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Abstract

The betweenness centality of an edge e is, summed over all u, v ∈ V (G), the ratio of
the number of shortest u, v-paths in G containing e to the number of shortest u, v-paths
in G. Graphs whose vertices all have the same edge betweenness centrality are called
edge betweeness-uniform. It was recently shown by Madaras, Hurajová, Newman, Mi-
randa, Flórez, and Narayan that of the over 11.7 million graphs with ten vertices or
fewer, only four graphs are edge betweenness-uniform but not edge-transitive. In this
paper we present new results involving properties of betweenness-uniform graphs.

1 Introduction

In social or complex network analysis, great attention is paid to determine the most impor-
tant vertices or edges of a network. Vertices and edges that are central to a network lie on
intersecting geodesics between pairs of vertices in the network. This idea was introduced by
Anthonisse [1] and Freeman [6] in the context of social networks, where they defined vertex
and edge betweenness centrality.

The vertex betweenness of a vertex x of a graph G is defined as

B(x) =
∑

u,v∈V (G)

σu,v(x)

σu,v

where σu,v is the number of shortest u, v-paths in G, and σu,v(x) is the number of those short-
est u, v-paths in G having x as an internal vertex. A survey of graph-theoretical properties
of this graph invariant is given in [8].

This paper deals with edge betweenness, which is defined for an edge e of a graph G as
the sum

B(e) =
∑

u,v∈V (G)

σu,v(e)

σu,v

where σu,v(e) is the number of shortest u, v paths in G that contain e. These metrics have
appeared frequently in both social network and neuroscience literature [7, 18, 3, 17, 4, 11,
19].

Applications to network partitioning were given by Girvan and Newman in [9] in con-
nection with their algorithm for determining the community structure of a network. Along
with these applications, graph-theoretical properties of edge betweenness were studied, to
some extent, in [5, 8, 13].

An edge betweenness-uniform graph is a graph where each edge in the graph has the
same edge betweenness value. In [8] it was shown that distance-regular graphs are edge
betweenness-uniform. Clearly, if a graph G is edge-transitive, then it is edge betweenness-
uniform. However the converse is not true and we will further investigate graphs that are
not edge-transitive but are edge betweenness-uniform. Graphs of this type appear to be
exceedingly rare. It was shown independently by Hurajová and Madaras [12] and Newman,
Miranda, Flórez, and Narayan [15] that of the over 11.7 million graphs with ten vertices or
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fewer, there are only four graphs that are edge betweenness-uniform but not edge-transitive.
These are shown in Figure 1.

Figure 1: The four graphs on ten vertices or less that have uniform edge betweenness cen-
trality but are not edge transitive.

They also proved that for each positive integer n the circulant graphs C18n−3(1, 6n) and
C18n+3(1, 6n) (arisen from cycles on 18n ± 3 vertices by putting additional edges between
vertices in circular distance 6n−1) are edge betweenness-uniform and neither edge-transitive
nor distance regular. Several other results and conjectures on edge-connectivity of edge
betweenness-uniform graphs are found in [13]. Variants where graphs have only two or three
different betweenness centrality values were investigated in [2].

Throughout this paper we consider connected graphs without loops or multiple edges.
A vertex v in a graph G is called a universal vertex if v is adjacent to all other vertices in
G. We will refer to the complete bipartite graph K1,n−1 as a star. An edge is pendant if it is
incident to a vertex of degree 1. The join G ∨H of graphs G,H is the graph whose vertex
set is the union of vertex sets of G and H, and the edge set is the union of edge sets of G,H
and the set of all edges connecting vertices of G with the vertices of H.

The aim of this paper present new families of graphs that are not edge-transitive but
are edge betweenness-uniform, and to obtain new results on their structure in general. In
Section 2 we present properties of edge betweenness-uniform graphs.

While the graphs in Figure 1 do not readily extend to larger classes of graphs, they
may posess properties that are present in other graphs that are not edge-transitive but are
edge-betweenness-uniform. We note that the first and the fourth graphs have a universal
vertex. This suggests the problem of determining when an edge betweenness-uniform graph
contains a universal vertex. We investigate this problem in Subsection 3.1.

In Subsection 2.1 we investigate edge betweenness-uniform graphs that contain a uni-
versal vertex. We identify two graphs, the wheel on six vertices, and graph with ten vertices
appearing in Figure 1. In these two examples the non-universal vertices have a degree equal
to half the number of vertices. However this does not have to be the case. An example
arises by taking the Schläfli graph (which has 27 vertices, is 16-regular and strongly reg-
ular) and adding to it a new universal vertex, then, according to Theorem 9, we obtain
the edge betweenness-uniform graph on 28 vertices. It can be also checked using Wolfram
Mathematica where non-universal vertices have degree 17.

2 Structure of edge betweenness-uniform graphs

We start with general results on the structure of edge betweenness-uniform graphs. In [13] it
was conjectured that each connected edge betweenness-uniform graph is either a star or has
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edge connectivity at least 2. It was was proved that each cut-edge of an edge betweenness-
uniform graph is a pendant edge incident with a vertex of degree at least 3. With the
following theorem we confirm the mentioned conjecture:

Proposition 2.1. Let G be a connected edge betweenness-uniform graph with a pendant
edge. Then G is a star.

Proof. It is easy to see that the only edge betweenness-uniform graphs of order at most four
that contain at least one cut-edge are the stars. Assume G is an edge betweenness-uniform
graph on n ≥ 5 vertices with a pendant edge e = uv where deg(u) = k + 1 and deg(v) = 1.
Note that 3 ≤ k ≤ n− 2.

Let C consist of all of the edges except for e that are incident to u. Note that
∑
f∈C

B(f) ≤

2(n − 2) + k(k − 1). Since G is edge betweenness-uniform and B(e) = n − 1, we have that∑
f∈C

B(f) = k(n−1). Hence k(n−1) =
∑
f∈C

B(f) ≤ 2(n−2)+k(k−1) which is equivalent to

k(n−1) ≤ 2(n−2)+k(k−1), further adjusted to n(k−2) ≤ (k−2)(k+2). Thus n ≤ k+2

and, combining this with the fact that k ≤ n − 2, we obtain that k = n − 2, meaning that
G is a star.

Next, we discuss edge betweenness-uniform graphs having vertices of degree 2. We will
prove in the next theorem that it is impossible to have two vertices each of degree 2 where
one vertex lies in a triangle and other not; in fact, this property can be extended to consider
the closed neighbourhood of vertices with degree k ≥ 2.

Proposition 2.2. If G is edge betweenness-uniform, then it cannot contain two vertices u
and v each of degree k ≥ 2 where the closed neighbourhood of u is a complete graph while the
closed neighbourhood of v is not.

Proof. Assume G is an edge betweenness-uniform graph. Let u be a vertex of degree k which,
together with its neighbours, induces a complete subgraph of G. As a result, no shortest
path between the neighbours of u will use an edge incident to u. Hence the only shortest
paths containing edges incident to u will be shortest paths between u and vertices in G− u,
yielding the sum of the edge betweenness over all edges incident to u being equal to k(n−1).
Suppose G also contains a vertex v of degree k with two non-adjacent neighbours x and
y. Then at least one of the shortest x, y-paths in G must pass through v. Hence the sum
of the edge betweenness over all edges incident to u will be strictly greater than k(n − 1),
contradicting the fact that G is edge betweenness-uniform.

Proposition 2.3. Let G be a k-regular edge betweenness-uniform graph on n vertices. Then,
for each edge e ∈ E(G), B(e) ≥ n

k
.

Proof. By [14], we have that, for each vertex u of G,

B(u) =
1

2

 ∑
v∈N(u)

B(uv)− n+ 1

 .

Since G is edge betweenness-uniform, B(e) = b for each edge e of G. Moreover, G is k-regular
so we get that
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B(u) =
1

2
(kb− n+ 1) .

Note thatG is also vertex betweenness-uniform because B(u) does not depend on the selected
vertex. In [16] it was proved that for betweenness-uniform graphs, B(u) = 0 ifG is a complete
graph or B(u) ≥ 1

2
. Therefore, if G is not complete, then we get

B(u) =
1

2
(kb− n+ 1) ≥ 1

2

which gives kb− n+ 1 ≥ 1 and thus b ≥ n
k
.

3 Results

3.1 Edge-betweenness graphs with a universal vertex

In this section we investigate which edge-betweenness graphs have a universal vertex.

Theorem 3.1. Let G be an edge betweenness-uniform graph on n vertices. Then

1. G ∼= Kn or G contains at most one universal vertex,

2. There is no edge e = uv in G such that deg(u) = n− 1 and deg(v) = n− 2,

3. G ∼= K3 or there is no edge e = uv in G such that deg(u) = n− 1 and deg(v) = 2,

4. G ∼= K4 or G ∼= W6 or there is no edge e = uv in G such that deg(u) = n − 1 and
deg(v) = 3.

Proof. We prove each of the four cases individually.

1. Let G contain at least two vertices u, v of degree n−1. Then the edge uv has between-
ness centrality equal to 1. If G is not a complete graph, then there exist the vertices
w, z such that wz /∈ E(G) and B(uw) ≥ 1 + 1

σwz
> 1 = B(uv).

2. Let G contain a universal vertex u and a vertex v of degree n− 2. By Proposition 2.1
and part 1 above, we have 2 ≤ deg(y) ≤ n − 2 for each vertex y of G except of u.
Since deg(v) = n− 2, there is exactly one vertex w not adjacent to v; note that w has
at least two neighbours u and z. We have deg(z) ≤ n− 2, but z is adjacent to each of
u, v, w so there is another vertex x such that zx /∈ E(G). Then

B(vz) ≥ 1 +
1

σvw

+
1

σzx

> 1 +
1

σvw

= B(uv),

yields a contradiction.
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3. If n − 1 = 2, then G ∼= K3. So let n − 1 > 2 and let G contain a universal vertex u
and a vertex v of degree 2. By the previous claim, each vertex y of V (G) except of u,
2 ≤ deg(y) < n − 2 holds. The vertex v has exactly two neighbours u,w where the
vertex w is either of degree 2 or w has at least 3 neighbours. Let V (G) \ {u, v, w} =
{w1, w2, . . . , wn−3} . Then

B(uv) = 1 +
n−3∑
i=1

1

σvwi

> 1.

For deg(w) = 2 we get B(vw) = 1 < B(uv).

4. If n − 1 = 3, then G ∼= K4. Now let n − 1 > 3 and let G contain a universal vertex
u and a vertex v of degree 3. We denote N(v) = {u,w, z} and V (G) \ {u, v, w, z} =
{w1, w2, . . . , wn−4} . By parts 1,2, and 3, for each vertex y of V (G) except of u, 3 ≤
deg(y) < n− 2 holds.

If wz ∈ E(G), then

B(uv) = 1 +
n−4∑
i=1

1

σvwi

and

B(vw) = 1 +
∑

wi∈N(w)

1

σvwi

< 1 +
n−4∑
i=1

1

σvwi

= B(uv).

Now let wz /∈ E(G). Since deg(w) ≤ n−3, there exists a vertex wk, k ∈ {1, 2, . . . , n− 4}
such that wwk /∈ E(G). We have

B(uv) = 1 +
1

σvwk

+
n−4∑

i=1,i̸=k

1

σvwi

and

B(vw) = 1 +
1

σwz

+
∑

wi∈N(w)

1

σvwi

≤ 1 +
1

σwz

+
n−4∑

i=1,i̸=k

1

σvwi

= B(uv).

The equality B(uv) = B(vw) holds if and only if wi ∈ N(w) for all i ̸= k and
σvwk

= σwz. For w, z there exist at least two shortest w, z-paths in G, wvz and wuz. On
the other hand, there are at most two shortest v, wk-paths inG. Now either zwk ∈ E(G)
and σvwk

= 2, or zwk /∈ E(G) and σvwk
= 1. To achieve the equality B(uv) = B(vw),

we get that zwk ∈ E(G) and σvwk
= σwz = 2. One can see that both vertices w, z are

adjacent to all other vertices of {w1, w2, . . . , wn−4} except one, w is not adjacent to wk

and there exists a vertex wj ∈ {w1, w2, . . . , wn−4} such that zwj /∈ E(G). It easy to
see that j ̸= k. Moreover, if there is a vertex ws ∈ {w1, w2, . . . , wn−4} \ {wj, wk} then
σwz ≥ 3. This situation cannot occur. So V (G) = {u, v, w, z, wj, wk}, deg(u) = 5 and
deg(x) = 3, x ∈ V (G) \ {u} .
There is only one graph on six vertices that satisfies all these conditions, namely, the
wheel W6.
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3.2 Neighbourhood properties of edge betweenness-uniform graphs

The next theorems deal with vertex neighbourhood properties of edge betweenness-uniform
graphs.

Theorem 3.2. Let G be an edge betweenness-uniform graph on n vertices with u, v ∈ V (G)
and uv ∈ E(G). If N(u) \ {v} = N(v) \ {u}, then G ∼= Kn.

Proof. The vertices u, v have the same set of non-u,v neighbours N = N(u) \ {v} = N(v) \
{u}, therefore, the edge e = uv belongs to exactly one shortest path (namely uv) and
B(uv) = 1. We show that N ∪ {u, v} = V (G). In the opposite case there exist two vertices
x, y such that x ∈ N, y ∈ V \ (N ∪ {u, v}) and xy ∈ E(G). Thus

B(ux) ≥ 1 +
1

σuy

> 1 = B(uv).

We have a contradiction, which means that N ∪{u, v} = V (G) and deg(u) = deg(v) = n−1.
Thus G has two universal vertices so G ∼= Kn (Theorem 3.1, Claim 1.)

Theorem 3.3. Let G be a graph on n vertices with a cut vertex u. Let G \ {u} = G1 ∪G2,
|V (G1)| = n1 > 4, |V (G2) ∪ {u} | = n2 > 3. If |V (G1) ∩ N(u)| = 2, then G is not edge
betweenness-uniform.

Proof. Let v, w ∈ V (G1) ∩ N(u), e1 = uv and e2 = uw. If we take one vertex from V (G1)
and one from V (G2)∪{u}, then every shortest path connecting these two vertices must pass
through e1 or e2, so

B(e1) +B(e2) ≥ n1n2.

If G is edge betweenness-uniform, then for any three edges f1, f2, f3, it holds B(f1)+B(f2) =
2B(f3).
We consider two cases:

• Case 1: Let n1 ≤ n2. Then we take a vertex x ∈ V (G1) furthest from u and an edge f
incident to x.

2B(f) = 2
∑

y,z∈V (G)

σy,z(f)

σy,z

= 2

 ∑
y,z∈V (G1)

σy,z(f)

σy,z

+
∑

y∈V (G2)

σx,y(f)

σx,y

 ≤ 2

(
n2
1

4
+ n2

)
≤

2
n1n2

4
+ 2n2 = n2

(
n1 + 4

2

)
< n2

(
n1 + n1

2

)
= n1n2 ≤ B(e1) +B(e2). (1)
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• Case 2: Let n1 > n2. Then we take a vertex x ∈ V (G2) that is furthest from u and an
edge f incident to x.

2B(f) = 2
∑

y,z∈V (G)

σy,z(f)

σy,z

= 2

 ∑
y,z∈V (G2)

σy,z(f)

σy,z

+
∑

y∈V (G1)

σx,y(f)

σx,y

 ≤ 2

(
n2
2

4
+ n1

)

< 2n1n2

4
+ 2n1 = n1

(
n2+4
2

)
≤ n1

(
n2+n2

2

)
= n1n2 ≤ B(e1) +B(e2).

In both cases we get 2B(f) < B(e1)+B(e2) which means thatG is not edge betweenness-
uniform.

3.3 Graphs with a uniform count of shortest paths

Theorem 3.4. Let G be a graph on n vertices with σx,y(G) = k for every non-adjacent
x, y ∈ V (G). Then G is edge betweenness-uniform if and only if every edge belongs to the
same number of the shortest paths of G.

Proof. For every two nonadjacent vertices there are exactly k shortest paths so σx,y = k for
every x, y ∈ V (G), xy /∈ E(G). Let e, f ∈ E(G). We have

B(e) =
∑

x,y∈V (G)

σx,y(e)

σx,y

= 1 +
∑

xy/∈E(G)

σx,y(e)

k
= 1 +

1

k

∑
xy/∈E(G)

σx,y(e),

B(f) =
∑

x,y∈V (G)

σx,y(f)

σx,y

= 1 +
∑

xy/∈E(G)

σx,y(f)

k
= 1 +

1

k

∑
xy/∈E(G)

σx,y(f).

IfG is edge betweenness-uniform, thenB(e) = B(f) and
∑

xy/∈E(G) σx,y(e) =
∑

xy/∈E(G) σx,y(f),
which means that e as well as f belongs to the same number of shortest paths of G. On the
other hand, if every edge e belongs to exactly (1 + t) shortest paths (one of the paths being
the edge e itself and

∑
xy/∈E(G)

σx,y(e) = t) then

B(e) =
∑

x,y∈V (G)

σx,y(e)

σx,y

= 1 +
∑

xy/∈E(G)

σx,y(e)

k
= 1 +

1

k

∑
xy/∈E(G)

σx,y(e) = 1 +
t

k
.

We see that B(e) does not depend on the choice of an edge e of G, so G is edge betweenness-
uniform.

Theorem 3.5. Let G be an edge betweenness-uniform graph on n vertices such that, for
every two nonadjacent vertices, there are exactly k shortest paths between them. If G has a
universal vertex u, then every vertex of G except u has the same degree.
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Proof. Let G be an edge betweenness-uniform graph of order n and let e = uv, f = uw, and
e, f ∈ E(G). Since u is the universal vertex we get σv,x(e) = 1 and σw,y(f) = 1 for every
x, y ∈ V (G), x /∈ N(v), y /∈ N(w). Now

B(e) =
∑

x,y∈V (G)

σx,y(e)

σx,y

= 1 +
∑

x/∈V (G)\(N(v)∪{v})

1

k
= 1 +

1

k
(n− 1− deg(v))

and

B(f) =
∑

x,y∈V (G)

σx,y(f)

σx,y

= 1 +
∑

x/∈V (G)\(N(w)∪{w})

1

k
= 1 +

1

k
(n− 1− deg(w)) .

If B(e) = B(f), then

1 +
1

k
(n− 1− deg(v)) = 1 +

1

k
(n− 1− deg(w))

and deg(v) = deg(w).

The next theorem presents graphs with the uniform count of shortest paths between
nonadjacent vertices and the conditions for their edge betweenness-uniformity. An important
family of such graphs is the family of strongly regular graphs determined by four parame-
ters (n, k, λ, µ) as follows: the number of vertices is n, each vertex has degree k, and the
number of common neighbours for each pair of adjacent (or nonadjacent) vertices is λ (or µ,
respectively); other graphs with this property are trees and, in general, geodetic graphs.

Theorem 3.6. Let G ̸= Kn be a strongly regular graph with parameters (n, k, λ, µ). Then
G ∨K1 is edge betweenness-uniform if and only if k = 2µ.

Proof. Let y be the universal vertex of G∨K1. Consider first the edge betweenness of an edge
xy. Since G and G∨K1 have diameter 2, every pair of vertices with a positive contribution
to B(xy) shall contain x or y. We then have

B(xy) = 1 +
∑

u̸∈NG(y)

σu,y(xy)

σu,y

+
∑

u̸∈NG(x)

σu,x(xy)

σu,x

= 1 + 0 +
∑

u̸∈NG(x)

1

1 + µ
=

1 +
1

1 + µ
(n− k + 1)

as there is only one x, u-path passing through y and µ shortest x, u-paths in G. Next, let
zw be an edge of G. We have

8
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B(zw) = 1 +
∑

u̸∈NG(w)

σu,w(zw)

σu,w

+
∑

u̸∈NG(z)

σu,z(zw)

σu,z

= 1 +
∑

u̸∈NG(w)

σu,w(zw)

1 + µ
+

∑
u̸∈NG(w)

σu,s(zw)

1 + µ
= 1 +

k − 1− λ

1 + µ
+

k − 1− λ

1 + µ
= 1 +

2(k − 1− λ)

1 + µ
(2)

since, for an endvertex of zw, say z, there are k − 1 neighbours of z which are distinct from
z, but λ of them are also the neighbours of w.

Now, G ∨K1 is edge betweenness-uniform if and only if

1 +
n− k − 1

1 + µ
= 1 +

2(k − 1− λ)

1 + µ

that is, if 2(k − 1− λ) = n− k − 1. Using the fact (n− k − 1)µ = k(k − λ− 1), that holds
for parameters of a strongly regular graph, we obtain

2
(n− k − 1)µ

k
= n− k − 1

and, since G ̸= Kn, the last equality holds if and only if k = 2µ.

Examples of strongly regular graphs with k = 2µ are conference or Paley graphs,
or the Schläfli graph (see [10] for details on these graphs). Another construction of edge
betweenness-uniform graphs involves arc-transitive graphs (see again [10] p. 35).

Theorem 3.7. Let G be an arc-transitive graph and let H be the graph obtained from G by
subdividing each its edge by a vertex of degree 2. Then H is edge betweenness-uniform.

Proof. By the definition of arc-transitivity for each pair of edges xy, uv of G (note that they
may be the same) there exists an automorphism φ of G such that φ([x, y]) = [v, u]. Now let
xt, wv be edges of H, t, and w have degree 2, and let y and u be the other neighbours of t
and w, respectively. Then φ induces an automorphism φ′ such that φ′(x) = v and φ′(t) = w;
thus, H is edge-transitive and therefore, edge betweenness-uniform.

We state an extension of our work in the following conjecture.

Conjecture 3.1. If G is an edge betweenness-uniform graph with n vertices and G contains
a universal vertex, then all other vertices in the graph have the same degree.

In addition, it appears that complete characterization of graphs that are edge betweenness-
uniform but are not edge-transitive would be an ambitious problem. However most certainly
other graphs in this family must surely exist.
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