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Abstract 

A classical question in modern portfolio theory asks how the best portfolio composition can be chosen. Answering 

this question is definitely not easy and the general approach is to maximize the chosen risk-reward ratio. In our 

paper, however, we utilize the mean-variance framework introduced by Markowitz and maximize the (quadratic) 

utility function, which depends on the expected return (future mean return) and its variance. Simplification in terms 

of the applied utility function instead of the performance ratio allows portfolio backtesting over a relatively long 

period with a short computation time. The goal of the paper is to analyse how the risk-free asset investment possi-

bility influences the ex post observed wealth path in the case of the selected period and data set. We find that the 

possibility of risk-free investments actually deteriorates the wealth path. Our explanation is that the simple portfolio 

optimization strategy proposed in the paper is unable to forecast market declines in time and reacts with a delay. 
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Aleš KRESTA, Kateřina ZELINKOVÁ 
 

1. Introduction 

A classical question in modern portfolio theory asks 

how the best portfolio composition can be chosen. An-

swering this question is definitely not easy and the gen-

eral approach is to maximize the chosen risk-reward ra-

tio. Based on the applied risk and reward measures, 

plenty of performance ratios are available. Examples 

are the Sharpe ratio (Sharpe, 1966, 1994), Gini ratio 

(Shalit and Yitzhaki, 1984), mean absolute deviation 

ratio (Konno and Yamazaki, 1991), mini-max ratio 

(Young, 1998), Rachev ratio (Biglova et al., 2004) and 

others; for a summary, see for example Farinelli et al. 

(2008). In our paper, however, we utilize the mean-var-

iance framework introduced by Markowitz (1952) and 

maximize the quadratic utility function, which depends 

on the expected return (future mean return) and its var-

iance. Simplification in terms of the applied utility 

function instead of the performance ratio allows portfo-

lio backtesting over a relatively long period with a short 

computation time due to the ease of finding the global 

optimum. For more complex applications assuming the 

maximization of different performance ratios, see for 

example Cassader et al. (2014), Petronio et al. (2014) 

or Giacometti et al. (2015). 

The goal of the paper is to analyse how the risk-free 

asset investment possibility influences the ex post ob-

served wealth path in the case of the selected period and 

data set. The analysis is performed by means of 

backtesting two portfolio optimization problems: with 

and without the possibility of risk-free investments. 

The backtesting is performed on a data set that consists 

of the stocks incorporated into the Dow Jones Industrial 

Average index over the period from 30 December 1994 

to 31 December 2014. 

The paper is structured as follows. In the next sec-

tion, the portfolio optimization models in Markowitz’s 

mean-variance framework are described. Then, in the 

third section, we briefly describe the backtesting proce-

dure that we apply. In the fourth section, the empirical 

results are presented. The last two sections provide  

a discussion of the results and the conclusion. 

2. Portfolio optimization problem  

The cornerstone of modern portfolio theory was estab-

lished by the pioneering work of Harry Markowitz in 

1952 reported in his well-known paper; see Markowitz 

(1952). We assume a portfolio composed of N assets, 

for which the joint probability distribution of returns is 

known, that is, we know both the expected returns of 

particular assets      1 ,...,
T

i NE r E r E r     and the 

covariance matrix of the returns 

, 1,.., 1,.., .i, jQ i N j N    
 Then, assuming the 

portfolio composition  1,...,
T

Nx x x  and based on the 

normality assumption, we can compute the portfolio 

expected return  pE r  and the portfolio variance 2
p  

(standard deviation 
p , respectively) as follows: 

      
1

,
N

T

p i i i

i

E r x E r x E r


     (1) 

 2

,

1 1

,
N N

T

p i i j j

i j

x x x Q x 
 

       (2) 

 2 .p p   (3) 

The rational investor wants to maximize the portfo-

lio expected return and (assuming that he is risk averse) 

minimize the variance. However, the relationship be-

tween these two characteristics is generally positive – 

by lowering the variance, the expected return also de-

creases; see for example Lundblad (2007). 

Without the knowledge of the investor’s risk aver-

sion, we can find the set of (Pareto) efficient portfolios. 

A portfolio is identified as efficient if the following 

conditions are fulfilled at the same time: 

 All the other portfolios that have the same (or 

a higher) expected return also have higher vari-

ance, 

 all the other portfolios that have the same (or  

a lower) variance have a lower expected return. 

The above can be reversed so that the particular portfo-

lio is efficient if and only if there is no other portfolio 

with lower variance delivering a higher or equal ex-

pected return and no other portfolio with a higher ex-

pected return and lower (or equal) variance. For further 

details of modern portfolio theory, see for example El-

ton et al. (2009). Generally, other limitations can also 

be imposed; for instance, see the cardinality con-

strained portfolio optimization problem in Salahi et al. 

(2014). 



A. Kresta and K. Zelinková – Backtesting of portfolio optimization with and without risk-free asset 

 

 

77 

We further assume that we know the level of the in-

vestor’s risk aversion. We assume an investor whose 

utility function can be formulated as follows: 

   2 ,p pU E r k     (4) 

meaning that this investor is maximizing the expected 

return from the portfolio while minimizing the risk. The 

risk-return trade-off that the investor is capable of un-

dertaking while maintaining the same utility is depicted 

by parameter k. Every increase in the variance has to be 

compensated for by a k-times increase in the expected 

return to keep the same level of utility. Investors with 

different risk attitudes can be distinguished according 

to the value of parameter k: i) risk-averse investors can 

be characterized by positive values of the parameter, ii) 

risk lovers are connected to negative values and iii) k = 

0 for risk-neutral investors. 

The rational investor seeks the highest utility possi-

ble. Thus, we can formulate the following maximiza-

tion problem: 

 

  ,

1 1 1

1

argmax

1

0, 1,..., .

N N N

i i i i j j
x i i j

N

i

i

i

x E r k x x

w x

x i N


  




    




 

  



 

  (5) 

In this problem, we are looking for the portfolio com-

position  1,...,
T

Nx x x  for which the utility function 

is maximized. There are two constraints: the sum of the 

weights must be equal to one and the weights must be 

non-negative. The problem specified above can be un-

derstood as follows: by knowing parameter k, we can 

find the optimal portfolio composition. Note also that 

if: 

 0k  , the optimal portfolio is equal to the max-

imum return portfolio, that is, the portfolio will 

be composed of only one asset with the highest 

expected return, 

 as k , the optimal portfolio is approaching 

the minimum-variance portfolio and 

 for different values of  0,k  , we obtain dif-

ferent points of an efficient set. 

In the above-mentioned problem, all the assets are as-

sumed to be risky assets, that is, the variances of the 

returns are greater than zero. Investment in risk-free as-

set is not allowed. However, this restriction can be re-

laxed. We can generalize the optimization problem, al-

lowing investment in risk-free asset. Note that the ex-

pected return of risk-free asset is equal to the risk-free 

rate rfr  and its variance is equal to zero, that is, the risk-

free rate is not random. Then, the generalized optimi-

zation problem is as follows: 

 

 

 

 (6) 

 

 

where rfx  is the weight of the risk-free asset and rfr  is 

the risk-free rate. The constraints are the same: the sum 

of all the weights (i.e. the sum of the weights of risky 

assets and the weight of risk-free asset must be equal to 

one) and all the weights must be non-negative.  

3. Portfolio optimization backtesting  

In the previous chapter, we proposed the optimization 

problems that can be applied to find the optimal portfo-

lio. As already stated, the composition of such a portfo-

lio is dependent on the investor’s risk aversion, which 

is modelled by parameter k. However, the composition 

of the optimal portfolio also depends on the expected 

returns and covariances of individual assets’ returns, 

which are, alas, not directly observable and must be es-

timated. Many methods and models exist to estimate 

future expected returns. In the further text, we will as-

sume estimation from historical data assuming Gauss-

ian i.i.d. returns. A more complex approach, which can 

be applied, is to estimate and predict the responses from 

ARMA-GARCH models. However, this approach is 

computationally complex and thus also involves high 

time requirements. The assumption of Gaussian i.i.d. 

returns, on the other hand, allows quick estimation. 

Within the backtesting procedure, historical data are 

utilized. For each observation (day), we compute the 

portfolio composition based on the information set 

known at that moment; specifically, the weights of the 

portfolio at time t are determined based on the re-

turns/prices of the assets in period (t – m, t – 1), where 

m determines the size of the past data that are utilized. 

To avoid look-ahead bias, it is vital to assure that the 

algorithm utilizes only information that would have 

been available at the time of the portfolio rebalancing. 

Under such a set-up, we can compute the ex post 

portfolio returns , ,P tr  

 
, , ,

1

,
N

P t i t i t

i

r r w


   (7) 

where ,i tr  are the ex post observed returns and ,i tw  are 

the weights of assets in the portfolio, which are ob-

tained by portfolio optimization based on the re-

turns/prices of the assets in period  , 1 .t m t   Then, 

we can also compute the ex post wealth (i.e. portfolio 

value) path, 

  ,

1 1 1

1

argmax

1

0

0, 1,..., ,
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  1 ,1 ,t t P tW W r     (8) 

which is vital for further analysis.  

We set 
0 1,W   that is, at the beginning of the 

backtesting period, we start with the wealth of one cur-

rency unit. Then, we cycle through the backtesting pe-

riod and after each new observation we re-optimize the 

weights according to (5) or (6), rebalance the portfolio 

and compute the ex post portfolio return according to 

(7) and the value of wealth according to (8). Clearly, 

we are interested in the value of final wealth, ,TW  

namely the wealth that we possess at the end of the 

backtesting period. 

Regrettably, the final wealth should not be the only 

characteristic in which the investor is interested. As the 

investor is risk averse, he dislikes the risk. Here, we 

substitute the risk with the maximum drawdown of the 

wealth over the backtesting period. The term maximum 

drawdown is explained below. 

If we assume wealth path  
0
,

T

t t
W


 at time 

 0,T  , we can measure the decline from the histor-

ical maximum peak; this measure is called drawdown 

and can be computed as follows: 

 

(0, )

1 .
max t
t

W
DD

W






   (9) 

Note that (9) is stated as a percentage – that is, the 

size of the decline that we suffer at time   relative to 

the previous maximum wealth (the highest peak). How-

ever, we can extend the ratio so that we measure the 

maximum drawdown over the period (0, T): 

  0,
(0, )
max .T

T
MDD DD


  (10) 

The maximum drawdown (MDD) is the worst de-

cline in wealth over the selected period, meaning the 

maximum relative difference between the peak value 

and the subsequent valley value. For further explana-

tion, see for example Chekhlov et al. (2005) or Mag-

don-Ismail et al. (2004), who studied the relationship 

between maximum drawdown and geometric Brownian 

motion. 

The computations were performed in Matlab. Ap-

plied algorithms as well as a further description of the 

general backtesting framework are provided by Kresta 

(2015a, 2015b).  

                                                             
1 http://finance.yahoo.com 

4. Empirical part 

In the previous section, we described two portfolio op-

timization problems – with and without risk-free in-

vestment possibilities. As stated, the optimization prob-

lem allowing risk-free investments (6) is the generali-

zation of the problem that does not allow risk-free in-

vestments (5) and thus it should both enlarge the port-

folio composition possibilities and allow the formation 

of better portfolios in terms of the trade-off between ex-

pected return and variance. Further, we analyse whether 

the wealth path obtained by means of the backtesting 

procedure improves. Specifically, we focus on the final 

value of the wealth and the value of the maximum 

drawdown. 

Data set 

The data set utilized consisted solely of the stocks in-

corporated into one of the American stock market indi-

ces – the Dow Jones Industrial Average (henceforth 

DJIA). We assumed all the components of the index as 

of 6 October 2014, except the stocks of the Goldman 

Sachs Group, Inc. (Yahoo Finance ticker GS) and Visa 

Inc. (Yahoo Finance ticker V). These two stocks were 

excluded from the data set as we were not able to obtain 

historical data for a long enough period. Thus, the data 

set consists of only the 28 remaining stocks.  

The historical data of the stocks included in the data 

set were obtained from the Yahoo Finance website1 

over the period from 3 January 1994 to 31 December 

2014 (6,048 daily observations for each stock). How-

ever, we estimated the parameters from 250 observa-

tions; thus, the backtesting was performed in the period 

from 30 December 1994 to 31 December 2014, leaving 

the first year of data for initial parameter estimation. 

4.1 Empirical results 

The backtesting results (i.e. the ex post wealth paths) of 

the portfolio optimization problem without risk-free in-

vestment possibilities are shown in Figure 1. 

From the figure, we can conclude that the lower the 

value of parameter k (the less risk averse the investor 

is), the higher the final wealth. It is also apparent that 

the higher the value of parameter k (the more risk 

averse the investor is), the lower the volatility and 

drawdowns. Moreover, we can see that, irrespective of 

the value of parameter k, all the wealth paths dropped 

significantly in the period 2008/2009 due to the sub-

prime crisis and in 2010/2011 due to the country credit 

risk crisis. A steady decline also occurred in the period 

2000–2004. 
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Figure 1 Wealth paths obtained by portfolio optimization 

not allowing risk-free investments 

Figure 2 Wealth paths obtained by portfolio optimization al-

lowing risk-free investments 

The backtesting results (i.e. the ex post wealth 

paths) of the portfolio optimization problem that allows 

risk-free investments are shown in Figure 2. In the 

specification of the problem, we assumed the risk-free 

rate to be equal to 2% p.a. From the visual comparison 

of the two figures, we can conclude that the ex-post 

wealth paths obtained are identical for the two prob-

lems. The values of the final wealth and the maximum 

drawdown will be analysed more precisely in the text 

below. 

It is also important to analyse the changes in portfo-

lio composition over time. To be more specific, we ex-

pect that during periods of general decline in the finan-

cial markets, the weight of risk-free asset is increased 

and the weight of risky assets is decreased. The evolu-

tion of the relation between the weight of risk-free asset 

and the weight of risky assets is depicted in Figure 3. 

The figure shows the evolution of the weights obtained 

by means of backtesting the optimization problem al-

lowing risk-free investments and assuming k to be 

equal to 4 and the risk-free rate to be equal to 2% p.a. 

As can be seen, in 2009, the weight of risk-free asset 

was especially greater; however, based on Figure 1, we 

can conclude that the increase occurred quite late, actu-

ally after the wealth had already dropped. The same sit-

uation applies to the period 2000–2004.  

To compare the influence of the possibility of risk-

free asset investments, we compared the values of final 

wealth and maximum drawdown. We analysed the 

portfolio optimization problem without risk-free in-

vestment possibilities (5) and with risk-free investment 

possibilities (6). In the latter optimization problem, we 

assumed the risk-free rates of 0%, 2%, 5% and 10% p.a. 

Note that the most realistic case is the risk-free rate of 

around 0%–2% p.a.; however, for the purposes of the 

analysis, we also assumed higher values.  

The values of the final wealth are depicted in Table 

1, while the values of the maximum drawdown are 

 

 

Figure 3 Evolution of portfolio compositions  

summarized in Table 2. From the results, we observe 

that for realistic values of the risk-free return (0%–5% 

p.a.), the allowance of risk-free investments in the port-

folio composition yields smaller final wealth while pos-

sessing generally the same or higher maximum draw-

downs. Actually, the maximum drawdowns are smaller 

in some instances; however, the differences are very 

small. For the unrealistically high risk-free rate (10% 

p.a.) and k equal to zero or one, the situation is the 

same; only for k greater than 1 does allowing risk-free 

investments in the portfolio composition provide an im-

provement in both the final wealth and the maximum 

drawdown. However, the differences are rather small 

and we also have to keep in mind that the risk-free rate 

of 10% p.a. is unrealistically high. 

There is another surprising relationship. We would 

expect that by increasing the risk-free rate, the observed 

final wealth would increase and the maximum draw-

down decrease. However, the opposite is true for small 

values of parameter k (less risk-averse investors) and 

realistic risk-free rates. 
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Table 1 Final wealth under different models 

Model k = 0 k = 1 k = 2 k = 3 k = 4 

no risk-free 

asset 
61.62 28.29 16.65 11.06 8.10 

risk-free asset 

(rrf = 0%) 
61.39 27.46 14.82 10.19 7.66 

risk-free asset 

(rrf = 2%) 
58.76 26.51 15.01 10.43 7.81 

risk-free asset 

(rrf = 5%) 
54.41 26.23 15.53 10.89 7.84 

risk-free asset 

(rrf = 10%) 
55.37 26.49 16.94 11.37 8.20 

 

Table 2 Maximum drawdown under different models (in %) 

Model k = 0 k = 1 k = 2 k = 3 k = 4 

no risk-free 

asset 
59.64 49.41 52.88 47.77 44.74 

risk-free asset 

(rrf = 0%) 
59.93 49.93 52.69 47.12 44.19 

risk-free asset 

(rrf = 2%) 
61.50 50.80 52.86 46.83 44.25 

risk-free asset 

(rrf = 5%) 
63.02 50.73 52.45 46.56 44.85 

risk-free asset 

(rrf = 10%) 
61.78 48.23 51.07 47.29 44.05 

 

5. Discussion  

According to the presented results, the allowance of 

risk-free investment makes no positive contribution to 

the final wealth or the maximum drawdown. However, 

the reason for these results lies in the way in which the 

future returns are estimated. In our paper, we assumed 

that the joint distribution of one-day-ahead returns can 

be estimated from the preceding 250 daily returns. In 

other words, the investor maximizes his/her utility 

function based on the 250 most recently observed daily 

returns. However, by applying this method of predic-

tion, the strategy reacts to the market declines with  

a delay; that is, in the early stages of market declines, it 

is advisable to invest in risky assets, while at the end of 

market declines and during subsequent market recovery 

stages, investing in risk-free asset may be preferable; 

compare Figure 3 with Figure 1. Thus, in this way, it is 

impossible for the investor to predict whether there will 

be a general decline in the market and he/she should 

invest in risk-free asset or there will be growth and 

he/she should invest in risky assets. Thus, it is better for 

the investor always to invest in risky assets than to try 

to predict the future market movements (by the simple 

method based on historical observations) and move 

funds between risky assets and risk-free asset.  

6. Conclusion 

The problem of finding a proper portfolio composition 

is in the focus of both academics and practitioners. In 

the paper, we utilized the mean–variance framework in-

troduced by Markowitz to analyse whether the perfor-

mance of portfolio optimization will improve as invest-

ment in risk-free asset is allowed. The performance of 

portfolio optimization was measured by the value of fi-

nal wealth as well as the value of maximum drawdown 

in the chosen backtesting period. 

The results indicated that the introduction of risk-

free asset ensures an improvement neither in the value 

of the final wealth nor in the maximum drawdown. 

Thus, under the assumption made, we conclude that the 

introduction of risk-free investment possibilities does 

not improve the investment opportunities. However, 

the assumption that we made, that is, that the returns are 

i.i.d. with Gaussian distribution, is very simplifying. 

We kept this assumption due to the computational com-

plexity of other approaches. 
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