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Abstract

Recent (2018) evidence identifies the increased need for active managers to facilitate 
the exploitation of investment opportunities found in inefficient markets. Typically, ac-
tive portfolios are subject to tracking error (TE) constraints. The risk-return relation-
ship of such constrained portfolios is described by an ellipse in mean-variance space, 
known as the constant TE frontier. Although previous work assessed the performance 
of active portfolio strategies on the efficient frontier, this article uses several perfor-
mance indicators to evaluate the outperformance of six active portfolio strategies over 
the benchmark – subject to various TE constraints – on the constant TE frontier.
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INTRODUCTION

Passive managers follow a benchmark (index) tracking strategy, using 
financial instruments such as Exchange Traded Funds (ETFs) (Sharpe, 
1991), whereas active managers seek investment opportunities with 
the objective of outperforming mandated benchmarks.

The competition between advocates of active and passive management 
has recently (2018) intensified. Historically, passive investing has tak-
en preference globally, however, recent evidence identifies a change 
in this trend (Torr, 2018). The prevailing (2019) narrow bull market is 
prone to the fundamental weakness of being top-heavy: only six S&P 
500 companies (namely Facebook, Apple, Amazon, Microsoft, Google 
and Johnson & Johnson) dominate the index tracking market. Passive 
managers have focussed on tracking the S&P 500, which has led to 
overcrowding of the ETF market (Brenchley, 2018). These high con-
centrations levels have reduced investors’ only free lunch: diversifica-
tion. Opportunity for real dominance by active managers would be 
marked by a reversal of this tide (Gilreath, 2017). The market risks of 
ETFs have been considerably underestimated, which led to – amongst 
others – the flash crash of August 2015 (Gilreath, 2017). This brief 
downtrend proved the falsehood of the assumption that intraday trad-
ing risks associated with ETFs are low (Gilreath, 2017). 

Lambridis (2017) found the origin of the anti-active stance to be based 
on misperceptions stemming from the US experience. Almost all in-
vestment-style research to date (2019) has used US data, where market 
characteristics differ considerably from emerging markets. The ineffi-
ciency inherent in developing economies is not conducive to passive 
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management strategies. Emerging market investors do not enjoy the tax advantages provided by passive 
instruments based in the US (Lambridis, 2017). Moreover, the disproportionate weighting of South 
African (as an example of an emerging economy) indices lends itself to higher concentration risks, lim-
iting diversification. Naspers Limited, for example, dominates South African indices (Cairns, 2018). 

Torr (2018) warned that the increased concentration of market leadership itself is positive for active 
managers. Unlike US active funds, South Africa has seen a higher percentage of outperformance on 
an after-fees basis and South African indices have achieved some of the highest international turnover 
rates, a statistic that augurs badly for the pro-passive incentive of lower costs (Lambridis, 2017). The 
pursuit of active management strategies, therefore, has the potential for great reward. 

Given the shift towards active management, the potential for this investment philosophy must first be 
supported by compelling evidence, proving its sustained performance advantage over passive strategies 
(Gilreath, 2017).

Modern Portfolio Theory (MPT) introduced Markowitz efficient portfolios, which are located on the 
efficient frontier, a curve in risk/return space representing utility maximizing investment opportunities 
above the minimum variance portfolio (Markowitz, 1952). Portfolio managers are only worth reward-
ing and retaining if their performance is, on average, positive (Roll, 1992). Since the debut of MPT, many 
measures have been developed to test the performance of portfolio strategies on the efficient frontier. 
Sharpe (1966) introduced the Sharpe ratio (returns greater than the risk-free rate over the total portfolio 
risk, σ  to measure a fund manager’s selection skill. The more popular Information Ratio (IR) measures 
the quotient of the expected active return and the tracking error (TE – the standard deviation of the 
difference between portfolio and benchmark returns). IR reveals the manager’s ability and consistency 
to generate excess returns. Later, the more comprehensive and interpretable Modigliani risk-adjusted 
performance measure (L. Modigliani & F. Modigliani, 1997), also known as 2M  RAP, was developed 
to assess the risk-adjusted returns of a portfolio relative to its benchmark.

TE is in widespread use within the asset management industry as it is used as an indicator, with a given 
level of statistical reliability, to determine whether active managers add value over a benchmark (Roll, 
1992), as well as limits the risk of performance fee incentivized managers (Jorion, 2003). TE does not 
provide information on the direction of return differences, as it only measures excess return volatility, 
thus, TE should not be used in isolation (Thomas, Rottschafer, & Zvingelis, 2013), but instead is best 
used in combination with other performance evaluators, such as the Information Ratio, and Sharpe 
ratio. 

Optimizing fund returns subject to a TE is dependent on the investment mandate. External agents 
determine this mandate to prescribe targets for outperformance, risk-return profiles and investment 
strategies (Roll, 1992). 

The industry maintains the widespread use of TE for risk control (Goodwin, 1998). Jorion (2003) rec-
ognized this emphasis and formalized the shape of constant TE portfolios, characterizing the locus of 
points in risk/return space corresponding to a TE constraint (i.e. portfolios with maximum return for 
a given level of risk and subject to a TE constraint). The relationship between expected return and var-
iance for a fixed TE (the constant TE frontier) is described by an ellipse in mean-variance space (and a 
distorted ellipse in risk/return space). Jorion (2003) advocated portfolios with maximum return, subject 
to a tracking error and having the same risk as the benchmark.

Historically, the performance measures mentioned earlier have been used to test the performance of 
portfolio strategies on the efficient frontier. Such portfolio strategies were constructed in response to the 
problem of “optimality”, which arose from investors’ differing risk profiles and objectives. We introduce, 
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for the first time, an evaluation of the portfolio performance of the six portfolio strategies (maximum 
return, minimum variance, Jorion’s benchmark risk, maximum diversification, minimum intra-corre-
lation and maximum Sharpe ratio) on the constant tracking error frontier. That is, we explore the be-
havior of investment strategies in terms of performance ratios subject to TE constraints. 

The remainder of this paper proceeds as follows: a literature review in section 1 explores previous work 
on modern portfolio theory, TE frontiers, constant TE frontiers, the development of the six portfolio 
strategies and relative performance measures aimed at establishing value added. Section 2 provides the 
data and methodology adopted in this study, with reference to the mathematics applied. Section 3 dis-
cusses some insightful results and last section concludes. 

1. LITERATURE REVIEW

1.1. Portfolio management

Modern Portfolio Theory (MPT) formulates the 
portfolio selection problem as a trade-off between 
risk and return (mean/variance) of a portfolio of as-
sets (Markowitz, 1952). This model introduced the 
concept of efficient portfolios, which demonstrated 
the total risk-reducing effects of adding assets to 
investment portfolios, whilst maximizing investor 
utility (Chen, 2016). Such portfolios lie on a bound-
ary known as the efficient frontier (Figure 1). Each 
point on this frontier represents (efficient) portfoli-
os that generate the maximum return for given lev-
els of risk in mean-variance space. It is important to 
note that points that do not lie on this frontier (i.e. 
to the right of the boundary) are inefficient. 

Minimum variance portfolios have the lowest lev-
el of risk (variance) for given expected returns. 
The global minimum variance portfolio is the left-
most point of this frontier representing the lowest 
level of risk achievable (Markowitz, 1952). Given 
that investor preferences vary greatly, Markowitz 
(1952) indicated that all investor preferences are 
satisfied on the frontier. 

The construction of the efficient frontier assumes 
no investment restrictions, but most portfolio 
managers face some form of mandated restrictions 
from external agents who constrain their asset al-
location decisions. These external agents are not 
necessarily investment professionals, which leads 
to a benchmark that may be frequently inefficient. 
Restrictions may include limits (upper and lower) 
on asset class weightings (equities, bonds, etc), for-
bidding short selling and portfolio risk constraints 
in the form of TEs and .sβ  

The MPT led to the establishment of Capital 
Market Theory (CMT), which introduced a risk-
free (zero variance) asset, which has zero correla-
tion with all risky assets and provides a risk-free 
rate of return (Treynor, 1961, 1999; Sharpe, 1964; 
Lintner, 1965; Mossin, 1966). Investors may thus 
add riskless assets to portfolios to reduce the total 
level of portfolio risk (Sharpe, 1964). 

1.2. Performance measurements

Reilly and Brown (2009) asserted that the asset al-
location decision is not an isolated choice but rath-
er a cyclical process. First, an investment mandate 
is developed, reflecting the investor’s risk profile 
and objectives. Then, current market conditions 
are analyzed to determine an appropriate asset 
allocation strategy, followed by a portfolio con-
struction phase, in which financial theory is used 
to allocate funds across different industries and 
asset classes. The portfolio’s performance is then 
continuously monitored and evaluated, as chang-
es in the economy and investment mandate may 
require the portfolio manager to undertake cor-
rective action (Reilly & Brown, 2009).

Rational investors are characterized by their pref-
erence for active or passive managers. Passive 
managers pursue a benchmark (usually a finan-
cial index) tracking strategy by holding securi-
ties from that benchmark (Sharpe, 1991), such as 
Exchange Traded Funds (ETF). Active managers 
are tasked with outperforming their benchmarks 
(usually determined by external agents) and are 
only deemed worth retaining if their performance 
is on average positive (Roll, 1992). 

Active asset managers are assessed on the total 
return performance relative to a relevant bench-
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mark (prescribed by in the investment mandate 
and which usually consists of a broadly diversi-
fied index of assets). These benchmark returns 
serve as an appropriate comparison with portfolio 
performance, because the benchmark provides a 
direct alternative to pursuing an active manage-
ment strategy. Asset returns, however, have been 
shown to be exceedingly noisy (unexplained da-
ta variability) and thus long periods of evaluation 
are required to elapse before added value can be 
measured with statistical reliability (Roll, 1992). 
This lack of statistical reliability has led investors 
to direct their attention to – amongst other meas-
ures – the minimization of TE in the performance 
measurement of active managers (Roll, 1992). 
This performance strategy (deemed TE optimiza-
tion) has two main objectives: outperformance of 
benchmark returns while simultaneously mini-
mizing the TE. 

In obtaining an additional constraint on the port-
folio beta ( ) ,pβ  Roll (1992) found that all TE 
constrained portfolios with positive expected per-

formance will have a 1.0β >  (implying greater 
market risk to the benchmark) and resulting in 
a managed portfolio that does not dominate the 
benchmark. Roll (1992) thus proved the impossi-
bility of constructing a portfolio that is simultane-
ously constrained by a TE, a given expected per-
formance and a specified ,β  thereby demonstrat-
ing that minimizing TE does not result in more 
efficiently-managed portfolios. This was deemed 
the agency problem, which was further tested and 
confirmed by Jorion (2003).

Roll (1992) formulated the TE frontier in risk/
return space. This curve represents the locus of 
maximal returns at given levels of portfolio risk 
for given levels of TE – the grey line in Figure 1(a). 
Jorion (2003) then formulated the assembly of the 
constant TE frontier, i.e. the locus of all returns at 
given portfolio risk levels, which correspond to a 
given TE constraint (not just the maximal return). 
This frontier is described by an ellipse (in tradi-
tional mean-variance space – the dashed grey line 
in Figure 1). 

Note: Square marker indicates maximum Sharpe ratio on the global efficient frontier  
with no constraints. TE = 7% and 4%.fr =

Figure 1. (a) Efficient frontier, TE frontier and constant TE frontier and (b) efficient frontier, TE frontier 
and constant TE frontier and capital market line (CML) in mean/standard deviation space

Source: Roll (1992), Jorion (2003) and own calculations.
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Figure 1 shows the efficient frontier as a solid black 
curve. External agents set a prescribed bench-
mark in the investment mandate (grey triangle). 
Roll (1992) explains that it is uncommon for this 
benchmark to lie on the efficient frontier, as the 
external agent restrictions result in a benchmark 
that is often inefficient. Roll’s (1992) TE frontier is 
also shown in Figure 1, as well as Jorion’s (2003) 
constant TE frontier (in this example, TE = %7). 
Figure 1(b) shows the CML line for the constant 
TE frontier.

Given the shift towards active management, the 
potential for this investment philosophy must first 
be supported by compelling evidence, proving its 
sustained performance advantage over passive 
strategies (Gilreath, 2017). Performance measures 
serve as the vehicle for testing such portfolio strat-
egies in pursuit of finding true value-added by 
portfolio managers.

Three performance metrics will be used in this 
article. Sharpe (1966) introduced the Sharpe ra-
tio (a risk-adjusted return: the quotient of returns 
more than the risk-free rate and total portfo-
lio risk, σ ) to assess a manager’s asset selection 
skill. The Information Ratio (IR) is the quotient 
of active return (returns greater than the bench-
mark) and TE. The IR reveals the manager’s abili-
ty and consistency to generate excess returns. The 
Modigliani risk-adjusted performance measure 
(L. Modigliani & F. Modigliani, 1997), also known 
as 2M  RAP, measures the risk-adjusted returns of 
a portfolio relative to a benchmark. 

1.3. Investment strategies

The problem of optimal performance arises 
as investors have varying risk profiles and ob-
jectives: the concept of an optimal portfolio is 
thus largely dependent on individual investor 
preferences. Several investment strategies have 
been constructed in response to the issue of op-
timality to allow investors to select their pre-
ferred utility maximizing strategy. Figure 2 il-
lustrates the position of the six investment strat-
egies that are investigated in this article on the 
constant TE frontier. Note that these positions 
move around the constant TE frontier as risk-
free rates, benchmark weightings, asset choic-
es, asset expected returns and asset covariances 

change. We have used a stylized set of these 
input parameters to demonstrate these move-
ments. The six optimal portfolio investment 
strategies in common use include the maxi-
mum return, minimum variance, minimum in-
tra-correlation, maximum diversification, max-
imum Sharpe ratio and Jorion’s benchmark risk 
(following Jorion’s (2003) definition of an opti-
mal investment strategy, which involved aiming 
for a portfolio’s maximum return at the same 
level of portfolio risk as the benchmark while 
satisfying a given TE constraint.

Maximum Return (MR): ref lects the portfolio 
with the highest expected return for a given TE 
(on the constant TE frontier) in mean-variance 
space. This portfolio sits on the apex of the el-
lipse in risk/return space. This high expected 
return, however, is accompanied by high levels 
of total portfolio risk. 

Minimum Variance (MV): is situated at a point 
on the constant TE frontier with the minimum 
risk. It is independent of the benchmark, suf-
fers from high levels of concentration (Chan, 
Karceski, & Lakonishok, 1999) and is exposed 
to considerable estimation error (Roncalli, 
2014). Varadi, Kapler, Bee, and Rittenhouse 
(2012) found that the MV portfolio provides the 
least diversification efficiency, an unsurprising 
result given the excessive concentration of the 
least volatile assets with low correlations.

Jorion Benchmark Risk (JB): Jorion (2003) pro-
posed that a constraint be imposed that total 
portfolio volatility be the same as that of the 
benchmark. This strategy takes advantage of 
the “f latness” of the constant TE frontier, re-
sulting in portfolios with total risk equal to that 
of the benchmark and an expected return that 
is only marginally lower than those obtainable 
using the MR strategy.

Minimum Intra-Correlation (MIC): is a val-
uable measure of portfolio diversification 
(Livingston, 2013). Varadi et al. (2012) demon-
strated the importance of minimizing average 
asset correlations to reduce portfolio variance 
(risk), thus, taking advantage of diversification 
through weighting lower correlating assets (di-
versifiers) to the rest of the portfolio. Varadi et 



244

Investment Management and Financial Innovations, Volume 16, Issue 1, 2019

http://dx.doi.org/10.21511/imfi.16(1).2019.19

al. (2012) found not only a favorable risk-adjust-
ed performance, but also a superior diversifica-
tion efficiency (diversification indicator). The 
MIC portfolio is independent of the TE – this is 
the “Min IC no constraint” portfolio in Figure 2. 
The MIC portfolio, which is subject to a TE con-
straint, must be found by examining the results 
shown in Figure 3.

Maximum Diversification Ratio (MD): 
Choueifaty (2006) introduced the MD portfolio 
and the diversification ratio (DR). This strate-
gy maximizes the degree of portfolio diversifi-
cation and thereby results in portfolios, which 
have minimally correlated assets, lower risk 
levels and higher returns than other “tradition-
al” portfolio strategies (Theron & van Vuuren, 
2018). Portfolios with an MD ratio are maximal-
ly diversified and provide efficient alternatives 
to index tracking portfolios (Choueifaty, 2006). 
The maximum diversification ratio portfolio is 
independent of the TE – this is the “Max DR no 
constraint” portfolio in Figure 2. The MD ra-
tio portfolio, which is subject to a TE constraint, 
must be found by examining the results shown 
in Figure 3.

Maximum Sharpe Ratio (MS): maximizing the 
Sharpe ratio of TE-constrained portfolios gen-
erates maximally risk-adjusted portfolios, en-

tirely analogous to similar portfolios on the ef-
ficient frontier (Maxwell, Daly, Thomson, & van 
Vuuren, 2018).

Historically, portfolio strategies have been eval-
uated on the efficient frontier. We introduce, for 
the first time, an evaluation of the performance of 
these six portfolio strategies by exploring their be-
havior in terms of performance ratios on the con-
stant TE frontier. 

2. DATA AND METHODOLOGY

2.1. Data

The data comprised simulated realistic weights, 
returns, volatilities and correlations for a small, 
standardized benchmark comprising three as-
sets with the stylized parameters as provided in 
Table 1. This portfolio and associated benchmark 
obviously represent just one combination of an in-
finite series of possibilities. Portfolios and bench-
marks with larger numbers of constituent assets 
were also explored and gave similar results. The 
important point is that this stylized combination 
of small portfolio and associated benchmark pro-
vides a numerical example for comparison and 
is like that used by Bajeux-Besnainou, Belhaj, 
Maillard, and Portait (2011).

Note: Here, TE = 7%, 4%.fr =

Figure 2. TE frontier, constant TE frontier and portfolio strategies

Source: Jorion (2003) and own calculations.
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Table 1. Stylized input data

Assets A B C

Mean annual return 15% 19% 6%

Annual volatility 28% 25% 18%

Correlation matrix

1 0.09 0.16

0.09 1 0.12

0.16 0.12 1

Benchmark weights 50% 22% 28%

Portfolio constituents were derived only from the 
benchmark universe (and short-selling of bench-
mark constituents was permitted). This may 
constitute an unrealistic representation of what 
usually occurs in practice: most managed, TE-
constrained portfolios are low-risk pension funds. 
The mandates governing investments in such 
funds will usually stipulate conservative invest-
ment strategies, so the high risks, which arise from 
short-selling, will not be permitted. See Daly and 
van Vuuren (2018) for a discussion on the differ-
ences between unconstrained and constrained (in 
the long/short sense) constant TE frontiers. Note 
that the “assets” which constitute the portfolio in 
the examples which follow could be asset classes 
(such as equity, bonds and cash), specific industry 
sectors within an asset class (e.g. an industrial eq-
uity index, a banking index, etc.) or individual as-
sets such as single name stocks or bonds.

2.2. Methodology

To establish the methodologies required for the 
various frontiers, some definitions are first re-
quired. This subsection proceeds by introducing 
and describing the relevant variables and alge-
braic components. The mathematics governing 
the generation of the efficient frontier is then set 
out, followed by the algebra, which defines the TE 
frontier and then the constant TE frontier. Having 
built these foundations, the algebraic method-
ology, which is required to extract the portfolio 
weights for each possible strategy, is presented. 

Active fund managers are tasked with outper-
forming specified benchmarks and the active asset 
positions they take may or may not be benchmark 
components (depending on the mandate gov-
erning the fund). The algebra required to derive 
the relevant investment strategy weights uses the 
same underlying variables, matrices and matrix 
notation defined below:

:q  vector of benchmark weights for a sample 
of N  assets;

:x  vector of deviations from the benchmark;

( ) :Pq q x= +  vector of portfolio weights;

:E  vector of expected returns;

:σ  vector of benchmark component 
volatilities;

:ρ  benchmark correlation matrix;

:V  covariance matrix of asset returns;

:fr  risk-free rate.

Net short sales are allowed in this formulation, so 
the total active weight i iq x+  may be negative for 
any individual asset, .i  The universe of assets can 
generally exceed the components of the bench-
mark, but for Roll’s (1992) methodology, assets 
in the benchmark must be included. Expected re-
turns and variances are expressed in matrix nota-
tion as:

:B q Eµ ′=  expected benchmark return;

2 :B q Vqσ ′=  variance of benchmark return;

:x Eεµ ′=  expected excess return; 

2 :x Vxεσ ′=  TE  variance (i.e. 2TE ).

The active portfolio expected return and variance 
is given by:

( ) ,P Bq x E εµ µ µ′= + = +  (1)

( ) ( )2 2

2 2

2

2 .

P B

B

q x V q x q Vx

x Vx q Vx

′ ′= + + = + +

′ ′+ = + + ε

σ σ

σ σ
 (2) 

The portfolio must be fully invested, defined 
as ( ) 1 1,q x ′+ =

 
where 1 represents an N

-dimensional vector of 1 .s  Using Merton’s 
(1972) terminology, the following parameters 
are also defined: 

1 ,a E V E−′=  11,b E V −′=  
11 1,c V −′=  2 / ,d a b c= −  1 / ,B b c∆ = −µ  

where / MVb c = µ  and 
2

2 1/ ,B c∆ = −σ  where 
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21/ .MVc =σ  Note that where the algebra allows 
for deviations from the benchmark to be cal-
culated ( )x  these are presented, and the total 
portfolio component weights required are simply 

( ).Pq x q+ =  In other cases, where the invest-
ment strategy is unaffected by the imposition of a 
TE  constraint, the relevant portfolio weights, ,w  
are used instead.

Mean-variance frontier in absolute return 
space: minimize 

P Pq Vq′  subject to: 1 1Pq′ =  and 

,Pq E G′ =  where G  is the target return. The vec-
tor of portfolio weights is determined using

2

,P MV TG

b
bG

a bG cq q q
d d

 
− − = +   

    
 

 (3)

where MVq  is the vector of asset weights for the 
MV  portfolio given by 

11/MVq V c−=  and TGq  
is the vector of asset weights for the tangent (opti-
mal) portfolio given by 

1 / .TGq V E b−=

TE frontier: maximize x E′  subject to: 1 0,x′ =  
2.x Vx εσ′ =  The solution for the vector of devia-

tions from the benchmark, ,x  is:

2
1 1 .

b
x V E

d c

εσ −  = ± − 
 

 (4)

Constant TE  frontier: maximize x E′  subject to: 

1 0,x′ =  
2x Vx εσ′ =  and ( ) ( ) 2 .Pq x V q x σ′+ + =  

The solution for the vector of deviations from the 
benchmark, ,x  is:

( )1

1 3

2 3

1
,x V E Vqλ λ

λ λ
−= − + +

+
 (5)

where

3
1 ,

b

c

λλ +
= −  (6)

( )
2

2 1
2 32 2

2

2 ,
4

d

yε

λ λ
σ
∆ −∆

= ± − −
∆ −

 (7)

2

1 2 1
3 2 2

2 2 2

.
4

dy

yε

λ
σ

∆ ∆ −∆
= = − ±

∆ ∆ ∆ −  (8)

Jorion (2003) defined P Bz µ µ= −  and 
2 2 2

P By εσ σ σ= − −  and established that 
the relationship between y  and z  is 

( )2 2 2 2

2 1 2 14 4 4 0,dy z yz dεσ+ ∆ − ∆ − ∆ −∆ =  
which describes an ellipse – a constant TE frontier 

– in return/risk space solving for :z

( ) ( )2 2 2

1 1 2 2

2

4
.

2

y d y
z

εσ∆ ± ∆ − ∆ ⋅ − ∆
=

∆
 (9)

A highly risk-averse manager may opt for an MV 
portfolio, foregoing potential higher returns in ex-
change for the lowest possible risk, while a risky 
manager may select the MR portfolio at the ex-
pense of associated high risk. Managers seeking 
optimal risk/reward trade-offs would choose tan-
gent (MS) portfolios (Maxwell et al., 2018), shown 
in Figure 1(b), while others may seek portfolios 
for which the diversification ratio is at a maxi-
mum, and still others might desire a MIC port-
folio, or one which exhibited risk parity, etc. Note 
that component volatilities, correlations, expected 
returns and benchmark weights are all fixed, the 
variables in this exposition are the active portfolio 
weights. 

Maximum Return (MR)

Jorion (2003) showed that the absolute maximum 
return on the constant TE frontier would be reached 
at the intersection of the TE frontier with the con-
stant TE frontier, i.e. where .P B dTµ µ= +  The 
associated portfolio volatility is calculated using (2): 

2 2 2

12 .P B

T

d
εσ σ σ= + ∆ +  

Note that this portfolio is equivalent to maximiz-
ing the IR given by Excess return / .IR TE=  
With a fixed TE, the maximum IR is reached when 
the numerator reaches a maximum, i.e. where 

.P B dTµ µ= +

Jorion’s Benchmark Risk (JB)

For this constraint, Jorion (2003) set 2 2

P Bσ σ=  
so that, from (2), this constraint implies that 

22 .q Vx εσ′ = −  From (5), the vector of portfolio 
weight deviations from the benchmark, ,x  may 
be determined. 
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Maximum Sharpe Ratio  
(risk-adjusted return) (MS)

Using the approach from Maxwell et al. (2018), the 
tangent portfolio (MS portfolio) on the constant 
TE frontier occurs where the slopes of the tangent 
line and the constant TE frontier are equal, i.e. 
where:

( ) ( )

( )

( ) ( )
( ) ( )

2
2 2 2 2 2

1 2 2

2 2

2

2 2 2

1

2

2

2 2 2 2

1 2

1
2

2 2 2 2 2

1 2 2

2

4

2

2

4

.

P B
f B

P P

P B

P

P B

P B

dr

d

d

 ∆ − ∆ − − − ∆−   = +
∆

∆ ⋅ − −
+ −

∆

∆ − ∆ ⋅ − −
+ ∆

 ∆ − ∆ − − − ∆  −
∆

ε ε

ε

ε

ε ε

σ σ σ σµ
σ σ

σ σ σ

σ

σ σ σ

σ σ σ σ

 

(10)

Solving for Pµ  and Pσ  establishes the MS portfo-
lio coordinates in return/risk space. Because these 
coordinates are unique, the weight deviations from 
the benchmark, ,x  are reverse engineered from (5). 

Minimum Variance (MV)

Jorion (2003) showed that the active portfolio vol-
atility is:

( )2 2 22 .P B B MV

T

d
εσ σ µ µ σ= ± − +

and that the absolute MV (of a portfolio subject to 
a TE constraint) is:

( )2 2 2 2 22 .P B B MVT εσ σ σ σ σ= − − +

The associated expected return is calculated using (1).

Maximum Diversification (MD)

The diversification ratio was introduced by 
Choueifaty (2006) and is defined as:

( )

( ) ( )
.

q x
MD

q x V q x

σ′+
=

′+ +
 (11)

MD portfolios have a vector of active portfolio 
weights (Pemberton & Rau, 2007):

1

1
.MD

V
x q

V

σ
σ σ

−

−= −
′

 

These weights generate a universal, non-TE-con-
strained, MD portfolio (so it is not necessarily 
on, or inside, the constant TE frontier). A closed-
form solution for a TE-constrained MD portfolio 
has not been identified, but such a portfolio may 
be identified empirically. Using (11), active port-
folio weights, ,x  which define the efficient TE-
constrained set were used to calculate the DR at 
various Pσ  values. The active portfolio weights, 
which generate the maximum DR, are easily 
identified. 

Risk parity/inverse volatility

Portfolios in which the risk contribution from 
each component is made equal is a form of diver-
sification maximization, because such portfolios 
are like minimum variance portfolios subject to 
diversification constraints on component weights 
(Maillard, Roncalli, & Teiletche, 2010). The com-
ponents weights are:

1
,i

i

w
nβ

=  

where iβ  are the component Sβ  and n  is the 
number of assets of which the portfolio consist. 
The problem of endogeneity arises here, since  is 
a function of the component iβ  which in turn 
depends on the portfolio composition (i.e. iw
). Various iterative numerical solutions are used 
(Maillard, Roncalli, & Teiletche, 2010). 

The TE constraint does not affect these weights – 
the constituents of the weights are affected by the 
number of constituents and their respective .β  
Neither of these are altered by imposing a TE con-
straint. These portfolios are included for compari-
son only. Inverse volatility portfolios are similar in 
construction. The portfolio weights are assembled 
in proportion to the inverse of their volatility, so

1

,
1
i

i n

i i

w
σ

σ

=

∑
 (12)

where iσ  are the individual component volatilities. 
This approach ignores the correlation between as-
set components and again the TE constraint does 
not affect these (shown here for comparison only).
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Minimum Intra-Portfolio Correlation 
(MIC)

There are competing definitions of intra-portfo-
lio correlation, but the one used here avoids most 
of the problems associated with the measure 
(Livingstone, 2013):

( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )

1

diag ,

i j iji j

i j i j

q x q x
MIC

q x q x

q x q x q x

q x

−

Σ Σ + +
= =

Σ Σ + +

 ′ ′= + + + ×  
× − +  

ρ

ρ ρ

 (13)

where ( )diag ρ  is the matrix of the diagonal ele-
ments of .ρ

As with the MD portfolio, the MIC as defined 
above is a universal, non-TE-constrained, MIC 
portfolio (so, again, it is not necessarily on or in-
side the constant TE frontier). A closed-form solu-
tion for a TE-constrained MIC portfolio must be 
found empirically. Active portfolio weights, ,x  
which define the efficient TE-constrained set are 
used to calculate the MIC at different values for 

.Pσ  The active portfolio weights, which generate 
the minimum MIC, are easily identified. For a 

Figure 3. Intra-correlation and diversification ratio subject to a TE = %7

Source: Own calculations. 
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constant 7%,TE =  the intra-correlation and MD 
portfolio returns/standard deviations are shown 
in Figure 3.

Figure 4 shows the position for this stylized exam-
ple of the overall MIC, the inverse volatility and 
the MD portfolios. These coordinates in risk-re-
turns space are not influenced by the TE.

3. RESULTS AND DISCUSSION

Figure 5 illustrates the movement of the constant 
TE frontier about the benchmark for incremental 
increases of TE in annual risk/return space.

Figure 5 describes the loci of the six portfolio 
strategies as a function of 1% increases in TE. 
Increasing the TE expands the ellipse (constant 
TE frontier) outward in a balloon-like fashion, 

with the benchmark (initially) remaining at the 
centre of the ellipse. Once the TE increases above 
6%, however, the ellipse reaches the boundary of 
the global efficient frontier (utility maximizing 
investment sets). Here, the ellipse nestles into the 
curve of the efficient frontier, expanding right 
with each incremental increase in TE. At higher 
TEs, the benchmark shifts away from the ellipse’s 
centre. This is a simple observation that can easily 
elude portfolio managers, as increasing TEs above 
18% will result in the benchmark falling outside 
the ellipse. In a scenario where such high TEs are 
permitted, portfolio managers would invest in fi-
nancial instruments that are significantly different 
from that of the benchmark.

Figure 5 illustrates how the MS and MR portfolio 
strategies are monotonically increasing for every 
increase in TE. The MR portfolio travels a more 
constant gradient as greater risk is compensated 

Figure 5. (a) Loci of the six portfolio strategies with respect to changes in their risk/return 
relationships for increasing TEs and (b) an enlarged section of Figure 4(a)

Source: Own calculations.
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with steady increases in return. The MV portfo-
lio is located on the leftmost edge of the constant 
TE frontier, for increasing TEs. Initially, as TE in-
creases, the annual risk of the MV portfolio strat-
egy decreases, but this risk reduction is short lived 
as higher TEs result in a more rapid increase in 
risk, forming a left shaped parabola, where in-
creased TEs diminish investor utility. The MV 
portfolio is tangential to the global MV portfolio 
at this turning point, thus, reaching a ceiling for 
maximizing risk-averse investor utility. 

The principle flaw of the MV portfolio strate-
gy, however, is due to the continuous decrease 
in annual returns through all TEs. Thus, portfo-
lio managers following an MV portfolio strategy 
will experience initial risk-reducing effects with 
the opportunity cost of expected returns foregone, 
however, by selecting higher TEs, the overall risk/
return relationship decreases. The turning point 
of the MV portfolio strategy is due to the com-
bined impact of the nestling effect of the constant 
TE frontier and the eastward shift away from the 
global MV portfolio discussed above. 

The JB portfolio strategy maintains a fixed risk 
level (per definition). As the constant TE frontier 
expands with increasing TE, the annual return of 
this portfolio strategy increases, but at a TE of ap-
proximately 9%, the JB portfolio strategy reaches 
an apex and then decreases. Fixing the level of risk 
to the benchmark decreases the portfolio’s ability 
to produces dynamic returns as higher TE leads 
to the benchmark falling outside the constant TE 
frontier.

As TE increases, the MIC portfolio displays a slow 
increase in annual returns and rapid risk reduc-
tion. For higher values of TE, portfolio manag-
ers will experience a plateau in annual returns, 
accompanied by rapidly increasing annual risk. 
Lowering intra-portfolio correlations of the MIC 
portfolio will provide risk-reducing benefits, how-
ever, to achieve greater annual returns the in-
tra-portfolio correlations need to increase. 

Although the MD reflects a similar risk/return 
position to that of MV portfolio for low TEs, as 
the TE increases, the path of the MD portfolio de-
creases in parallel with the MV portfolio’s south-
west bound direction, displaying risk-reducing 

characteristics at the expense of decreasing annu-
al returns. Like the MV portfolio, the MD port-
folio experiences a change in direction where risk 
increases. Unlike, the MV portfolio, the MD port-
folio exhibits a rapid increase in annual returns, 
surpassing not only the initial MD annual returns 
of lower TEs but tending beyond the annual re-
turns of the MIC portfolio strategy. The reason for 
this turning point may be in the relationship be-
tween excess return generation and TE. 

Lower TEs result in decreasing portfolio returns, 
which erodes the risk-return trade-off of the MD 
portfolio. However, the more rapidly decreasing 
risk leads to better performance as the level of TE 
increases, thus, portfolio returns increase more 
rapidly with higher incremental increases in TE. 
Higher TEs allow the MD portfolio to benefit 
from the tilt and shift of the constant TE frontier. 
The IR may provide better reasoning for this turn-
ing point.

The previous work of Choueifaty (2006) on the 
MD portfolio strategy and the combined efforts 
of Hedge Fund Consistency Index (2011) and 
Livingstone (2013) on the MIC portfolio strate-
gy defined these strategies as universal, non-TE-
constrained portfolios (i.e. they are not necessar-
ily on or inside the constant TE frontier). Due to 
this independence from the constant TE frontier, 
a closed-form solution for TE-constrained MD 
and TE-constrained MIC portfolios has never 
been identified, but such a portfolio may be iden-
tified empirically. This article introduces a method 
to manipulate the equations of the MD and MIC 
portfolios onto the constant TE frontier.

Figure 6(a) illustrates the performance of the six 
TE constrained portfolio strategies in terms of 
their respective Sharpe ratios, for given TEs, thus, 
identifying the point at which each portfolio strat-
egy achieves its unique MS (i.e. the level of TE 
for which each portfolio strategy performs best). 
Figure 6(b) illustrates the performance of the six 
ratios in terms of their 2M  ratio.

The MV portfolio exhibits the poorest perfor-
mance at the lowest TEs. This poor performance 
only tends to decrease with higher TEs, resulting 
in the worst performing portfolio. This is most 
likely due to the low return achieved by the port-
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folio in relation to the risk-free rate (i.e. as total 
portfolio risk increases, the low returns result in 
performance being eroded). The MD portfolio 
displays an unusual result as performance increas-
es steadily for 1% 5%.TE≥ ≥  Beyond this point, 
the MD experiences a temporary performance 
decrease until a TE of 15%,≈  where the port-
folio experiences an unanticipated increase in its 
Sharpe ratio. This increase in performance may be 
due to the greater level of diversification (i.e. lower 
correlation with the benchmark), leading to great-
er portfolio returns.

The MIC portfolio ranks third in terms of perfor-
mance at lower TEs, reaching its MS at a TE of ap-
proximately 8%. However, performance decreases 
for higher TEs. This may suggest that the level of 
intra-portfolio correlation reaches a limit, where 
the level of correlation can only be effective until 
a specified point. This would explain why higher 
TEs risk may lead to decreased performance. 

Although MR displays the expected result of consist-
ent positive performance, the Sharpe ratio reaches a 
plateau of approximately 0.61. This may be the result 
of the precise moment where the benchmark falls 
outside the constant TE frontier, as such high TEs 
reflect portfolio positions that are far off from that 
of the benchmark. Another unusual performance 
was found in the JB portfolio strategy. Initially, the 
TE interval of 1-6% showed signs of competition 
between JB and MS for the first-place performance 
ranking until JB’s Sharpe ratio was maximized at a 
TE of 9%. TEs beyond this point resulted in JB suf-
fering the most performance decline among the 
portfolios tested, dropping to the fifth-place rank. 

The fixed risk constraint for the JB portfolio in-
creases portfolio performance, however, without 
the adoption of increased risk, returns cannot 
continue to increase, leading to the reversal in per-
formance. The most consistent and best-perform-
ing portfolio was the MS ratio portfolio, which 

Figure 6. Performance evaluation of the six portfolio strategies with respect to their (a) Sharpe ratios 
and (b) M2 ratios for incremental increases in TE

Source: Sharpe (1966) and own calculations.
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displayed similar characteristics to the MR port-
folio (i.e. increasing monotonically until reaching 
higher TEs, where performance plateaus). This im-
pressive performance is likely due to the balanced 
trade-off between risk and return, as maximizing 
the Sharpe ratio (for increasing TEs) provides a 
more dynamic portfolio.

The more comprehensive and interpretable 
Modigliani risk-adjusted performance measure 
(L. Modigliani & F. Modigliani, 1997), the 2M  
ratio, measures risk-adjusted returns relative to a 
benchmark:

2 .
p f

f M

p

R r
M r σ

σ
 −

= +   
 

 (14)

Although this measure provides a similar perfor-
mance ranking to the Sharpe ratio, L. Modigliani 
and F. Modigliani (1997) explained that the 2M  
measure has the advantage of being more inter-
pretable as it provides a percentage for outper-
formance. A positive 2M  ratio signifies bench-
mark outperformance.

In a comparison between the Sharpe (Figure 6(a)) 
and 2M  (Figure 6(b)) measurements, Figure 7(a) 
tells a more comprehensive story about the bench-

mark outperformance of these portfolio strategies. 
The MV portfolio underperforms the benchmark 
for all levels of TE, rendering the strategy redundant 
to an active portfolio manager. JB and MIC provid-
ed benchmark outperformance for lower levels of 
TE, however, were not as resilient for higher TEs. 
Figure 7(a) illustrates how the MD strategy provides 
low benchmark outperformance for low TEs. MR 
and MS provided clear benchmark outperformance 
for all TEs. Figure 6(b) provides great insight to in-
vestors in the evaluation of active managers.

Figure 7(a) evaluates the performance of the six 
TE-constrained portfolios to their respective IRs. 
Figure 7(b) shows the correlation of each port-
folio strategy with the benchmark. Active man-
agers must determine how much risk relative to 
the benchmark should be installed to achieve the 
desired outperformance. TE indicates the level of 
this benchmark risk, however, we have presented 
an alternative measure of benchmark risk in the 
analysis of the relationship between TE and the 
correlation between the benchmark and portfolio 
return (Ammann & Tobler, 2000):

( )2 21PTE σ ρ= ⋅ −  so 

2

1 .
P

TEρ
σ
 

= −  
 

 

Figure 7. (a) Performance of the six portfolio strategies with respect to their IRs and (b) correlation of 
benchmark and each strategy’s returns, as a function of TE

Source: Own calculations.
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Note that the correlation depends on the track-
ing error variance, 2TE  and the portfolio vari-
ance, 2 .Pσ  0TE =  implies 1.ρ =  The correla-
tion with the benchmark tends towards zero for 
higher levels of TE due to the decreasing level of 
benchmark exposure (i.e. as β  decreases from 
1 to 0, ρ  between the portfolios and the bench-
mark weakens. This adds to Ammann and Tobler’s 
(2000) analysis: as TE increases ρ  falls and the 
rate of decrease is greater for smaller .β  Also, as 
TE increases, benchmark risk approaches 0. This 
explains the superior performance of the MS and 
MR portfolios as TE increases – since they em-
brace total risk. Although a correlation coefficient 
of zero correctly indicates high risk, i.e., no bench-
mark exposure at all 0,β =  1ρ =  does not nec-
essarily imply 0.Bσ =  Instead, 1ρ =  might in-
dicate 0TE =  or infinite benchmark exposure 

.β →∞  Therefore, ρ  is an inappropriate bench-
mark risk measure unless the portfolio is unlever-
aged, i.e., unless 1.β <

The IR is the quotient of the expected active return 
and the TE, therefore, indicates how much active 
return a portfolio manager can expect at a speci-
fied level of tracking risk. IR reveals the manager’s 
ability and consistency to generate excess returns 
and is represented by:

.
p Br r

IR
TE

−
=  (15)

The MR and MV portfolios displayed unsurpris-
ing performance in Figure 7, resulting in the best 
and worst performance, respectively. The MR 
portfolio provided increasing returns that consist-
ently dominated the returns of the risk-free asset, 
revealing how incrementally increasing the TE (as 
the denominator of this equation), can indeed lead 
to increased performance. Figure 7 shows some 
valuable information on the performance com-
parison between the JB and MS portfolios, as TEs 
of below 2% favor the JB’s portfolio. The dominant 
performance of the JB portfolio at low TEs is likely 
due to risk being fixed to the benchmark, which 
in turn is lower than that of the MS portfolio. The 
MS portfolio experiences declining performance 
at lower TEs, likely due to tracking the inefficient 
benchmark positions too closely, however, an up-
swing occurs at TEs above 8%, narrowing the gap 
between MS and MR.

Although JB’s performance beats that of the MS 
portfolio at the lowest TEs, Figure 8 confirms the 
inevitable value reduction of increasing TE on the 
JB portfolio. MIC experiences flat levels of perfor-
mance, indicating unresponsiveness to TE adjust-
ments. Finally, Figure 8 confirms the unexpect-
ed performance upswing of the MD portfolio for 

8%.TE ≥  This may confirm the inefficiency of 
the benchmark itself, leading to undiversified po-
sitions. Therefore, as TE increases away from the 
benchmark, optimal levels of diversification are 

Figure 8. The loci of possible (a) Sharpe ratios, (b) M2 ratios and (c) IRs – as a function  
of portfolio risk – for increasing TEs

Source: Own calculations.
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achieved resulting in an improved performance of 
the MD portfolio.

Figures 8 and 9 show the loci of performance ra-
tios (Sharpe, 2M  and Information) – as a func-
tion of portfolio risk and as a function of portfolio 
returns – for increasing TEs, respectively.

Increasing TE between 1% 5%TE≤ ≤  (i.e. 
0.51 Sharpe ratio 0.58≤ ≤ ) inflates the constant 
TE ellipse around the benchmark in absolute risk/re-
turn space. Increasing TE between 6% 10%TE≤ ≤  
(i.e. 0.60 Sharpe ratio 0.64≤ ≤ ) pushes the west 
quadrant of the constant TE ellipse into the effi-
cient frontier such that it becomes flush with it. The 

Figure 9. The loci of possible (a) Sharpe ratios, (b) M2ratios and (c) IRs – as a function  
of portfolio return – for increasing TEs

Source: Own calculations.
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Figure 10. Explanation of performance ratio plateaus as 9% 15% 18%.TE→ → →  The efficient 
frontier is the darker grey line to which the CML is tangent

Source: Own calculations.
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Sharpe ratio reaches a plateau (0.64) for 10%.TE ≥  
10%.TE ≥  The reason for this is as follows: for high 

TEs (i.e. 10%TE ≥ ), the constant TE ellipse re-
treats from the efficient frontier such that the west 
quadrant shifts rightwards. The north quadrant also 
retreats rightwards, but remains in contact with the 
efficient frontier at roughly the position of the MS 
portfolio. Higher TEs, then, do not generate higher 
Sharpe ratios: the maximum slope of the CML, by 
definition, cannot increase (Figure 10). 

This explanation also holds for the 2M  ratio, as 
well as the IR ceiling. The maximum IR obtain-
able without a TE constraint (i.e. on the efficient 
frontier) is the same as the maximum IR with a 
TE constraint for large TEs. If TEs are sufficiently 
large, the constant TE ellipse is tangential to the 
efficient frontier at high returns and associated 
high risks (Figure 10).

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

The inefficiency of capital markets provides investment opportunities for active management strategies. 
Recent (2018) evidence has identified a shift by well-informed investors towards this investment philos-
ophy. Greater emphasis on benchmark outperformance is required for active management. Investors 
use benchmarks as a relative performance measure to determine the value added by portfolio managers 
relative to the risks undertaken. The components and weights of these benchmarks, however, are arbi-
trarily chosen, leading to a gauge of performance that is frequently inefficient and leads, ultimately, to 
sub-optimal portfolio selection. 

Active management brings with it active risk. TE, as a measure for active risk, is not a metric used in 
isolation, but rather in combination with other performance measures. Although the inherent flaws of 
TE constraints are documented, the investment management industry maintains adherence. The intro-
duction of the constant TE frontier allowed active managers to explore the effect of imposing additional 
constraints on active strategies and thus to mitigate these effects. Because not all investors share iden-
tical risk preferences or objectives, defining an “optimal” strategy becomes paramount. Various invest-
ment strategies have been suggested to satisfy investors’ risk appetites.

Historically, performance measures have been used to evaluate strategies on the efficient frontier – a 
pursuit which makes sense when investment in the universe of investable securities is permitted. This 
article used several performance indicators to evaluate benchmark outperformance of six active portfo-
lio strategies (MR, MV, JB, MD, MIC and MS) subject to a TE constraint – on the constant TE frontier. 

The performance of the six TE constrained portfolio strategies varied considerably. The MS portfolio 
achieved the greatest level of performance, as higher excess returns result in lower absolute risk relative 
to the benchmark. JB exhibits competitive features at lower TEs, but suffers a substantial decline for 
higher TEs. The MIC and MV portfolios display similar performances, moving in a parallel fashion for 
lower TEs in risk/return space. The MD portfolio exhibited unusual performance: performing poorly at 
lower TEs, but showing an improved risk/return relationship for higher TEs, which lead to benchmark 
outperformance. 

The performance ratios reach plateaus for high TEs because of the roughly linear nature of the 
efficient frontier in this region of risk/return space. Because the constant TE ellipse remains in 
contact with the efficient frontier for high TEs, the MS for the former will always be approximately 
the same as the latter. The efficient frontier Sharpe ratio is, of course, a universal maximum: no 
better risk-adjusted return portfolio exists. Similar arguments hold for the other performance in-
dicators. In this work, the stylised example did not consider long-only investment strategies. Real 
world funds face short-selling restrictions because of the riskiness of this approach. Future work 
could tighten up this requirement.
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Other restrictions on investment policies are common in contracts between investors and fund manag-
ers. These restrictions might stipulate that the share of certain types of assets should be smaller, higher 
or equal to a given percentage. These constraints are often inherent to the fund’s investment strate-
gy as specified in the fund’s prospectus. Examples include an industry sector fund might specify that 
chief investments are in its corresponding sector; funds dedicated to prudent investors (such as pen-
sions) may specify upper bounds on equity holdings or lower limits on governmental bond holdings, 
and so on. Weights constraints can also be set by regulators and funds with tax benefits or tax-deferred 
funds are frequently subject to weight restrictions. None of these were considered in this analysis, but 
results gathered from strategies, which considered these restrictions, could provide fruitful to fund 
managers and investors alike.
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