 − 0.197 − 0.186
β is positive & significant∗ 0.0% 0.0% 0.0% 0.0% 0.3% 3.2%
β is negative & significant∗∗ 100.0% 100.0% 100.0% 95.3% 70.7% 49.0%

Decoupled Mean bias in β 0.000 0.001 0.001 0.001 0.004 0.008
β is positive & significant∗ 2.8% 3.4% 3.1% 5.4% 12.4% 16.9%
β is negative & significant∗∗ 2.0% 3.0% 3.2% 5.9% 11.2% 16.2%

Size-based Mean bias in β − 0.000 0.001 0.000 0.000 − 0.000 0.005

(Continued)
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Table 1. Continued

Panel D: DIFFERENCE

Group size (k) 4 8 16 32 64 128

β is positive & significant∗ 2.6% 2.6% 5.0% 7.4% 12.5% 22.0%
β is negative & significant∗∗ 2.0% 3.3% 4.6% 6.3% 12.5% 17.9%

The table shows summary of estimation results from models using 1000 simulated samples with 4196 observations
in each sample. The details of the simulations’ setup are described in Appendix B. The following model specification
is being estimated: lnY = μ + α∗lnX + β∗MEASURE + u, where lnY is the logarithm of the simulated audit fee,
lnX is the logarithm of the randomly generated auditee size and MEASURE is a competition or specialization measure
(RATIO, LEADER, DISTANCE and DIFFERENCE); for the original, decoupled and size-based measures. RATIO is
the ratio of group sums and corresponds to the market share of the incumbent auditor. LEADER, DISTANCE and
DIFFERENCE are measures of auditor specialization or competitive position based on the incumbent auditor’s market
share and are employed by Francis et al. (2005), Numan and Willekens (2012) and Chu et al. (2018), respectively. All four
variables (RATIO, LEADER, DISTANCE and DIFFERENCE) are computed using simulated audit fees as described in
Appendix A. The columns show results for simulations with different (increasing) MSA-industry market sizes (number
of clients), ranging from 4 to 128, where the true effect of the coefficient β is zero. ∗ Indicates the proportion of times
from 1000 simulations that the coefficient is positive with p-value of its t–statistic ≤ 0.05. ∗∗ Indicates the proportion of
times from 1000 simulations that the coefficient is negative with p-value of its t–statistic ≤ 0.05.

distributed approximately equally to cases when it is positive and negative and statistically
significant.

The statistics for DIFFERENCE in Panel D reveal that the mean bias is most pronounced
( − 0.340) for the smallest group and then decreases in absolute value as group size increases,
reaching − 0.186 for the biggest group. While the estimated coefficient is negative and statisti-
cally significant in all of the simulations for group sizes up to 16, it then declines and falls to 50%
of the simulations for the largest group. The mean bias for the decoupled and size-based versions
of DIFFERENCE is close to zero. The percentage of samples when the coefficients are statis-
tically significant increases with the group size, starting from below 5% in the smallest group
and increasing to nearly 40% in the largest groups. Again, these total percentages are distributed
approximately equally between estimated coefficients which are positive and negative.

In summary, the results presented in the Table 1 convey a relatively clear picture. Firstly, in
all the simulations the true size of effect was zero. Yet, the mean estimated coefficients (bias) for
the three measures LEADER, DISTANCE and DIFFERENCE are generally substantive having
the same sign as those reported in prior studies. This suggests that the size and significance
of the causal effect in empirical studies may be overstated. Secondly, the pattern of statistical
significance is similar for each measure. Specifically, the estimated coefficients are statistically
significant in a very high percentage (up to 100%) of the random samples for the smallest group
sizes, but decrease as the group size increases. Ergo, we are more likely to observe a spurious
statistically significant relationship if the group size is small. This is the case for relatively small
groups determined by geographical MSA and 2-digit SIC levels.25 Finally, the results for the
decoupled and size-based measures demonstrate that they are useful for uncovering potentially
spurious relationships. The mean bias associated with their coefficients was close to zero and the
percentage of samples with statistically significant coefficients is relatively small, especially for
smaller groups.

25Francis et al. (2005) report an average group size of 6 observations for MSA-industry markets, Numan and Willekens
(2012) 7.46 observations and Chu et al. (2018) 4.6 observations.
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We next explore the bias of the three estimators if the true value of the coefficient β is different
from zero. We do so in the smallest markets (group size 4), because the measures under analysis
are frequently employed in samples where the mean audit market size is relatively small. More
specifically, for each mechanically correlated measure we generate simulated samples where the
dependent variable is computed based on equation (11). We employ coefficient (β) values of 0.1,
0.2, 0.3 and 0.4 for RATIO, LEADER and DISTANCE; and values of − 0.1, − 0.2, − 0.3 and
− 0.4 for DIFFERENCE.26

Table 2 present OLS regression statistics for the estimated values of β as a function of its
true value. For perspective, the first of the five columns report findings when the true value of
the coefficient β is zero. The estimates show that the mean bias associated with the original
variables changes little as the true value of the coefficient β increases. In contrast, for their
decoupled and size-based counterparts, the absolute value of the bias tends to increase. More
specifically, the mean estimated values are between zero and the true value of the coefficient β

for all the measures, the bias ranging between around 19% and 38% of the true effect; with lower
bias being associated with the decoupled measures of RATIO and LEADER and higher for the
decoupled versions of DISTANCE and DIFFERENCE.

However, even though bias increases, for the highest analyzed true values of the coefficient
β it is still much smaller (excepting DISTANCE) than the bias of the original measures. For
DISTANCE, the bias is approximately equal for the largest true value of β, though this exceeds
the value of the estimated coefficient published in prior literature. Moreover, in terms of the
statistical significance of the decoupled and size-based variables, Table 2 shows that, even for
the smallest non-zero true effect analyzed (0.1), the estimated coefficients exhibit their expected
signs and are statistically significant in a substantial proportion of the random samples. Overall,
the simulation results reported in Table 2 give further credence to the employment of decoupled
and size-based variables as sensitivity measures in empirical studies; in that even when the true
values of β are different from zero, they still provide estimates closer to the true values than do
the original variables.

Having been informed by the results of mathematical derivations and simulations, we next
present our empirical study, where we examine whether Chu et al.’s (2018) empirical findings
for DIFFERENCE are robust to the use of decoupled and size-based variables. Details of how to
replicate the analysis in this section are provided in Appendix D.

4. Empirical Study

As described above, in this section we analyze the potential bias associated with a mechani-
cally correlated variable in an audit pricing framework. To do so, we use a recent sample of
US companies to analyze the relationship between audit pricing and the competition measure
(DIFFERENCE) introduced in Chu et al. (2018). At the outset we should state that we are not
criticizing Chu et al.’s (2018) study (nor any other studies referenced in this paper), nor do we
seek to (exactly) replicate27 Chu et al.’s (2018) results. Rather, following Chu et al.’s (2018)
sample selection procedure and variables’ specification, we examine the issue of mechanical
correlation using more recent data.28

26The range of values is selected so that it covers and exceeds the values reported in the literature.
27This is not possible because the dataset is unavailable for re-analysis and the historical location of companies is not
available in the Audit Analytics or Compustat databases. In addition, because in any archival database which reports
variables for a calendar or financial year, at any point in time some companies will not have filed their accounts for that
year but may subsequently file them and then be included later for the given year.
28Of course, it is possible that our findings/inferences may not (at least) fully hold in Chu et al.’s (2018) original data.
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4.1. Variables, Data and Summary Statistics

Chu et al. (2018) define an audit firm’s competitive position (DIFFERENCE) as the difference
between the market share of the dominant auditor and an incumbent auditor in an MSA-industry

Table 2. Estimation results using simulated data as the true value of beta changes.

Panel A: RATIO

True value of β 0 0.1 0.2 0.3 0.4

Original Mean bias in β 0.323 0.318 0.312 0.306 0.300
β is positive & significant∗ 100.0% 100.0% 100.0% 100.0% 100.0%
β is negative & significant∗∗ 0.0% 0.0% 0.0% 0.0% 0.0%

Decoupled Mean bias in β − 0.001 − 0.021 − 0.041 − 0.060 − 0.077
β is positive & significant∗ 2.3% 86.6% 100.0% 100.0% 100.0%
β is negative & significant∗∗ 3.6% 0.0% 0.0% 0.0% 0.0%

Size-based Mean bias in β 0.000 − 0.026 − 0.049 − 0.069 − 0.086
β is positive & significant∗ 1.8% 88.6% 100.0% 100.0% 100.0%
β is negative & significant∗∗ 4.1% 0.0% 0.0% 0.0% 0.0%

Panel B: LEADER

True value of β 0 0.1 0.2 0.3 0.4

Original Mean bias in β 0.155 0.155 0.155 0.155 0.155
β is positive & significant∗ 100.0% 100.0% 100.0% 100.0% 100.0%
β is negative & significant∗∗ 0.0% 0.0% 0.0% 0.0% 0.0%

Decoupled Mean bias in β − 0.001 − 0.027 − 0.049 − 0.069 − 0.088
β is positive & significant∗ 2.7% 98.4% 100.0% 100.0% 100.0%
β is negative & significant∗∗ 3.4% 0.0% 0.0% 0.0% 0.0%

Size-based Mean bias in β 0.000 − 0.027 − 0.054 − 0.081 − 0.107
β is positive & significant∗ 2.0% 99.2% 100.0% 100.0% 100.0%
β is negative & significant∗∗ 2.4% 0.0% 0.0% 0.0% 0.0%

Panel C: DISTANCE

True value of β 0 0.1 0.2 0.3 0.4

Original Mean bias in β 0.125 0.128 0.130 0.132 0.134
β is positive & significant∗ 98.0% 100.0% 100.0% 100.0% 100.0%
β is negative & significant∗∗ 0.0% 0.0% 0.0% 0.0% 0.0%

Decoupled Mean bias in β − 0.001 − 0.036 − 0.071 − 0.104 − 0.137
β is positive & significant∗ 3.1% 63.9% 99.2% 100.0% 100.0%
β is negative & significant∗∗ 3.7% 0.0% 0.0% 0.0% 0.0%

Size-based Mean bias in β − 0.001 − 0.036 − 0.07 − 0.102 − 0.133
β is positive & significant∗ 3.1% 77.6% 99.9% 100.0% 100.0%
β is negative & significant∗∗ 4.1% 0.0% 0.0% 0.0% 0.0%

Panel D: DIFFERENCE

True value of β 0 − 0.1 − 0.2 − 0.3 − 0.4

Original Mean bias in β − 0.340 − 0.332 − 0.324 − 0.316 − 0.308
β is positive & significant∗ 0.0% 0.0% 0.0% 0.0% 0.0%
β is negative & significant∗∗ 100.0% 100.0% 100.0% 100.0% 100.0%

Decoupled Mean bias in β 0.000 0.038 0.074 0.108 0.139
β is positive & significant∗ 2.8% 0.0% 0.0% 0.0% 0.0%
β is negative & significant∗∗ 2.0% 80.5% 100.0% 100.0% 100.0%

Size-based Mean bias in β 0.000 0.034 0.066 0.095 0.121

(Continued)
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Table 2. Continued

Panel D: DIFFERENCE

True value of β 0 − 0.1 − 0.2 − 0.3 − 0.4

β is positive & significant∗ 2.6% 0.0% 0.0% 0.0% 0.0%
β is negative & significant∗∗ 2.0% 82.4% 100.0% 100.0% 100.0%

The table shows summary of estimation results from models using 1000 simulated samples with 4196 observations
in each sample. The details of the simulations’ setup are described in Appendix B. The following model specification
is being estimated: lnY = μ + α∗lnX + β∗MEASURE + u, where lnY is the logarithm of the simulated audit fee,
lnX is the logarithm of the randomly generated auditee size and MEASURE is a competition or specialization measure
(RATIO, LEADER, DISTANCE and DIFFERENCE); for the original, decoupled and size-based measures. RATIO is
the ratio of group sums and corresponds to the market share of the incumbent auditor. LEADER, DISTANCE and
DIFFERENCE are measures of auditor specialization or competitive position based on the incumbent auditor’s market
share and are employed by Francis et al. (2005), Numan and Willekens (2012) and Chu et al. (2018), respectively. All
four variables (RATIO, LEADER, DISTANCE and DIFFERENCE) are computed using simulated audit fees as described
in Appendix A. The five columns show results for simulations, where the MSA-industry market size is constant (equal to
4) and the true value of the coefficient β is changing. ∗ Indicates the proportion of times from 1000 simulations that the
coefficient is positive with p-value of its t–statistic ≤ 0.05. ∗∗ Indicates the proportion of times from 1000 simulations
that the coefficient is negative with p-value of its t–statistic ≤ 0.05.

market as follows:

DIFFERENCEat =
∑

j∈ dominant auditor in MSA−industry AFjt − ∑
j∈ auditor a in MSA−industry AFjt∑

j∈MSA−industry AFjt
(14)

The decoupled version of DIFFERENCE (DIFFERENCE_DC), using the analogous definition
in equation (14) is specified as:

DIFFERENCE_DCit =

∑
j∈ dominant auditor in MSA−industry AFjt

−
(∑

j∈ incumbent auditor in MSA−industry AFjt − AFit

)
∑

j∈MSA−industry AFjt − AFit
(15)

As shown, DIFFERENCE_DC is calculated in the same way as DIFFERENCE, but with one
important distinction: client i’s audit fee is excluded (decoupled) from all elements of equation
(14) at time t. Hence, even though DIFFERENCE_DC is derived from audit fees, the direct
empirical link with a company’s audit fee is severed. The auditee size-based proxy variables we
employ replace all the audit fee terms in DIFFERENCE with client total assets (TA) or client
sales (SA); and are labeled DIFFERENCE_TA and DIFFERENCE_SA.

As is standard, the dependent variable is the natural log of audit fees (LAF). Control variable
definitions and labels are reported in Appendix C and are the same as those used by Chu et al.
(2018). These are: auditee size (LTA); complexity, as proxied by the number of business seg-
ments (LBSEG) and the number of geographical segments (LGSEG); an indicator variable for
foreign sales (FOREIGN); the ratio of current assets to total assets (CATA); the ratio of quick
assets to current liabilities (QUICK); the ratio of long-term debt to total assets (LEV); the ratio
of earnings before interest and tax to total assets (ROI); an indicator variable for losses (LOSS);
an indicator variable for busy period (YE); an indicator variable for a going concern qualification
(OPINION); and an indicator variable for a Big 4 auditor (BIG). As per Chu et al. (2018), the
regression specification controls for fixed effects (FE) for 2-digit SIC industry sectors (Industry
FE), MSAs (MSA FE) and data year (Year FE).

As shown in Panel A of Table 3, we generate the data using the sample selection criteria
specified by Chu et al. (2018). But there was an issue regarding the identification of markets. We
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Table 3. Description of Data.

Panel A: Sample selection

Observations in the U.S. with positive audit fee for 2017–2019 on Audit Analytics 23,148
Less:
Observations not on Compustat or missing information for MSA assignment − 11,458
Financial sector (SIC 6000–6999) − 2,795
MSA-industry markets with only one auditor − 2,483
Market sample (calculation of competition measures) 6,412
Less:
Missing values for control variables − 177
Audit engagements in the first or second year − 951
Estimation sample 5,284

Panel B: MSA-industry-year market statistics (n = 6,412)

Number of markets 1,128
Median number of observations per market 3
Mean number of observations per market 5.68

Panel C: Descriptive statistics (n = 5,284)

mean sd min p25 p50 p75 max

LAF 14.008 1.361 10.722 13.171 14.154 14.947 17.094
FEE 2,713,091 4,099,123 45,334 524,750 1,402,922 3,100,000 26,540,000
DIFFERENCE 0.255 0.268 0.000 0.000 0.198 0.446 0.938
DIFFERENCE_DC 0.472 0.353 0.000 0.131 0.450 0.774 1.000
DIFFERENCE_TA 0.371 0.343 0.000 0.000 0.383 0.663 0.992
DIFFERENCE_SA 0.365 0.338 0.000 0.000 0.373 0.643 0.990
LTA 6.391 2.521 − 0.573 4.738 6.610 8.196 11.667
LSALES 5.785 2.878 − 6.908 4.031 6.286 7.786 12.540
LBSEG 0.092 0.336 0.000 0.000 0.000 0.000 1.609
LGSEG 0.131 0.413 0.000 0.000 0.000 0.000 1.946
CATA 0.482 0.275 0.033 0.257 0.458 0.710 0.992
QUICK 2.368 2.848 0.052 0.862 1.402 2.635 17.934
LEV 0.249 0.264 0.000 0.019 0.205 0.370 1.481
ROI − 0.090 0.568 − 3.842 − 0.055 0.082 0.135 0.402
FOREIGN 0.548 0.498 0.000 0.000 1.000 1.000 1.000
OPINION 0.102 0.302 0.000 0.000 0.000 0.000 1.000
YE 0.756 0.429 0.000 1.000 1.000 1.000 1.000
LOSS 0.452 0.498 0.000 0.000 0.000 1.000 1.000
BIG 0.673 0.469 0.000 0.000 1.000 1.000 1.000

Panel D: Correlation matrix of primary variables (n = 5,284)

1 2 3 4 5

1 LAF 1.00
2 DIFFERENCE − 0.58 1.00
3 DIFFERENCE_DC − 0.19 0.51 1.00
4 DIFFERENCE_TA − 0.52 0.83 0.40 1.00
5 DIFFERENCE_SA − 0.52 0.82 0.39 0.94 1.00

Variables are defined in Appendix C. All correlation coefficients are statistically significant at the 5% level of significance
or better.

identified the audit markets using client location. However, the historical location of companies is
unavailable in the Audit Analytics and Compustat databases. Since Compustat supplies only the
current location of companies, we use a relatively short sample period of three years (2017-2019)
to limit potential miscoding. As shown in Panel A, the final estimation sample comprises 5,284
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observations.29 As highlighted in Panel A, we use the sample of 6,412 firm-year observations
(referred to as the market sample) to compute the competition measures. Full instructions to
replicate the data and results of our empirical study are provided in Appendix D.

Panel B presents descriptive statistics for the market sample. On average, there are 5.68 com-
panies in each MSA-industry market, with the median being 3. Panel C shows that the mean
of DIFFERENCE (0.255) is a little higher than that (0.233) reported by Chu et al. (2018). As
shown, average audit fees are around $2.71 million, substantially more than Chu et al. (2018)
reported ($1.47 million). Of course, inflation will largely contribute to this disparity.30 Panel D
reports a correlation matrix for audit fees (LAF) and the primary variables of interest. It shows
there are sizeable correlations between DIFFERENCE_TA (DIFFERENCE_SA) and LAF, with
correlation coefficients of − 0.52 ( − 0.53) respectively. These compare to correlation coeffi-
cients of − 0.58 ( − 0.19) between DIFFERENCE (DIFFERENCE_DC) and LAF. Noteworthy
is that DIFFERENCE_TA (DIFFERENCE_SA) are highly correlated with DIFFERENCE, with
correlation coefficients of 0.84 (0.83) respectively; and hence appear strong surrogates for
DIFFERENCE. However, though sizeable, the correlation (0.51) between DIFFERENCE and
DIFFERENCE_DC is substantially lower than for the size-based variables.

4.2. Empirical Results

Using the same control variables as Chu et al. (2018), Table 4 presents regression estimates for
DIFFERENCE together with its decoupled and size-based counterparts. Model 1 reports regres-
sion parameters for DIFFERENCE. It reveals its coefficient is − 0.399 - which is somewhat
larger in absolute terms than that ( − 0.340) reported in Chu et al.’s (2018) study - and is highly
significant. Hence, Model 1 provides strong support for the original findings of Chu et al. (2018)
and the hypothesized relationship between DIFFERENCE and audit fees. We also note that all
control variables exhibit their expected signs and (with exception of LGSEG and YE) are statis-
tically significant at the 1% level. The model is well determined with reference to its adjusted
R2 (0.897); which is a little higher than that (0.866) reported by Chu et al. (2018). Hence the
inferences for DIFFERENCE in our new data are highly congruent with those of Chu et al.
(2018).

Model 2 includes the decoupled variable DIFFERENCE_DC. It shows that its coefficient is
close to zero, statistically insignificant and changes sign. It appears that when the elements of
a company’s audit fee are excluded from DIFFERENCE, it is no longer associated with audit
fees. Other things equal, the estimates for DIFFERENCE_DC show that the bias associated with
DIFFERENCE is likely to be substantial.

Employing client size-based versions of market measures in audit pricing studies appears
plausible, since they are not mechanically correlated. Of course, auditee size is not a perfect
substitute for audit fees in constructing market measures. However, as reported above, DIF-
FERENCE_TA and DIFFERENCE_SA are both highly correlated with DIFFERENCE, making
them viable surrogates for the latter. Models 3 (4) show that, though exhibiting the correct signs,

29Note that we delete 11,458 companies which are not on Compustat, or which have missing information on audi-
tors’ city location, which is required to assign each firm year to a given MSA. In this context, we used the list of
Core Based Statistical Areas (CBSAs) and Combined Statistical Areas (CSAs) from March 2020. If an audit firm’s
city did not correspond to an MSA, we looked up a county or county equivalent for the city and assigned the MSA
accordingly. The list was available at: https://www.census.gov/geographies/reference-files/time-series/demo/metro-
micro/delineation-files.html, accessed on 27 July 2021.
30This follows, given the more recent data employed in the current study (2017-2019), relative to that (2000-2011), of
Chu et al. (2018); whose earliest data year is 2000, some 17 years before that in the current data.



22 M. Kacer et al.

Table 4. Estimation results for models with DIFFERENCE and its alternatives.

(1) (2) (3) (4) (5)
LAF LAF LAF LAF LAF

DIFFERENCE − 0.399∗∗∗
( − 8.44)

DIFFERENCE_DC 0.024
(0.70)

DIFFERENCE_TA − 0.012
( − 0.35)

DIFFERENCE_SA − 0.054 − 0.028
( − 1.51) ( − 0.79)

LSALES 0.106∗∗∗
(9.17)

LTA 0.448∗∗∗ 0.465∗∗∗ 0.464∗∗∗ 0.462∗∗∗ 0.369∗∗∗
(56.46) (59.24) (57.24) (56.65) (27.85)

LBSEG 0.083∗∗∗ 0.089∗∗∗ 0.088∗∗∗ 0.088∗∗∗ 0.084∗∗∗
(4.20) (4.47) (4.44) (4.40) (4.38)

LGSEG 0.0143 0.008 0.008 0.009 0.006
(0.84) (0.45) (0.48) (0.49) (0.33)

CATA 0.406∗∗∗ 0.424∗∗∗ 0.423∗∗∗ 0.421∗∗∗ 0.298∗∗∗
(7.19) (7.36) (7.37) (7.33) (5.48)

QUICK − 0.047∗∗∗ − 0.048∗∗∗ − 0.048∗∗∗ − 0.047∗∗∗ − 0.027∗∗∗
( − 12.87) ( − 12.76) ( − 12.79) ( − 12.72) ( − 7.12)

LEV 0.091∗∗ 0.087∗∗ 0.088∗∗ 0.088∗∗ 0.070∗
(2.55) (2.39) (2.40) (2.42) (1.90)

ROI − 0.097∗∗∗ − 0.108∗∗∗ − 0.106∗∗∗ − 0.106∗∗∗ − 0.184∗∗∗
( − 4.74) ( − 5.24) ( − 5.14) ( − 5.12) ( − 8.56)

FOREIGN 0.277∗∗∗ 0.289∗∗∗ 0.289∗∗∗ 0.289∗∗∗ 0.267∗∗∗
(11.14) (11.49) (11.49) (11.48) (11.10)

OPINION 0.156∗∗∗ 0.166∗∗∗ 0.166∗∗∗ 0.166∗∗∗ 0.178∗∗∗
(3.86) (3.99) (4.00) (4.00) (4.46)

YE 0.034 0.042∗ 0.041∗ 0.041∗ 0.047∗∗
(1.47) (1.78) (1.74) (1.71) (2.04)

LOSS 0.095∗∗∗ 0.101∗∗∗ 0.102∗∗∗ 0.102∗∗∗ 0.139∗∗∗
(4.82) (5.07) (5.08) (5.12) (7.00)

BIG 0.365∗∗∗ 0.456∗∗∗ 0.449∗∗∗ 0.442∗∗∗ 0.453∗∗∗
(11.80) (15.40) (15.01) (14.83) (15.46)

Constant 10.720∗∗∗ 10.420∗∗∗ 10.440∗∗∗ 10.480∗∗∗ 10.440∗∗∗
(140.56) (146.62) (136.79) (137.19) (139.53)

Industry FE Yes Yes Yes Yes Yes
MSA FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
N 5284 5284 5284 5284 5284
Adjusted R2 0.897 0.894 0.894 0.894 0.898

The variables are described in Appendix C. The standard errors are clustered in companies.
∗, ∗∗, and ∗∗∗ indicate coefficients are statistically significant at the 10%, 5% and 1% levels, respectively. Corresponding
t-statistics are displayed in parentheses.

the coefficients31 of DIFFERENCE_TA (DIFFERENCE_SA) are close to zero and statistically
insignificant.

Typically, audit pricing studies use client total assets as their size variable. However, some
studies (e.g. Clatworthy & Peel, 2007; Pong & Whittington, 1994) employ both total assets and

31Although not the focus of our study, regarding control variable coefficients, recall from our analysis in Section 3
(footnote 9), that for the group average, the coefficient of the explanatory variable x was biased in the opposite direction
of its sign. On the other hand, for the size-based group average, its coefficient was unbiased. Even though the setting is
much more complicated, when we compare the coefficients of the control variables in models 1 and 3, the coefficients in
Model 1 (except for LEV) are indeed smaller in absolute value than the coefficients in Model 3.
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sales in their regression specifications. In this regard, Pong and Whittington (1994, p. 1075)
stress that there are two dimensions to an audit, ‘an audit of transactions and a verification
of assets. The former will be related to turnover and the latter to total assets’. This implies
there may be an omitted variable problem, if sales (LSALES) is not employed as an additional
control variable. This would appear particularly germane when sales is used as a proxy to con-
struct market competition/industry specialization measures.32 In this context, Model 5, replicates
Model 4, but includes both size variables. It shows that the size of the coefficient for DIFFER-
ENCE_SA reduces by around 51%, with its associated t-value declining by a similar amount
(about 52%).33

In summary, the inferences drawn from the client sized-based variables are identical to the
decoupled one, together indicating that (in our data), bias emanating from mechanical correlation
is likely to be large in magnitude.34 Note, however, it may be the case that for other audit pricing
studies, mechanically correlated variables exhibit expected (and statistically significant) signs
when employing decoupled variables and/or client size-based proxies. This would provide some
support for the hypotheses relating to mechanically correlated variables.

In Section 3 we presented simulations which demonstrated that when the true values of the
coefficients of market measures is non-zero, decoupled and size-based variables are not bias-
free. However, within the feasible range of true coefficient values, we show that (generally) they
provide estimates closer to the true coefficient values than do the original variables. Further, when
the true value of the coefficient is zero, we report that the estimated coefficients for the decoupled
and size-based variables are close to zero and statistically insignificant. Ceteris paribus, this
might imply that the true value of the coefficient for DIFFERENCE is either zero or relatively
small. So, to a large extent, the findings reported by Chu et al. (2018) might be explained by
mechanical correlation.

5. Summary and Conclusion

In this paper we highlight the important issue of mechanical correlation in audit pricing research,
when explanatory variables of interest are expressed in audit fee terms. Mechanical correla-
tion produces biased (endogenous) estimates for such variables. The issue is of high import
since many audit pricing studies use market share and industry specialist variables which are
mechanically correlated.

After employing mathematical derivations to establish the bias associated with mechanically
correlated variables, together with their decoupled and size-based counterparts, we use simula-
tion analysis in a simplified audit pricing setting to provide further evidence on this issue. Our
mathematical analysis demonstrates that, under a wide range of scenarios, the coefficients of
decoupled and size-based measures are closer to the ‘true’ (unbiased) value of the coefficient for

32For instance, to examine the robustness of their results, Francis et al. (2005) use total assets as their size variable, but
report results using LEADER based on client sales. They find that its coefficient remains statistically significant with its
expected sign, but the magnitude of its effect decreases by approximately 50%, relative to the original variable derived
from audit fees which is consistent with our simulations results. However, Francis et al. (2005) do not control for client
sales. That is why we cannot exclude the possibility that the sales-based LEADER variable manifests (at least to some
extent) the effect of sales omitted from the model specification.
33In contrast, when (in unreported analyzes) the log of sales (LSALES) is added as an additional control variable in
models to 1 to 3, the coefficients and t-values for DIFFERENCE, DIFFERENCE_DC and DIFFERENCE_TA change
only marginally in all cases.
34Given certain assumptions (see Wooldridge, 2013), the measurement error associated with a proxy variable may lead
to ‘attenuation bias’, such that its coefficient is biased towards zero. However, the attenuation bias assumption does not
hold if the original variable is endogenous, as is the case here; and in relation to the variables analyzed in Section 3.
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the group average than the original group average coefficient; providing support for use of these
approaches in the literature.

Moreover, via simulations of commonly used audit market competition and auditor specializa-
tion variables, we show that (concordant with our mathematical derivations), due to mechanical
correlation, these measures will likely have statistically significant coefficients even if the true
effect does not exist (is zero). The issue is exacerbated when these measures are based on a rel-
atively small number of observations in each market group, which is typically the case in the
literature. We also show that the decoupled and size-based measures are unbiased if the true
effect is zero, and if it is not zero, their coefficients are in general closer to the true value than
are the original measures. For the decoupled and size-based measures, we document the bias in
the range of 20% − 40% of the true effect. However, this was obtained using a simplistic setting
and future work could explore whether this is the case in more complex multivariate settings.

We further illustrate the nature of the problem by replicating the regression specification of
Chu et al. (2018) on a more recent sample and find our parameter estimates for DIFFERENCE
are congruent with theirs. Our principal regression findings are as follows: when we decouple
the current auditor’s audit fee from DIFFERENCE its coefficient is close to zero and statistically
insignificant. When we employ client size (sales or total assets) in place of audit fees to compute
DIFFERENCE, the coefficients of these proxy variables are also close to zero and statistically
insignificant. Although these findings and inferences may not fully hold in Chu et al. (2018)
original data, our results suggest that the true effect of DIFFERENCE is likely to be much smaller
than that reported in their study.

Of course, the use of decoupled and size-based market variables is not without limitations.
In particular, they may alter the original market variable to such an extent, that it does not cor-
respond to the original construct or underlying theory. Hence, if the decoupled and size-based
measures are inconsistent with the theoretical underpinnings of the original mechanically cor-
related measures, their coefficients will be biased because of the measurement error. Moreover,
and consistent with our findings in Section 3.1, empirical studies report that decoupling may not
remove the whole bias (Gormley & Matsa, 2014), or may induce a negative correlation with the
dependent variable when a positive one is expected (Ouimet & Tate, 2020).

Nevertheless, we demonstrate that despite these shortcomings, the inferences based on the
decoupled and size-based measures are more reliable across a wide range of scenarios; in that
the bias due to mechanical correlation of the original measures is greater than the bias due to
measurement error of their decoupled and size-based alternatives. Our findings indicate that this
occurs predominantly in smaller markets with fewer auditor observations. Hence in future audit
pricing studies - in the absence of a credible instrumental variable - we advocate that, alongside
presenting findings for market variables constructed from audit fees, results for their decoupled
and size-based counterparts should also be reported as sensitivity measures to gauge potential
bias. If these measures exhibit their expected signs and are statistically significant in regression
models, though not being conclusive, they may be viewed as providing some comfort to the
researcher regarding the validity of the hypothesized relationship for the original variable. Our
analyzes suggest this is especially important where smaller markets are analyzed, such as at the
city level or within MSA-industry sectors. Given our findings, we recommend that the results of
extant audit pricing studies which employ mechanically correlated variables (particularly those
based on smaller markets) should be re-evaluated using decoupled and size-based measures.
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Appendix A. Formulas and Examples for the Simulated Measures

Similar to Gormley and Matsa (2014), in simulations we use two indices, i and j. The first indexes
groups (audit markets), and runs from 1 to N. The second indexes observations within each group,
and runs from 1 to k, where k is the fixed group size. The total sample size is equal to N × k. The
variable yi,j is the dependent variable. The variable ai,j (AUDITOR) takes on values from 1 to 4
and identifies a subgroup.

Table A. Example of the computation for one market

i j AUDITOR FEE AUD_SUM RATIO LEADER DISTANCE DIFFERENCE

1 1 1 130 750 0.250 0.00 0.087 0.310
1 2 1 620 750 0.250 0.00 0.087 0.310
1 3 2 140 1,680 0.560 1.00 0.310 0.000
1 4 2 650 1,680 0.560 1.00 0.310 0.000
1 5 2 890 1,680 0.560 1.00 0.310 0.000
1 6 3 290 490 0.163 0.00 0.087 0.397
1 7 3 200 490 0.163 0.00 0.087 0.397
1 8 4 80 80 0.027 0.00 0.137 0.533

Total 3,000

Table A provides an example for one group (audit market) with 8 clients. AUD_SUM is the
sum of fees collected by a specific auditor in the audit market. RATIO is a ratio of two group
sums and corresponds to the market share of the incumbent auditor. It has the following formula:

RATIOi,j =
∑

g:ai,g=ai,j
yi,g∑k

g=1 yi,g

As shown in Table A, the group sum (denominator) comprises the total fees (3000) of the
whole audit market, so in the example given it is 3000. The group sum in the numerator is
the sum of audit fees collected by the incumbent auditor in the audit market. For auditor 1 in
Table–A, it is 750; so RATIO1,1 = RATIO1,2 = 750

3000 = 0.25.
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LEADER is the indicator of market leader, so it is equal to one if the auditor has the highest
market share, zero otherwise. It has the following formula,

LEADERi,j = I

[
max

a∈{1..4}

(∑
g:ai,g=a

yi,g

)
=

∑
g:ai,g=ai,j

yi,g

]

Where I[.] is the indicator function, equal to unity if the condition in brackets is fulfilled and
zero otherwise. In Table A, auditor 2 has the highest market share, and hence it is the market
leader. Auditor 1 is not the market leader and therefore LEADER1,1 = LEADER1,2 = 0.

The variable DISTANCE denotes the absolute distance in terms of market share from the
closest competitor. It has the following formula:

DISTANCEi,j =
min

a∈{1..4}∧a�=ai,j

∣∣∣∑g:ai,g=a yi,g − ∑
g:ai,g=ai,j

yi,g

∣∣∣
∑k

g=1 yi,g

In the example given in Table A, the closest competitor for auditor 1 in terms of market share
is auditor 1. The absolute difference in terms of market share between the auditor 1 and auditor
3 is 0.087, hence DISTANCE1,1 = DISTANCE1,2 = |0.250 − 0.163| = 0.087.

Finally, DIFFERENCE denotes the difference in terms of market share between the market
leader and the incumbent auditor. It has the following formula:

DIFFERENCEi,j =
max

a∈{1..4}

(∑
g:ai,g=a yi,g

)
− ∑

g:ai,g=ai,j
yi,g

∑k
g=1 yi,g

As shown in Table A, auditor 1 has a market share 0.250 whereas the market leader has a
market share of 0.560. Hence DIFFERENCE1,1 = DIFFERENCE1,2 = 0.560 − 0.250 = 0.310.

Appendix B. Description of Simulation Setups

Setting:

We simulate the following data generating process:

ln(yi,j) = α ln(xi,j) + βMEASUREi,j + ui,j

Where ln(y) is the dependent variable, ln(x) is the natural log of size, MEASURE is one of the
variables RATIO, LEADER, DISTANCE or DIFFERENCE, u is the random error, i is the group
number running from 1 to number of groups N and i is the observation number within groups
running from 1 to group size k.

Establishing the parameters of simulations

The choice of N × k = 4096 observations for each simulation was chosen to facilitate a system-
atic examination of the effects of mechanical correlation across group sizes which are multiples
of 2. Also, this number is fairly close to the number of observations in the final estimation sample
(5284) in our empirical study.

The choice of the values of parameters needed for the generation of the explanatory vari-
able x are: the standard deviation σln(x) = 2.5 and the within-group correlation ρln(x)j,ln(x)−j

= 0.3.
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For the random error u the standard deviation σu = 0.5 and the within-group correlation ρuj,u−j =
0.1. These parameters were based approximately on the final estimation sample in our empirical
study.35 These parameters, along with the value of the coefficient α = 0.5, remain constant in
each simulated sample.

Since the first objective of the simulations is to explore the behaviour of the estimators as a
function of group size k if the true value of the coefficient β is zero, for each group size we
run six sets of simulations with the true value of the coefficient β = 0 and the fixed group sizes
k = 4, 8, 16, 32, 64, 128. Thus, for each simulation and each group size, we run the following
steps:

Step 1: Allocation of group identifiers

In each random sample, the structure of groups was fixed. For example, if there were groups
with group size 4, the first four observations (i.e., observation number 1 to observation number
4) belonged to group 1, the following four observations (i.e., observation number 5 to observa-
tion number 8) belonged to group 2, and so on; such that that the last four observations (i.e.,
observation number 4093 to observation number 4096) belonged to group 1024 (4096/4). The
structure remained the same for each simulated dataset.

Step 2: Generating of the random error and the explanatory variable x

Next, we randomly generated the random error. We used normal distribution with the mean
μu = 0, standard deviation σu = 0.5, and the within group correlation ρuj,u−j is constant and
equal to 0.1.

Then we generated the explanatory variable ln(x). We used normal distribution with mean
μln(x) = 0 and standard deviation σln(x) = 2.5, and the within group correlation of the values for
the explanatory variable ρln(x)j,ln(x)−j

is constant and equal to 0.3.

Step 3: Assigning of subgroup identifiers

We demonstrate the existence of the bias using measures that are based on ratio of two group
totals where the group in the numerator is smaller than the group in the denominator. We report
simulation results where, in each group, there were at most 4 subgroups36. The subgroup identi-
fier was generated randomly using a uniform discrete distribution with values 1 to 4, each with
probability of 1/4.

Step 4: Generating of the dependent variable

The dependent variable was generated under the assumption that the true value of the parameter
β is zero. Hence the following equation was used:

ln(y0i,j) = α ln(xi,j) + ui,j

35With regard to our empirical study, we have employed the parameters derived from the final estimation sample to keep
important distributional properties intact, but except for scale associated with the ratio of variances of x and u, the results
were relatively insensitive to the choice of the parameters.
36This setup reflects scenario where Big 4 auditors compete for clients.
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Step 5: Calculation of measures of industry specialization, competition and market
concentration

Finally, we computed measures RATIO, LEADER, DISTANCE and DIFFERENCE using the
baseline value of the dependent variable y0i,j.

Step 6: Calculation of size-based measures of industry specialization, competition and
market concentration

We computed measures RATIO_X, LEADER_X, DISTANCE_X and DIFFERENCE_X using
the values of the independent variable x.

Step 7: Calculation of the decoupled measures of industry specialization, competition and
market concentration

We computed measures RATIO_DC, LEADER_DC, DISTANCE_DC and DIFFERENCE_DC
using the values of the dependent variable y0.

In the simulations, we repeated the whole process for each group size 1000 times. Therefore,
in total, we generated 6000 random samples with 4096 observations in each sample.

Then, since the second objective of the simulations was to explore the performance of the
estimators as a function of the true value of the coefficient β in small groups (markets), for
samples randomly generated with a group size with 4 observations, for each measure and value
of the coefficient β (we used values 0.1, 0.2, 0.3 and 0.4 for measures RATIO, LEADER and
DISTANCE, and values − 0.1, − 0.2, − 0.3 and − 0.4 for DIFFERENCE) we did the following:

Step 8: Generating of the dependent variable

The dependent variable was generated using formula:

ln (yi,j)
(k) = α ln (xi,j) + βMEASUREi,j

(k−1) + ui,j

In the first iteration, the measure assuming the zero true value of β is employed.

Step 9: Calculation of the new value of the measure

In this step, the new value for the measure is computed using the newly computed value of the
dependent variable:

MEASUREi,j
(k) = f [y(k)

i,j ]

Step 10: Calculation of the error:

The error is computed as a sum of absolute differences between the iterations across all
observations:

error(k) =
N∑

i=1

k∑
j=1

|ln(yi,j)
(k) − ln(yi,j)

(k−1)|

If the error is greater than or equal to 10−12 then return to step 8, otherwise continue to
step 11.
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Step 11: Calculation of the decoupled measures of industry specialization, competition and
market concentration

We computed measures RATIO_DC, LEADER_DC, DISTANCE_DC and DIFFERENCE_DC
using the values of the last iteration of variable y.

We repeated the whole process 1000 times. Therefore, in total, we generated for each measure
4000 random samples with 4096 observations in each sample.

Finally, for each sample we estimated regression models for each market measure.

Appendix C. Variable Definitions

Dependent variable
LAF = Natural logarithm of audit fee of client i in year t

Test variables
DIFFERENCE = The difference of the total audit fees in an MSA-industry market between

the largest audit firm in the market and the incumbent auditor of
client i in year t ÷ total audit fees in the MSA-industry market. An
MSA-industry market is defined as a two-digit SIC industry in a U.S.
Metropolitan Statistical Area (MSA, U.S. Census Bureau definition) in
year t.

DIFFERENCE_DC = Is calculated using the same formula as for the DIFFERENCE but the
audit fee of client i in year t is not included in the formulation.

DIFFERENCE_TA = DIFFERENCE computed using total assets instead of audit fees
DIFFERENCE_SA = DIFFERENCE computed using sales instead of audit fees

Control variables
LTA = Natural logarithm of total assets in million $
LSALES = Natural logarithm of sales in million $
LBSEG = Natural logarithm of the number of unique business segments
LGSEG = Natural logarithm of the number of unique geographic segments
CATA = Ratio of current assets to total assets
QUICK = Quick assets, i.e., ratio of current assets excluding inventory to current

liabilities
LEV = Ratio of long-term debt to total assets
ROI = Ratio of earnings before interest and tax to total assets
FOREIGN = Indicator of foreign operations, equals one if revenue from foreign

operations is reported, and zero otherwise
OPINION = Indicator of going concern audit report, equals one for a going-concern

audit report, and zero otherwise
YE = Indicator of busy season, equals one for December 31 year-end, and zero

otherwise
LOSS = Indicator of accounting loss, equals one if there is a loss in the current

year, and zero otherwise
BIG = Big auditor indicator variable that equals one for Big 4 auditors, and zero

otherwise
Industry FE 2-digit SIC industry sectors’ indicators (fixed effects)
MSA FE MSA indicators (fixed effects)
Year FE Indicators (fixed effects) for years 2018 and 2019

Appendix D. Replication Files and Interactive Tool

The purpose is to facilitate the replication of the steps taken to download the sample data
and estimate all the results which are contained in the paper. It also provides details of
the interactive tool referred to in Section 3.1. All files described below are available online
(https://doi.org/10.5281/zenodo.7922326).

https://doi.org/10.5281/zenodo.7922326
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Step 1: Download the necessary data from WRDS for the empirical study

a. The first step downloads the data from WRDS, execute the Stata do-file “do1_wrds_
download.do” This do-file will download the full datasets directly from WRDS platform.

b. For this do file to correctly execute, an account on WRDS is necessary and the ODBC driver
needs to be installed, see: https://wrds-www.wharton.upenn.edu/pages/support/programming
-wrds/programming-stata/stata-from-your-computer/

c. This do file was executed on 27th July 2021 and the associated database saved as a static file
as at that date.

d. Since the data is regularly updated by the data providers, it is practical to download all the
information and make use of the static download file. As a result, running this script later
may result in minor variations between the downloaded data and the data which was used in
the manuscript.

Step 2: Save a reduced form of the dataset with the necessary variables

a. The second step saves a reduced form of the dataset downloaded in Step 1 above, which only
contains the necessary variables for the subsequent analysis by executing the Stata do-file
“do2_reduce_datasets.do”

Step 3: Dataset for city-MSA cross-mapping

a. We have provided the Stata dataset “msa_lookup.dta” containing the CBSA (core based
statistical areas) code for a city if the city lies in a CBSA and the CBSA is a metropolitan
statistical area. There are two types of CBSAs – micropolitan statistical areas and metropoli-
tan statistical areas. The term MSA used in the manuscript stands for a core based statistical
area which is a metropolitan statistical area.

b. To assign the CBSA code, the most recent census delineation file was used from March
2020. Core based statistical areas (CBSAs), metropolitan divisions, and combined statisti-
cal areas (CSAs), are available at: https://www.census.gov/geographies/reference-files/time-
series/demo/metro-micro/delineation-files.html, (accessed on 27 July 2021). This dataset
links counties to CBSA codes.

c. Some cities can be matched directly to CBSA codes using the CBSA title. However, if it was
not possible to match a city with a given MSA (CBSA code) based on the census file, we
used further information downloaded from:

• https://simplemaps.com/data/us-cities and,
• https://github.com/grammakov/USA-cities-and-states/blob/master/us_cities_states_

counties.csv
d. If it was still not possible to find the MSA (CBSA code), we found the county manually

(using mostly Wikipedia, but also webpages of the U.S. cities and states) and assigned the
CBSA code based on the census file. If the city spans over several counties, we used the
county where the biggest part of the city lies.

Step 4: Generating the market sample, and final estimation samples

a. The fourth step requires the execution of the Stata do-file “do3_sample_and_tables.do”
to create the market sample and final estimation samples based upon the reduced dataset

https://wrds-www.wharton.upenn.edu/pages/support/programming-wrds/programming-stata/stata-from-your-computer/
https://wrds-www.wharton.upenn.edu/pages/support/programming-wrds/programming-stata/stata-from-your-computer/
https://www.census.gov/geographies/reference-files/time-series/demo/metro-micro/delineation-files.html
https://www.census.gov/geographies/reference-files/time-series/demo/metro-micro/delineation-files.html
https://simplemaps.com/data/us-cities
https://github.com/grammakov/USA-cities-and-states/blob/master/us_cities_states_counties.csv
https://github.com/grammakov/USA-cities-and-states/blob/master/us_cities_states_counties.csv
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created in Step 2. Executing this do-file will result in the automated generation of Table 3
and Table 4.

b. Since the datasets obtained from WRDS change over time, datasets downloaded at a
later date may differ from those obtained earlier. Therefore, for transparency, we include
the identifiers of observations (company identifier and financial year) for both the mar-
ket sample (sample_market_identifiers.dta) and the final estimation sample (sample_final_
identifiers.dta).

Step 5: Performing the simulations

a. The fifth step requires the execution of the Stata do-file “do4_simulations.do” to estimate
the results of the simulations reported in Table 1 and Table 2.

b. Executing this do-file may require several hours of computer run time depending on the
specifications of the machine being used and flavour of Stata. We ran this file using an iMac
2020 with 3.6GHz i9 processor and Stata MP4, and this took about 8 hours to complete.

c. This do-file creates separate datasets for each measure and market size.

Step 6: Generating Figure 1

The last step requires script “do5_figure1.do” to be run to generate Figure 1.

Interactive tool

As referred to in Section 3.1, we have prepared an interactive tool in R-studio that can be used to
explore the comparative statics of the three estimators for the coefficients α and β in equations
(1) and (2), by changing the values of the underlying parameters. The script r6_shiny.R needs to
be run in R-studio. After running the script, the output window needs to be maximized and the
app works well if the screen resolution is at least 1920 × 1080 pixels (Full HD). Alternatively,
the tool can be run online (https://marekkacer.shinyapps.io/group_average/).

https://marekkacer.shinyapps.io/group_average/
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