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FRONTIER APPROACH TO ENVIRONMENTAL EFFICIENCY:  

LEAST-DISTANCE BENCHMARKS FOR SLOVAKIA 

Eduard Nežinský12 

Abstract 

Environmental efficiency of production and value-added creation has been a central concern of European 
environmental agenda for the last decades. In the paper, the frontier analysis is employed to illustrate the 
procedure how policy-related benchmarks could be determined. Underperforming entity is projected onto the 
production possibility set boundary that is constructed via deterministic data envelopment analysis method. 
Besides the conventional benefit-of-the-doubt aggregation weighting scheme, the procedure is guided by the 
least-distance criterion for projection location as well as the bounds imposed by the Climate Act commitments 
regarding emissions reduction. The differences between the conventional and the least-distance-adjusted-
model results are demonstrated within the technology involving value-added as economic desirable outcome 
whereas emissions and particles acting as “bads”. For Slovakia, the results identify Germany and Malta as 
best-performing peers suggesting alongside that a current level of GDP could be retained even after adopting 
the environmental constraints. 
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I. Introduction 

The EU's commitment to environmental protection and sustainability has evolved over time, 

reflecting changing priorities and global challenges. The history of environmental policy in the EU is 

marked by significant developments and milestones. The recognition of environmental protection as 

a key objective and the integration of environmental considerations into the development of the single 

market started as early as 1970s. The Treaty on European Union (Maastricht Treaty, 1992) established 

environmental protection as a shared competence between the EU and its member states. Amsterdam 

Treaty (1997) integrated sustainable development as a guiding principle and gave the EU a mandate 

to establish environmental policies and legislation. Integration of climate considerations into all 

relevant EU policies was ensured in the Lisbon Treaty (2009) while Europe 2020 Strategy (2010): 

introduced targets for smart, sustainable, and inclusive growth. Paris Agreement (2015) set out even 

more ambitious global climate targets, primarily aiming for a reduction of greenhouse gas emissions 

(GHG) by at least 40% by 2030. European Green Deal (2019) went further to commit to achieving 
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climate neutrality by 2050. The transition should be accelerated by directing investments toward 

sustainable and resilient sectors according to COVID-19 Recovery and Resilience.  

The environmental policy of the EU is articulated through the formulation and pursuit of specific 

targets. The latter serve as tangible expressions of the EU's commitment to addressing environmental 

issues and fostering sustainability. Through these targets, the EU outlines its ambitions in areas such 

as carbon emissions reduction, renewable energy adoption, waste management, biodiversity 

preservation, air and water quality improvement, and more. Among the various aspects of EU 

environmental policy, carbon emissions reduction and renewable energy adoption are often 

considered two of the most important focal points. 

While the European Union sets overall renewable energy targets for the entire bloc, it also requires 

each member state to contribute to the collective goal by setting their own specific renewable energy 

targets. The EU's renewable energy targets are binding for each member state, and it's up to each 

country to develop and implement policies and measures to achieve their respective targets. The 

targets are typically set as a percentage of each country's gross final energy consumption (the total 

energy consumed for all end uses, such as heating, electricity, and transport) to be sourced from 

renewable energy. These national targets are designed to reflect the varying starting points and 

potential for renewable energy development in each EU country, taking into account factors like 

existing energy infrastructure, natural resources, and economic conditions. Member states with higher 

renewable energy potential may have more ambitious targets, while those with fewer available 

resources may have more modest goals. 

Carbon dioxide (CO2) emissions are a significant driver of climate change and are primarily 

generated from the burning of fossil fuels for energy production, industrial processes, transportation, 

and other human activities. Since the 1990s, Europe has been making efforts to reduce its carbon 

dioxide emissions to mitigate the impacts of climate change and fulfil international commitments like 

the Kyoto Protocol and the Paris Agreement. European countries have set various targets to reduce 

CO2 emissions by specific percentages compared to the levels recorded in 1990. These targets are 

often set for certain years in the future, typically in five or ten-year increments. 

In shaping effective environmental policies a whole variety of decision making tools is typically 

involved. The latter may comprise Cost-Benefit Analysis (CBA), Environmental Impact Assessment 

(EIA), Life Cycle Assessment (LCA), Multi-Criteria Decision Analysis (MCDA), Scenario Analysis, 

Risk Assessment, stakeholder engagement, adaptive management, Regulatory Impact Assessment 

(RIA), GIS and Remote Sensing, structural economic models or behavioural insights. Multicriteria 
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methods are often employed in multidimensional quantitative assessment within the multiple 

subindicators environment. In the latter, data envelopment analysis (DEA) has proved to be a fruitful 

approach offering decision makers relative performance measures and benchmarks for effective goal-

setting. While originally rooted in production theory, DEA has evolved to be capable of dealing with 

undesirable outcomes of economic activity, such as emissions, making it appropriate tool for 

assessing performance with discernible environmental impact. 

II. Least-distance DEA computation 

Conventional frontier analysis 

A specific nonparametric frontier analysis method, data envelopment analysis (DEA), pioneered by 

Charnes et al. (1978), is a deterministic technique used to estimate the production or cost efficiency 

of individual entities within a given dataset. The approach is particularly useful when the underlying 

data distribution is unknown or difficult to model using traditional parametric methods when specific 

functional forms are assumed for the production or cost functions. The concept of a "frontier" refers 

to the hypothetical best-performance production possibility frontier (PPF) that can be achieved by the 

subjects (decision making units, DMUs) given their inputs. Within the DEA framework, the estimated 

frontier is constructed from multidimensional facets determined by datapoints of the best-performing 

DMUs that are assigned the efficiency score of 1 (100%), while relative underperformers obtain 

scores below 1. Figuratively, the PPF boundary rests upon the extreme datapoints and “envelops” the 

data, giving the name to the method. The efficiency score indirectly corresponds to the distance of 

inefficient entity from the boundary. Moreover, the inefficient DMU can be projected onto the frontier 

obtaining its benchmark for potential improvement. The linear programming nature of the score 

calculation allows for the dual approach. In the latter, the "benefit-of-the-doubt" weighting scheme is 

optimized by assessed units to maximize their virtual output-to-input ratio. (BoD, OECD, 2008, pp. 

92-94). Here, DEA model again assigns efficiency scores between 0 and 1 to evaluated DMUs where 

1 signifies best-performance (full efficiency). Since DEA does not model the process of transforming 

inputs into outputs, its use is confined to serving as a ranking and benchmarking procedure. In contrast, 

other decision-making tools, e.g the Balanced Scorecard, SWOT analysis, CBA, and Six Sigma, are 

geared specifically towards focusing on process optimization, quality improvement, feasibility 

analysis, or strategic planning. 

In environmental studies, DEA is often used to accommodate ecological and economic environments 

within a common framework. In the latter, along with the desired economic outcomes, emissions 

present undesirable outputs (UO, “bads”). Aggregation with other desirable outputs could be 
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computationally problematic due to the negative values of UO that would evaluate the contribution 

of the latter to total outcome. In Korhonen & Luptáčik (2004) approach, UO act as additional inputs 

in the DEA model. The procedure is justified by additional abatement cost or taxation. Thus, 

environmental efficiency could be conceptually expressed as the ratio of desirable economic outcome 

and UO, i.e. economic value per virtual unit of aggregated “bads”, for instance emissions.  

Closest-target projection 

Along with the efficiency scores, DEA models are capable of generating benchmarks. These are 

typically more important for policy decisions than the relative ranking. As regards the targets for 

making improvements, it is by noticed Coelli (1998) that the target point identified by the 

conventional DEA radial model is the farthest point from the assessed DMU.  He proposed a multi-

stage method for solving a sequence of radial models to determine the closest efficient point (closest 

target) for the evaluated DMU to reach with the least adjustment effort. Other efforts as to identify 

the closest target comprise Gonzalez & Alvarez (2001), Cherchye & Van Puyenbroeck, (2001) or 

Portela et al. (2003). Aparicio (2007) proposed an approach that allows to avoid multi-stage 

procedures and offers a general approach for finding the closest targets for a given unit.  

Considering n DMUs with m inputs organized in matrix X with elements 𝑥𝑥𝑖𝑖𝑖𝑖 and, in a similar way, s 

outputs organized in matrix Y with elements 𝑦𝑦𝑟𝑟𝑟𝑟, the conventional DEA identifies best performing 

DMUs from the whole pool of the data. Indices j of frontier-located best-performers comprise now 

the set E of efficient units. For any DMU0 characterized by the inputs-outputs mix (𝑥𝑥𝑖𝑖0 ,𝑦𝑦𝑟𝑟0) we 

formulate least-distance mADD-I input oriented assessment procedure as follows: 

min ∑  𝑚𝑚
𝑖𝑖=1 𝑠𝑠𝑖𝑖0−   (r = 1, 2, ..., s) (1) 

s.t. ∑ 𝜆𝜆𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖0𝑗𝑗∈𝐸𝐸 − 𝑠𝑠𝑟𝑟0−   (i = 1, 2, ..., m) (2) 

 ∑  𝑗𝑗∈𝐸𝐸 𝜆𝜆𝑗𝑗𝑦𝑦𝑟𝑟𝑟𝑟 = 𝑦𝑦𝑟𝑟0 + 𝑠𝑠𝑟𝑟0+   (r = 1, 2, ..., s) (3) 

 ∑  𝑗𝑗∈𝐸𝐸  𝜆𝜆𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖  ≤  𝑈𝑈𝑖𝑖   (4) 

 ∑  𝑗𝑗∈𝐸𝐸  𝜆𝜆𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖  =  1   (5) 

 ∑  𝑠𝑠
𝑟𝑟=1  𝜇𝜇𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟 − ∑  𝑚𝑚

𝑖𝑖=1  𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑑𝑑𝑗𝑗 = 0   j ∊ E (6) 

 𝑣𝑣𝑖𝑖 ≥ 1  
 

(i = 1, 2, ..., m) (7) 
  𝜇𝜇𝑟𝑟 ≥ 1  (r = 1, 2, ..., s) (8) 

 𝑑𝑑𝑗𝑗 ≤ M𝑏𝑏𝑗𝑗  j ∊ E (9) 
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 𝜆𝜆𝑗𝑗 ≤ M�1 − 𝑏𝑏𝑗𝑗�  j ∊ E (10) 

  𝑏𝑏𝑗𝑗 ∈ {0,1}   j ∊ E (11) 

 𝑑𝑑𝑗𝑗 ≥ 0  j ∊ E (12) 
 𝜆𝜆𝑗𝑗 ≥ 0  j ∊ E (13) 
                    𝑠𝑠𝑟𝑟0− ,  𝑠𝑠𝑟𝑟0+ ≥ 0    (14) 

 

In (1) – (14), Apparicio (2007) model is tailored to (i) assume input orientation (ii) assume variable 

returns to scale and (iii) impose upper bounds on benchmarks. The former is realized in the objective 

(1). As follows from (2), slacks 𝑠𝑠𝑟𝑟0−  represent deviations of individual inputs of the evaluated DMU0 

from the artificial DMU on the frontier which is generated as a combination of observed best-

performers picked from the set E.  In the similar way, output slacks 𝑠𝑠𝑟𝑟0+  are defined in (3). Distance 

is measured by means of the norm L1 which would be expressed by the sum of all the input and 

output slacks. However, to render the model input orientation, output slacks are discarded from the 

distance measure. Thus, least-distance (LD) objective is expressed by minimizing sum of input slacks 

only. Apparicio (2007) procedure combines variables from primal and dual formulations of the 

additive (ADD) DEA model from Ali & Seiford (1990). Dual variables from the latter compose the 

conditions (6) – (8). Additive model structure matches the L1-based distance measure. While in ADD 

the objective is to maximize total sum of slacks, i.e. find the largest distance, the proposed mADD 

seeks to find the least distance. The model can be additional features by imposing upper bounds Ui 

by (4) restricting the set of potential benchmarks for input improvement. Convexity condition (5) may 

render the model variable return to scale. Constraints (9) – (10) adopted from Apparicio (2007) link 

primal- and dual-based parts of the model while conditions (11) – (14) express nonnegativity of the 

variables. Notably, constraint (11) turns the mADD into a mixed linear programming optimization 

(MILP), in contrast to a regular LP of conventional DEA. 

Data 

For illustrational purposes, environmental efficiency of European countries is assessed by the 

proposed procedure. Economic outcome is represented by GDP (mil EUR) whereas two main 

environmental indicators – share of renewables (transformed by subtracting from the unit to the share 

of non-renewables and expressed in absolute values of mil. tonnes of oil equivalent) and aggregated 

emissions (tonnes of CO2 equivalent) represent resources (cost of damages regarding the latter) used 

to achieve the output. Ceteris paribus, higher values of inputs thus represent less desirable use of 

resources while higher output is considered more favourable. 
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Data were collected from 2021. Luxembourg, Iceland and Norway were excluded due to unavailable 

and/or outlying data. The complete dataset of the raw data as well as computed values of above 

described variables EMIS and NON_RENEW are exhibited in Appendix Table A1. 

III. Results  

From variable selection it follows that in mADD-I model (1) – (14), m = 2 and s =1. As a necessary 

step, the set E of best-performing countries should be determined. The estimated production 

possibility set, and consequently its boundary, does not vary across the conventional DEA models 

given the assumed returns to scale. We apply BCC-I (Banker et al., 1984) input oriented procedure 

with a less restrictive assumption of variable returns to scale. The latter yields the set E (reference set) 

constituted by Germany, France, Malta and Sweden. Thus, j runs from 1 to 4 throughout (1) – (14). 

Subsequently we run a set of variant DEA models to illustrate the merit of the least-distance procedure. 

Although the procedure is generally applicable to all countries, we focus on Slovakia as the only 

DMU to assess and determine projections for.  

Table 1: Projections and peers from variant models (DMU 24, Slovakia) 

 Model Variables Reference set 

  GDP NON_RENEW EMIS 
[6] [10] [17] [26] 

  Germany France Malta Sweden 
BCC-I 100,3 2,37 3,19 0 0 0,838 0,162 
ADD-I-C 100,3 2,20 1,36 0 0 0 0,186 
ADD-I-V 100,3 2,37 3,19 0 0 0,838 0,162 
mADD-I-C 100,3 4,72 21,79 0,028 0 0  0 
mADD-I-V 100,3 4,55 20,95 0,024  0 0,976  0 

Note: “-I”: input orientation, “-C” and “-V”: constant and variable returns to scale respectively 
Source: Eurostat, author´s calculation  

Slovakia´s environmental performance is characterized by the actual values of indicators EMIS = 

33,7 and NON_RENEW = 9,42. Computed benchmarks should reflect the suggested reduction. 

Reduction in NON_RENEW is interpreted in a reverse manner as an increased use of renewables.  

For each variant, benchmark for ith input is determined as a projection onto the frontier by means of 

the expression ∑ 𝜆𝜆𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗 , where 𝜆𝜆𝑗𝑗 represent intensity variables by whose nonzero values (solutions 

from the model) the data of top-performers are combined to generate the benchmark. Particular index 

j corresponds to a particular best-performing DMU that are identified by nonzero values in the 

“Reference set” section of the Table 1. 
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 In Table 1, selected results from five models are exhibited. All models are input oriented therefore 

“-I” indication is omitted hereafter. Input orientation renders the output benchmark be fixed at the 

initial value (original data). The most important results to compare are from the conventional DEA 

model and its least-distance alternation, i.e. ADD-V and mADD-V. Complete results from MILP for 

the latter can be found in Appendix Table A2. If the model is geared to identify maximum total 

deficiency (the former) and the one minimizing adjustment effort (the latter) differ as to proposed 

peers – Malta and Sweden vs Malta and Germany.  The two models project the evaluated DMU on 

different facets which makes it possible for the inputs projections to be individually less restrictive in 

the case of least-distance. On the same facet of PPF, the points are without additional criteria, i.e. 

costs, indistinguishable.  The main difference is to be observed in suggested benchmarks where 

mADD is substantially more benevolent allowing both the higher level of NON_RENEW at 4,55 as 

opposed to 2,37 from ADD-V and 20,95 of EMIS vs 3,19 from ADD-V. One can as well observe that 

the dataset at hand, variable-returns non-LD models, i.e. BCC and ADD-V yield the same peers as 

well as projections. 

For the sake of comparison, one may inspect how returns-to-scale assumption affects the results. 

Variable returns to scale assumption is imposed by adding convexity constraint (5) restricting the 

space for optimization. Thus ADD-C, involving sum of slacks maximization, yields larger slacks than 

ADD-V along with more stringent projections (2,20 vs 2,37 for NON_RENEW and 1,36 vs 3,19 for 

EMIS) whereas mADD-C ´s minimization reaches smaller sum of slacks than mADD-V and 

consequently milder benchmarks (4,72 vs 4,55 for NON_RENEW and 21,79 vs 20,95 for EMIS).  

As described above, projections values can be limited by imposing bounds via   ∑  𝑗𝑗∈𝐸𝐸  𝜆𝜆𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖  ≤  𝑈𝑈𝑖𝑖  in 

(4). As an example, the EU commitments pertaining to the two used environmental indicators could 

be used. The EU's current 2030 target is for a 32% renewable energy share, i.e 78% of the transformed 

input 𝑥𝑥1 NON_RENEW – upper bound would then be U1 = 9,42. Similarly, 𝑥𝑥2 EMIS could be bound 

by to the max 55% of the 1990 emission level by 2030, i.e. U2 = 24,7.  Upper bounds for other 

countries can be seen from Table A1 in Appendix. Bounds can be as well applied to adjust the best-

performers´ data in the scenario analysis. Obviously, projections resulting from the model suggest 

the reduction that is more ambitious than the EU targets. Thus, in this particular case the constraint 

(4) turned out inactive. 

IV. Conclusion and further research 

We demonstrated how the customized closest-target model could be employed to corroborate 

environmental target setting by use of Slovakia´s data. Despite the lack of knowledge or estimates of 
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(monetary) value for environmental quantities, least-distance approach generates clearly more 

favourable and realistic benchmarks located on different facets of the transformation set than 

projections from conventional DEA models. The merit of the proposed approach was illustrated 

through the application of diverse models that alternated in terms of their objectives and assumptions 

regarding returns to scale. The drawback of the adopted approach is mixed integer program 

formulation that does not allow for the dual shadow prices determination. On the other hand, the 

procedure avoids multi-stage computations. The generated benchmarks are milder in comparison with 

too ambitious conventional-model benchmarks and may help reduce adjustment costs. New 

environmental commitments could be easily adopted in the model by means of bounds imposed on 

generated projections. For Slovakia, the results identify Germany and Malta as best-performing peers 

suggesting alongside that a current level of GDP could be retained even after adopting the Climate 

Act environmental commitments. The EU environmental policies continue to be refined and updated 

to address emerging environmental challenges. The presented approach may serve as a proper tool to 

support this process. 
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Annex  
Table A1: Data and variables (2021) 

 Data  Variables 

  Renewables 
[share]  EMIS [t p.c.] GDP [mil €] Population 

Final Energy 
Consumption 
[mil t oil eq.] 

Emissions 
[share of 

1990]  
NON_RENEW EMIS GDP U1 U2 

Belgium 13,0 9,9 502 521,1 11 617 623 35,9 78,9 31,23 115,01 502,52 28,00 80,2 
Bulgaria 17,0 6,6 71 077,0 6 838 937 10,3 54,4 8,55 45,14 71,08 8,03 33,1 
Czechia 17,7 12,2 238 249,5 10 516 707 26,2 66,3 21,57 128,30 238,25 20,44 94,1 
Denmark 34,7 8,1 342 961,7 5 873 420 13,8 59,3 9,01 47,57 342,96 10,76 34,9 
Germany 19,2 9,4 3 601 750,0 83 237 124 209,7 60,2 169,50 782,43 3601,75 163,57 573,8 
Estonia 38,0 11,7 31 444,9 1 331 796 2,8 42,6 1,74 15,58 31,44 2,18 11,4 
Ireland 12,5 14,1 434 069,7 5 060 004 11,4 112,8 9,97 71,35 434,07 8,89 34,8 
Greece 21,9 7,1 181 674,6 10 459 782 15,2 71,5 11,87 74,26 181,67 11,86 54,5 
Spain 20,7 5,3 1 206 842,0 47 432 893 80,3 97,7 63,65 251,39 1206,84 62,63 141,5 
France 19,3 6,0 2 502 118,0 67 871 925 143,2 76,5 115,50 407,23 2502,12 111,70 292,8 
Croatia 31,3 4,8 58 290,9 3 862 305 7,0 73,9 4,81 18,54 58,29 5,46 13,6 
Italy 19,0 6,7 1 787 675,4 59 030 133 113,3 75,7 91,73 395,50 1787,68 88,37 287,4 
Cyprus 18,4 10,1 24 019,0 904 705 1,7 145,7 1,39 9,14 24,02 1,33 3,4 
Latvia 42,1 7,1 33 616,5 1 875 757 4,1 96,2 2,37 13,32 33,62 3,20 7,6 
Lithuania 28,2 5,1 56 153,5 2 805 998 5,7 33,3 4,09 14,31 56,15 4,45 10,5 
Hungary 14,1 5,9 154 120,1 9 689 010 19,2 62,3 16,49 57,17 154,12 14,98 41,9 
Malta 12,2 4,6 15 011,5 520 971 0,6 84,6 0,53 2,40 15,01 0,47 1,6 
Netherlands 13,0 10,2 870 587,0 17 590 672 46,9 76,8 40,80 179,42 870,59 36,58 128,5 
Austria 36,4 7,6 406 148,7 8 978 929 27,8 100,9 17,67 68,24 406,15 21,68 37,2 
Poland 15,6 10,1 576 382,6 37 654 247 75,2 85,5 63,45 380,31 576,38 58,66 244,6 
Portugal 34,0 5,1 214 741,0 10 352 042 15,7 77 10,36 52,80 214,74 12,25 37,7 
Romania 23,6 3,5 241 268,4 19 042 455 25,4 29 19,41 66,65 241,27 19,81 48,9 
Slovenia 25,0 6,2 52 208,1 2 107 180 4,7 90,1 3,53 13,06 52,21 3,67 8,0 
Slovakia 17,4 6,2 100 323,5 5 434 712 11,4 52,2 9,42 33,70 100,32 8,89 24,7 
Finland 43,1 8,9 250 920,0 5 548 241 24,9 105,8 14,17 49,38 250,92 19,42 25,7 
Sweden 62,6 0,7 540 734,0 10 452 326 31,7 26,8 11,86 7,32 540,73 24,73 5,4 

Source: Eurostat, author´s calculation 

Table A2: Detailed results from variant DEA models (DMU 24, Slovakia) 
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Note: -C refers to constant, -V to variable returns to scale. All models are input oriented. 
Source: Eurostat, author´s calculation 

 

model 
Nonzero λj slacks weights LD-related decision variables 

[6] [17] [26] s1- s2- v1 v2 u d1 d2 d3 d4 b1 b2 b3 b4 

BCC-I   0,838 0,162                           

ADD-I-C    0,186 7,2 32,3                

ADD-I-V   0,838 0,162 7,0 30,5                

mADD-I-C 0,028    4,7 11,9 1 1 0,035 824,2 434,0 2,39 0 0 0 0 0 

mADD-I-V 0,024 0,976   4,9 12,7 1 1 0,035 824,2 434,0 2,39 0 0 0 0 0 
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