
 

252                                    Finance a úvěr-Czech Journal of Economics and Finance, 60, 2010, no. 3 

JEL Classification: G21, G28, C14 
Keywords: credit risk, correlation, recovery rate, regulatory capital 

On Deficiencies and Possible Improvements 
of the Basel II Unexpected  
Loss Single-Factor Model* 
Jiří WITZANY – University of Economics, Prague (jiri.witzany@vse.cz)  

Abstract 
The goal of the Basel II regulatory formula is to model the unexpected loss on a loan port- 
folio. The regulatory formula is based on an asymptotic portfolio unexpected default rate 
estimation that is multiplied by an estimate of the loss given default parameter. This simpli-
fication leads to a surprising phenomenon where the resulting regulatory capital depends 
on a definition of default that plays the role of a frontier between the unexpected default 
rate estimate and the LGD parameter, whose unexpected development is not modeled at 
all or is modeled only partially. We study the phenomenon in the context of single-factor 
models where default and loss given default are driven by one systematic factor and by 
one or more idiosyncratic factors. In this theoretical framework we propose and analyze 
a relatively simple remedy of the problem requiring that the LGD parameter be estimated 
as an appropriate quantile on the required probability level. 

1. Introduction 
The Basel II regulatory formula (see Basel, 2006) aims to provide a suffi-

ciently robust estimate of unexpected losses on banking credit exposures that should 
be covered by the capital. It is a compromise between the most advanced mathe-
matical modeling techniques and the demand for a practical implementation. One of 
the most important simplifications is the decision to calculate unexpected losses (UL) 
using an estimate of the Unexpected Default Rate (UDR) multiplied through by the ex-
pected Loss Given Default (LGD) parameter, i.e., as UL = UDR⋅LGD. The capi- 
tal requirement (C) as a percentage of the exposure at default (EAD) is then set 
equal to the difference between the unexpected and expected loss (EL), C=UL–EL =  
= (UDR–PD)⋅LGD, where PD is the expected default rate, i.e., the probability of de-
fault. 

The goal of this article is to study, theoretically and empirically in the context of 
single-factor models, certain inefficiencies of the regulatory formula UL=UDR⋅LGD 
caused mainly by the factorization of the unexpected loss into the unexpected default 
rate and the (rather expected) loss given default. Moreover, based on the analysis, we 
want to propose certain possible improvements to the formula. 

While the expected default rate estimation based on the Vasicek (1987) ap-
proach is considered to be relatively robust, the resulting estimation of the unex-
pected loss has been criticized for neglecting the unexpected LGD (or equivalently 
recovery) risk. It has been empirically shown in a series of papers by Altman et al. 
(see, for example, 2004), Gupton et al. (2000), Frye (2000b, 2003), and Acharya et 
al. (2007) that there is not only a significant systematic variation of recovery rates, 
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but also a negative correlation between frequencies of default and recovery rates, or 
equivalently a positive correlation between frequencies of default and losses given 
default. Consequently, the regulatory formula significantly underestimates the unex-
pected loss on the targeted confidence probability level (99.9%) and the time horizon 
(one year). Some authors have proposed alternative unexpected loss formulas incor-
porating the impact of recovery rate variation. 

Frye (2000a, 2000b) used a single systematic factor model with an idio-
syncratic factor driving the event of default and another independent idiosyncratic 
factor driving the recovery rate. The loading of the systematic factor for modeling 
default and recovery rates may differ. The recovery rate is modeled as a normal 
variable truncated at 100%. Frye does not provide an analytical formula but analyzes 
the robustness of the loss estimates using Monte Carlo simulation for different 
combinations of the input parameters. The parameters are also estimated using 
the maximum likelihood method from the Moody’s Risk Service Default database. 
Alternatively, Dullmann and Trapp (2004) apply the logit transformation for re-
covery, modeling it in the same set up as Frye. 

Pykhtin (2003) considers a single systematic factor model where default is 
driven by a systematic factor and an idiosyncratic factor while recovery is driven not 
only by the systematic factor and the independent idiosyncratic factor, but at the same 
time by another idiosyncratic factor driving the obligor’s default. The collateral 
(recovery) value is set to have a lognormal distribution. Pykhtin arrives at an analytic 
formula which requires numerical approximations of the bivariate normal cumulative 
distribution values. The author admits that calibration of the model is difficult. 

Tasche (2004) proposes a single-factor approach modeling the loss function 
directly. If there is no default the value of the loss function is zero and if there is 
a default (the systematic factor exceeds the default threshold) the value of the loss is 
drawn from a distribution as a function of the systematic factor. The obligor factor is 
decomposed as usual into the systematic and idiosyncratic factor. In other words, 
the single obligor factor is used to model the event of default and the loss given de-
fault as well. Tasche proposes to model LGD by a beta distribution. Quantiles of 
the loss function conditional on the systematic factor values may be expressed as 
an integral over a tail of the normally distributed factor. Tasche proposes to approx-
imate the integral using Gauss quadrature and tests the model for different PD, 
mean/variance LGD, and correlation values. The approach is also elaborated in Kim 
(2006). 

This study is motivated not only by the fact that the Basel II formula sig-
nificantly underestimates the unexpected credit losses on the 99.9% confidence level, 
but also by the observation according to which the regulatory capital requirement 
depends on a definition of default which in a sense puts a border line between the PD 
and LGD parameters. This phenomenon has been analyzed in Witzany (2009) using 
a Merton model-based simulation. To give a more tractable analytical explanation we 
will apply the Tasche and Frye single-factor models as benchmarks against which  
we analyze the sensitivity of the regulatory formula. At the same time, we propose 
a simple modification of the regulatory formula in order to eliminate the problem. 
We propose to preserve the formula UL=UDR⋅LGD as well as the regulatory formula 
for unexpected default rate (UDR), but to reinterpret the parameter LGD as the 99.9% 
quantile of possible portfolio loss given default values. The Basel (2005) document 
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goes in this direction, requiring LGD estimates to incorporate potential economic 
downturn conditions and adverse dependencies between default rates and recovery 
rates, but fails to specify the confidence probability level of those conservative 
estimations. We argue that any probability level below 99.9% preserves the problem 
of the definition of default sensitivity (and underestimation of the 99.9% loss func-
tion percentile), while the 99.9% LGD quantile solves the problem under reasonable 
modeling assumptions. We propose a single-factor beta distribution-based technique 
calibrated with account-level LGD mean, variance, cure rate, and a correlation to 
obtain robust estimates of the 99.9% LGD quantiles. As the reinterpretation of 
the formula leads to significantly higher capital requirements, we propose to reduce 
the probability level to the more realistic 99.5% currently used by the Solvency II 
proposal. 

2. Sensitivity of Regulatory Capital to the Definition of Default 
According to Basel II the contribution of a receivable to the unexpected loss 

of a well-diversified portfolio as a percentage of the exposure is estimated by the for-
mula 
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The correlation ρ is set by the regulator (e.g. 15% for mortgage loans, 4%  
for revolving loans, and somewhere between the two values depending on PD for 
other retail loans), while the parameters PD and LGD are estimated by the bank (in 
the IRBA approach). 

The usual LGD estimation approach is based on a sufficiently large historical 
data set of a homogenous portfolio of receivables A in terms of product type, credit 
rating, and collateralization. The receivables have been observed over the period of 
one year and the defaulted cases subsequently for a sufficient period (usually one to 
three years) to have a record : [0,1]→l A  of percentage losses ( )l a  on the exposures 
at default if default occurred or 0 otherwise for every ∈a A , and an indicator func-
tion {: 0,1}→d A of default at the one-year horizon. It seems natural to require that 

( ) 1=d a  if ( ) 0>l a  as in Tasche (2004), but in practice such a condition is difficult 
to achieve. According to section 452 of Basel (2006) obligors that are considered to 
be unlikely to pay their credit obligations in full and obligors more than 90 days over- 
due must be marked as defaulted. Some of the obligors marked as defaulted then 
naturally happen to pay all their obligations back; in particular, in the case of retail 
obligors days overdue may just be a result of payment indiscipline, not of a real lack 
of income to repay the loan. Moreover, some well-collateralized receivables (e.g. 
mortgages) are paid back in full even if the obligor itself is not able to repay the loan. 
Hence, we may require only that ( ) 0>l a  implies ( ) 1=d a  but not vice versa. The PD 
and LGD parameters of the Basel II formula (1) can be estimated in a simplified way 
from the given reference data set as 
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Here we are using an equally weighted average loss given default that could 
be applied to a portfolio homogenous in terms of size. Let | ( ){ 0}∈ >=H A l aD a  be 

the set of receivables where we observed a positive loss, i.e., a hard default, and Hp , 

Hlgd  the averages as above. While the average (or expected) account-level percent-

age loss · ·== H Hll pp gd lgd  remains unchanged, it is easy to see that <Hp p  and 

>Hlgd lgd  provided ⊂HD D . Because of the “unlikely to pay” condition in sec-
tion 452 of Basel (2006) banks have certain freedom to set their own definition of 
default. However, if an obligor is marked as defaulted, then the probability of “not 
paying its obligation in full,” i.e., of a hard default, should be naturally more than 
50%. Consequently, the ratio / Hp p may be in practice anywhere between 1 and 2. 
Banks may choose a lower days-past-due default threshold (e.g. 60 days), or a lower 
materiality condition (minimum amount past due implying the default), or apply dif-
ferent cross-default rules (default on one product implying defaults on other products 
with the same obligor), etc. More accounts with ultimate zero loss are then marked as 
defaulted. On the other hand, the definition of default must not be too soft, as noted 
above. Hence, given the same historical information (reference data set A) with the ac-
count-level average loss =EL l  and choosing a different definition of default we ob-
tain different possible values of ( ), 2·∈ H HPD p p  and ( )/ 2·,∈= H HlLGD EL PD gd lgd . 

Since the definition of default does not change the distribution of the total losses 
implied by the reference data set, the unexpected loss estimate given by (1) should 
remain essentially the same. However, Figure 1 shows that this is not the case. When 
we set, for example, 2%=EL  and let (2.5%,5%)∈PD , then the ( )=UL UL PD  
parameter goes from 16.3% down to 12.5%. In other words, choosing the softest 
possible definition of default will reduce the capital requirement = −C UL EL  by 
almost 30% compared to the hard definition of default. The same effect can be ob-
served for other combinations of EL, PD, and LGD. We will explain and prove 
the phenomenon in a general set up. 

It could be argued that the problem is solved by the requirement (Basel, 2005) 
for LGD to reflect downturn economic conditions or PD/LGD correlation. However, 
this requirement given a sufficiently rich historical data set is normally implemented 
using only the data set ′ ⊂A A  from years with economic downturn conditions 
and/or a high observed frequency of default. The PD, LGD parameters estimated 
from ′A  and UL calculated according to (1) will again depend on the definition of 
default in the same way as above. 
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Figure 1  Unexpected Loss According to the Basel II Formula if EL = PD⋅LGD = 2% is 
Fixed and PD Varies from 2.5% to 5% ( 15%ρ = ) 
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3. Alternative Single-Factor Models 
The single-factor models of Frye (2000a, 2000b), Pykhtin (2003), Tasche (2004), 

and others can be generally described as follows. Let the (percentage) loss of a re-
ceivable in the given time horizon be an increasing function of one systematic factor 
X and of a vector ζ

ur
 of idiosyncratic factors ( , )ζ=

r
L L X . The factor X captures mac-

roeconomic or other systematic influences that may develop in time, while ζ
ur

 reflects 

specificities of each individual obligor in a portfolio. Hence, the impact of ζ
ur

 is di-
versified away in a large (asymptotic) portfolio, while X remains as a risk factor. 
Consequently, the future unknown loss on a large portfolio can be modeled as 

[ | ]E L X  (see Gordy, 2003, for details). Since we assume that L is increasing in X 
the problem to find the quantiles of [ | ]E L X  reduces to a calculation of the quantiles 
of X. If x is the desired (e.g. for 99.9%) quantile of X then [ | ]= =UL E L X x . This is 
a clear advantage of the single-factor approach compared to the multi-factor ap-
proach, where we work with a vector 

uur
X of systematic factors instead of one factor X 

and the determination of the quantiles of [ | ]
uur

E L X  becomes complex. 
The expression for the unexpected loss may be decomposed into two parts 

corresponding to the unexpected default rate and loss given default: 

[ | ] [ 0 | ]· [ | 0, ]= = > = > =E L LE L X x L X Xx xP   

Here we use the hard definition of default 1 0= ⇔ >HD L , while as ex-
plained above in practice we usually need to work with a softer definition of default. 
We will say that ) 1}( ,, {0ζ ∈=

r
D D X  is a consistent notion of default provided 

0 1> ⇒ =L D . Then the unexpected loss may be in general decomposed as 

                      ·[ 1 | [ | 1,] ]= = = = =UL P D X x E L D X x                                 (2) 

The simplest version of the single-factor model is probably the model pro-
posed by Tasche (2004). The loss function ( , )ζ=L L X  is driven by one standard- 
-normally distributed factor 1ρ ρζ+= −Y X , where X and ζ  are independent stand-
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ard-normally distributed, and ρ  is their correlation. If L is assumed to have a cumula-
tive probability distribution function : [0,1] [0,1]→LF  then we may express the loss 

function in the form ( )( )* 1( , ) Φ ρ ρζ ζ+= −LL XX F  or just ( )*( )) (Φ= LL F YY , 

where { }* inf :( ) ( ) ≥= LL l FF z l z  is the generalized inverse of LF . Note that if p is 
the probability of default, then 

                                   (0) [ 0] 1= = = −LF P L p                                             (3) 

In a sense a more natural model has been proposed by Frye (2000a,2000b), 
which may in generalized form be described as follows. Let 1 1 1 11ρ ρ ζ+ −=Y X  

and 2 2 22 1ρ ρ ζ+ −=Y X  be two standard-normally distributed factors with one 
systematic and two independent idiosyncratic factors. The correlations 1ρ  and 2ρ  
may in general be different. The first factor 1Y  drives defaults in the model while 
the second 2Y  is assumed to drive losses in case of default, i.e., there is a default thres-
hold Dy  and a non-negative non-decreasing function G so that the loss function can 
be expressed as follows: 

                            1
1 2

2

 if 
( ) otherwis

0 ,( , , e) {ζ ζ ≤= DL X Y y
G Y                                        (4) 

If GF  is the distribution function of the random variable 2( )G Y , then the loss 

function may be again expressed as ( )*
2 2( ) )(Φ= GG YY F . 

The Pykhtin (2003) model in a sense unifies the two models. In generalized 
form let 1Y  be the driver of default as above; on the other hand let  

                      ( )2 22 1 21 1ρ ρ ωζ ωζ+= +− −Y X                                (5) 

be the driver of loss given default incorporating not only the systematic factor and 
a new idiosyncratic factor, but also the idiosyncratic factor from 1Y . The loss func-
tion 1 2( , , )ζ ζL X  is expressed by (4) as in Frye’s model. The approach enables us to 
model the fact that loss in the case of obligors default is determined by the value of as-
sets and the specific financial situation at the time of default as well as by the work-
out/bankruptcy specific development. 

Since we are interested in particular in unexpected loss given default mod-
eling let us compare the three models in this respect. In the Tasche model, the un-
expected loss given (hard) default conditional on the value of the systematic factor 
can be expressed as 

        ( )
1

11[ | 0, ]
1

( )

1
ρ
ρ

ρ ρζ φ ζ ζ
ρ

Φ
ρ

∞

−
−

+ −
⎛ ⎞−
⎜ ⎟⎜

> =

⎟
⎠

−
⎝

=

−

∫
y x

x d
y

x
x

E L L X L       (6) 



 

258                                    Finance a úvěr-Czech Journal of Economics and Finance, 60, 2010, no. 3 

Figure 2  Portfolio Loss Distribution in the Tasche and Generalized Frye Model 
( 0.4μ = , 0.15σ = , 0.15ρ = , 0.01Hp = ) 

0

5

10

15

20

25

0 0,2 0,4 0,6 0,8 1

P
ro

ba
bi

lit
y D

en
si

ty
 F

un
ct

io
n

Portfolio LGD

Tasche Model

LGD_p Dist

 

0

2

4

6

8

0 0,2 0,4 0,6 0,8 1Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

Portfolio LGD

Generalized Frye Model

LGD_p Dist

 
 
where ( )1 [ 0]Φ−= =y P L . On the other hand, for the Frye model we get a nicer 
formula 

           ( )2 2 2[ | 0, ] ) 1[ ( )| ] (ζρ ρ ζ φ ζ
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+ −> = = = = ∫E L L X x E G Y X x x dG            (7) 

since the value of 2( )G Y  does not depend on the idiosyncratic factor driving the de-
fault conditional on =X x . Regarding the Pykhtin model we get the following dou-
ble integral:  
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This approach, if properly calibrated, represents an economically more faith-
ful model compared to the other two. In fact, the three correlation parameters of 
the model may be linked to the default correlation, the loss given default correlation, 
and the default – loss given default correlation. Nevertheless, since the model is dif-
ficult to calibrate and as it is computationally complex we will focus on the Tasche 
and Frye models. In fact, the two models are special cases of the Pykhtin model: set 
in (5) 1ω =  and 1 2ρ ρ=  for the Tasche model and 0ω =  for the Frye model. 

Hence, given an account level distribution of LGD modeled by the function G, 
formulas (6)–(8) give the transformed portfolio level (average) [ | 0, ]= >LGD E L L X  
driven only by the systematic factor X. Since X is assumed to follow a standard nor-
mal distribution we obtain a distribution of the average (asymptotic) portfolio LGD. 
To model account level loss given default we will use the beta distribution with mini-
mum 0 and maximum 1 determined by its mean μ  and standard deviation σ . Figure 2 
shows the transformed distributions of the portfolio LGD in the two models given 
that 0.4μ = , 0.15σ = , and 0.15ρ = . In the Tasche model we used the probability of 
default 0.01=Hp . The distribution of the portfolio LGD does not depend on the prob-
ability of default in the case of the Frye model; it does in the case of the Tasche 
model, but the shape appears different but low if we test different values of Hp . It is 
obvious that the variance of the portfolio LGD is much lower in the case of Tasche 
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model than in the case of the Frye model. In fact, the standard deviation of the former 
is approximately 4.5% while the standard deviation of the latter is 9.7%. 

The Tasche model in spite of its appealing simplicity turns out to be inap-
propriate if the unexpected loss is to be factorized according to (2). If the correlation 
is calibrated for the unexpected default rate calculation (i.e., fitting the correlation 
parameter to a time series of observed rates of default) then the portfolio LGD vari-
ance is too low compared to the empirical observations. This follows, for example, 
from the study of Frye (2003) showing that LGD in bad years is almost twice the LGD 
in good years, or Frye (2000b) where the Frye model correlation coefficients 1ρ  and 

2ρ  calibrated to a Moody’s database appear to be almost equal. Another disadvan-
tage of the Tasche model is that PD estimations cannot be separated from LGD 
estimations. On the other hand, the Frye model can be calibrated separately accord-
ing to the volatility of frequencies of default over a number of years and according to 
the volatility of portfolio LGD observed in a time series. 

4. An Analysis of the Sensitivity of the Regulatory Capital Formula  
The phenomenon described in Section 2 has been partially explained in Wit-

zany (2009) using a Merton (1974) model-based simulation where we argued that 
a softer definition of default terminates the asset value stochastic process sooner than 
a hard definition of default, thus reducing the variance of the total losses due to 
the average LGD set at the time of default.  

To provide a better analytical explanation of the difference between the real 
loss quantile and the regulatory loss quantile estimation (and its dependence on the de-
finition of default) we will use the Frye and Tasche one-factor models as benchmarks 
against which we compare the regulatory unexpected loss estimation. In both cases 
the unexpected loss we need to estimate is given by 

          ] [ 1 | ]· [ | 1[ , ]| = = == = == P D X x E LUL E L X Xx D x                    (9) 

where 1 )(Φ α−=x  and α  is the regulatory probability level 0.999. 

Let us consider the Tasche model first. Let [ 0] [ 1]= > = =H Hp P L P D  be 
the probability of “hard default” ( 1 0= ⇔ >HD L ). Note that according to (3) FL(0)= 
=1–pH, where FL is the distribution function of L. Consequently, ( )*( ) ( ) 0Φ == = LL YL Y F  

for ( )1 1Φ−≤ − HY p  and ( )* ( ) 0Φ= >LL YF  for 1(1 )Φ −> − HY p . Hence yh = 
= Φ–1(1–ph) is the hard default critical point for the factor Y. As already explained, 
banks naturally use a softer definition of default. Let us assume that such a definition 
of default is represented by another critical point < Hy y . With this new definition of 
default 1= ⇔ >D Y y  the loss (given default) may be zero with a positive proba-
bility, [ ][ 0 | 1] 0= = = < >≤ HP L D P y Y y . This new definition of default D does 
not change anything on the unexpected loss [ | ]= =UL E L X x , where the notion of 
default is irrelevant. On the other hand, the regulatory estimation of unexpected loss 
turns out to be different for the two definitions of default: 
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Note that there is a difference between the second part of the “real” un-
expected loss (9), where the expected value is conditional upon the systematic factor 

=X x and the second part of the regulatory formula (10), where the expected value 
is conditional only upon the event of default. It is shown in the Technical Appendix 
that the regulatory unexpected loss (10) is indeed less than the “real” unexpected loss 
(9) and moreover that the unexpected loss estimate ULreg(y)  is an increasing func-
tion of y, i.e., it gets smaller with a softer definition of default: 

                             ( )  for <,<< H
reg reg Hy UL UL yL yU                                      (11) 

In case of the Frye model we have 
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and the Technical Appendix again shows that the property (11) holds. Hence, we 
have demonstrated that the numerically observed deficiency of the Basel II formula 
(Figure 1) generally holds in the context of the Tasche or Frye model. 

5. Improved Regulatory Formula 
In Section 3 we gave a general definition of the one (systematic) factor model. 
We have seen that if D is a consistent notion of default, then the loss may be 

decomposed to ·[ 1 | [ | 1,] ]= = = = =UL P D X x E L D X x . It is not in general obvious 
that the conditional default rate [ 1 | ]= =P D X x  as well as the conditional loss given 
default [ | 1, ]= =E L D X x  are increasing functions of x. However, this is a property 
of the aforementioned one-factor models (Tasche, Frye, Pykhtin). Consequently, it is 
correct in the context of one-factor models where both the conditional PD and 
conditional LGD are increasing functions of the systematic factor X to state that  

                                        ·=UL UDR ULGD                                                  (13) 

where [ 1| ]= = =UDR P D X x  is the α -quantile of possible default rates and ULGD= 
= E[L׀D = 1, X = x] the α -quantile of possible LGDs, with x being the α -quantile 
of X. The unexpected default rate is underestimated by the regulatory formula (1) as 
shown in Section 4, but we can improve it significantly by requiring that LGD be not 
the expected loss given default but the unexpected portfolio level loss given default 
(ULGD) on the same 99.9% probability level. 

For practical applications we propose to use the generalized Frye model. In 
the notation of Section 3 we just need to estimate 
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Figure 3  Account and Transformed Portfolio Loss Given Default Distribution 
( 0.3curep = , 0.4μ = , 0.15σ = , 0.1ρ = ) 
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To complete our model we need to propose an appropriate loss given default 
function G. We may follow Witzany (2009) by specifying that ( )G Y  has a beta dis-
tribution calibrated to the empirical mean and standard deviation. However, since we 
consider that the default definition may be in a practice a softer one with a non- 
-negligible percentage curep of receivables marked as defaulted being cured, i.e., ulti-
mately ending up with zero loss, we extend the model as follows. Let μ and σ be 
the mean and standard deviation of the observed positive losses assumed to have 
a beta distribution with minimum 0 and maximum 1. Let ,( ),μ σB t be the cor-
responding cumulative beta distribution function on [0,1], then the mixed distribution 
function incorporating the possibility of cures is defined by  

                              ( )( ) 1 · ( , , )μ σ= + −cure cureF t p p B t                                  (15) 

Finally setting ( )*( ) ( )Φ=G Y F Y  we see that G has the distribution given  
by F. To estimate the 99.9% ULGD we just need to evaluate (14) numerically for 

1(0.999)Φ −=x . Figure 3 illustrates the account-level LGD density function given 
by F for a given set of parameters (with mass weight curep  at 0) and the transformed 
portfolio level LGD density function of [ | ]E L X  derived from (14) . 

The unexpected loss estimated using the described technique is, however, still 
sensitive to the definition of default, although Figure 5 shows that the sensitivity is 
moderate and opposite compared to the regulatory capital (the unexpected loss esti-
mation increases with softer definition of default). Another applicable solution is to 
adjust the probability of (conventional soft) default p with the observed probability of 
cures curep and then apply the hard default-based formula  

                           ( )· ((1 , )) μ σ= − cure ULGDUL UDR p p                               (16) 

where the unexpected loss given (hard default) is estimated according to (14) using 
the beta distribution with mean μ and standard deviation σ .  

6. Numerical Study 
We are going to compare the values of regulatory unexpected loss in different 

scenarios: unexpected loss in the Tasche model and unexpected loss in the Frye 
model with and without the cure rate. The scenarios are specified by the probability 
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Figure 4  Comparison of the 99.9% Unexpected Loss in the Tasche Model and Frye 
Model Depending on 2ρ   
(with 1%Hp = , 45%μ = , 15%σ = , 15%ρ = , 0%curep = ) 
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of hard default Hp , loss given (hard) default mean μ , and standard deviation σ , cor-
relations 1ρ ρ=  and 2ρ , and the cure rate curep . Formally, we have two definitions 
of default, HD  and SD , so that [ ]11| 1= == −H S cureP D pD . Consequently, the prob-

ability of soft default is recalculated as ( )/ 1= −S H curep p p . Moreover, DS = 1&DH = 
= 0=>L = 0 and so the loss given soft default mean can be expressed as  

       [ ] [ ]( ) ( )| 1 11 1|μ μ= == = −= −S H cur rS e cu eE L D E L D p p  

and the LGD standard deviation as 

              
( ) ( )

( )( )

22 2

2 2

11| 1

1

μ

σ

σ

μ

⎡ ⎤= − −⎣ ⎦

−

= − =

= +

S H cure cure

cure cure

E L D

p p

p p
 

since 2 2 2| 1 σ μ⎡ ⎤ +⎣ ⎦= =HE L D .  

Figure 4 shows how it is difficult to align the Tasche and Frye models. If we 
fix 15%ρ =  as the correlation related to the unexpected default rate and the other 
parameters as specified below, then in order to obtain the same unexpected loss in 
the Frye model as in the Tasche model the LGD correlation must be reduced to 1% or 
even less. Such a calibration is in contradiction with empirical studies such as Frye 
(2000b, 2003). Thus, we focus rather on the Frye modeling approach. 

Figure 5 compares the regulatory unexpected loss estimate with different esti-
mation approaches based on the Frye model explained at the end of the previous 
section. While the UL_reg curve shows the regulatory unexpected loss declining with 
the cure rate going up, the UL_Frye_S curve based on the beta distribution calibrated 
to μS and σ S  turns out to be increasing. The dependence is weaker if we use the mixed 
beta distribution (15) (UL_Frye_S_c) and logically it is fully eliminated (UL_Frye_H) 
when we use (16). We consider the positive sensitivity of UL_Frye_S_c to the cure 
rate, motivating banks to use a harder definition of default, to be much more 
acceptable than the negative sensitivity of UL_reg, which motivates banks to use 
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Figure 5  Regulatory and Frye Model-Based 99.9% Unexpected Loss Estimations 
Depending on curep   
(with 2.5%Hp = , 70%μ = , 15%σ = , 1 15%ρ ρ= = , 2 8%ρ = ) 
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Figure 6  Sensitivity of the 99.9% Regulatory and 99.5% Frye Model Unexpected  

Loss to Hp  and μ   
(with, 22%σ = , 1 15%ρ ρ= = , 2 13%ρ = , 45%μ =  in the first graph, and 1%Hp =  
in the second) 
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a softer definition of default, which is not usually ideal for credit risk modeling as 
pointed out in Witzany (2009). The problem is fully solved by recalculating the prob-
ability of soft default to the probability of hard default, which, however, might be 
rather difficult to communicate in practice. 

Incorporation of the unexpected loss given default into the unexpected loss 
calculation significantly increases the value compared to the regulatory unexpected 
loss. If we wanted to set up the model in line with the current regulatory capital val-
ues we could consider reducing the (artificially high) regulatory level. It turns out 
that the level of 99.5% (proposed, for example, for Solvency II) leads to comparable 
values of the regulatory UL on the 99.9% level and the Frye model UL on the 99.5% 
level. The relationship nevertheless depends on the σ  and 2ρ values. Figure 6 com-
pares the sensitivity of the 99.9% regulatory UL and 99.5% Frye model UL (16) to 
the probability of default and expected loss given default, other parameters being 
fixed. The 99.5% Frye UL turns out to be more sensitive than the regulatory UL with 
respect to the probability of default but less than the expected loss given default. 
Hence, by appropriate recalibration of the confidence level we do not obtain the same 
unexpected loss estimations in all scenarios, but using the proposed model we obtain 
a better correspondence between the real risk and the economic capital, more robust 
calculations, and at the same time an overall comparable average level of capital. 
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7. Conclusion 
We have demonstrated and analytically explained that regulatory capital ac-

cording to the Basel II formula is sensitive to the definition of default. We have  
seen in Section 5 that the problem may be relatively simply theoretically solved in 
the context of general single-factor models requiring that the LGD parameter be 
reinterpreted as the 99.9% percentile of possible losses given default (or generally 
using the same percentile as for the unexpected default rate). We have considered 
three particular one (systematic) factor models and concluded that the one with  
two idiosyncratic factors proposed by Frye is the most appropriate to implement in 
practice. The best results are provided by the model where the observed probability 
of soft default is adjusted using the cure rate to obtain the probability of hard default 
(which can be fully determined only ex post). Since the extended model gives higher 
unexpected loss values the confidence level can be recalibrated to a lower value (e.g. 
99.5%) to achieve comparable capital levels. The resulting formula, compared to 
the regulatory formula, provides more robust and economically more faithful esti-
mates of unexpected credit losses. 

Technical Appendix 
The goal of the appendix is to demonstrate property (11) stated in Section 4 in 

the case of the Tasche and Frye models. 
Let us start with the Tasche model and show that ( ) <reg yUL UL . Let 

1 ( )Φ= −p y  be the probability of soft default. Note that  

    
1( )

[ | ] 1
1

Φ ρ
ρ ρζ Φ

ρ

− +⎡ ⎤
⎛ ⎞

> = = + − > = ⎜
−⎦ ⎟⎜ ⎟

⎝ ⎠
⎣

p
P Y y X

x
x P x y           (17) 

coincides with the regulatory formula for the unexpected default rate. The difference 
between (10) and (9) lies in the second part of formula (10), i.e., in [ | ]>E L Y y , 
where the regulation in general requires an average loss given default in the sense of 
the discussion above while the “real” unexpected loss (9) can be decomposed as  

    [ | ] [ | · |] [ , ]= = > = = >E L X x E L X xP Y X Yy yx   

It appears obvious that 
                            [ | , ] [ | ]= > > >E L X x Y y E L Y y                                     (18) 

although the full proof is unfortunately rather technical. The right-hand side of 
the inequality (18) can be written as 

          1
1[ | ] ( ) ( ) ( )

1
( )

( )
φ φ

Φ

∞ ∞

> = =
− ∫ ∫

y y
zE L Y y L z L z z dzdz

y
 

where 
2

21( )
2

φ
π

−
=

z
z e  is the standard normal distribution density function and 

1
)(

)
)

1
(

(
φφ
Φ

=
−

z
y

z  . The left-hand side of (18) equals 
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Figure 7  Density Functions 1φ  and 2φ  
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     (19) 

where  

                                 2
1

( )

1 · 1
1

ρ
φ

ρ
φ

ρ
ρ Φ

ρ

⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠=
⎛ ⎞⎛ ⎞−

− −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

z x

z
y x

 

Both densities 1( )φ z and 2 ( )φ z  are normalized over the interval [ ),+∞y , hence 
to show that 

                                21( ) ( ) ( ) ( )φ φ
∞ ∞

<∫ ∫
y y

L z z dz L z z dz                                    (20) 

we need to analyze the relationship between the two densities. It follows from 
the properties of the normal distribution density that (provided 0>x  and 0ρ > ) 
there is an >%y y so that 1 2( ) ( )φ φ>z z  on [ ), %y y  and 1 2( ) ( )φ φ<z z  on ( , )+∞%y . See 

Figure 7 for an illustration with 1(0.99)Φ −=y , 1(0.999)Φ −=x , and 0.1ρ = . Pro-
vided ( )L z  is an increasing function (and not constant on [ ),+∞y ) the inequali- 
ty (18) follows immediately.  

It is in fact much easier to show that the regulatory unexpected loss is less 
than the Frye model unexpected loss. In this case we just need to prove that 

                  ( ) ( )2 2 21 |ρ ρ ζ+⎡ ⎤<⎡ =⎤⎦ −⎣ ⎣ ⎦E G X X xY E G                          (21) 
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Figure 8  Density Functions φ  and 1φ  
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with the notation from Section 3. The left-hand side simply equals ( )( )φ
−

∞

∞
∫ y dyG y , 

while the right-hand side can after substitution be written as 1( ) ( )φ
−

∞

∞
∫ G y y dy , where 

1 / 1( )
1

ρ
φ φ ρ

ρ

⎛ ⎞−
−⎜ ⎟⎜ ⎟−⎝ ⎠

=
y x

y .  

For 0ρ >  it can be verified that the function 1 (( ))φ φ< yy  on interval 0( , )−∞ y  and 

1 (( ))φ φ> yy  on ( )0 , ∞+y  (see Figure 8). Consequently, it again holds provided G is 
non-decreasing and strictly increasing on a non-trivial interval. 

Next we want to show that the function ( ) [ | ] ]· [ |= > = >reg E LUL y Y X x YP yy  

defined according to (10) is an increasing function of ≤ Hy y  for a certain range of 

feasible values for y and ρ . Since [ ][ | ]
[ ]

> =
>

E LE L Y y
P Y y

 we just need to show that 

the ratio between the unexpected loss ( )regUL y  and the expected loss [ ]E L  not 
depending on y 

           
( ) [ | ]( , )

[ ] [ ]

1
1

1 ( )

ρ
Φ

ρ
Φ

ρ > =

⎛ ⎞−
− ⎜ ⎟⎜ ⎟−⎝= = =

>
⎠

−
regUL y P Y y X xh y

E L P

y x

y yY
                 (22) 

is an increasing function of y. Note that the equation (22) is identical for the Tasche 
and Frye models. Unfortunately, we cannot prove generally that the function ( , )ρh y  
is increasing in 0>y  for any given correlation 0ρ > . In fact, it is not increasing on 

(0, )∞  with 0ρ > , since 
1

ρ
ρ

−
>

−

xy
y  and so )( 1,ρ <h y  for large y while clearly 

)( 1,ρ >h y  for smaller values of 0>y . However, it can be shown using numerical 
approximations that the function is increasing over a range of admissible values  
for y  and ρ . Figure 9 shows the function (22) strongly increasing with the values 
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Figure 9  The Ratio between the Unexpected Loss ( )regUL y   
and the Expected Loss [ ]E L  increases with y  
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1(0.999)Φ −=x  and 0.4, 0.1, 0.15ρ ρ ρ= = = , and for ( )1 1Φ −= − Dy p  over the range 

[0.8, 3.7] corresponding to admissible PD values in the interval [0.01%, 21.2%]. 
Consequently, we have demonstrated that indeed: 
                        ( )  for y, y<<< H

reg reg Hy UU LL UL  

for both models. 
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