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Introduction

» financial time series give information about deyehent of
prices on financial markets, e.g. about developnuérisset
prices or prices of different currencies

> these prices are mostly recorded with high frequeaa. on
daily basis

» the typical feature of the financial time series tise
nonstationarity, but the analyses are mostly daverdturn
series which are in general already stationary

» the main feature of return series is the time-vayyi
variability/volatility caused probably by the sitiomm on
financial markets which are very sensitive to infation of
different types e.g. on political changes, changesscal and
monetary policy, natural catastrophes or militasyfacts



Introduction

» the pioneering work in the area of modelling voistilof
financial time series - autoregressive conditional
heteroscedasticity (ARCH) model - was presented bgl€n
(1982)

» conditional variance (volatility) in ARCH model & function
of squared disturbances from previous periods aedefore
enables to catch the volatility clustering, i.attlarge (small)
changes tend to be followed by another large (sroBfihges

» Engle together with another famous econometriciaanGer
received in 2003 the Nobel prize in Economic Saesngor
methods of analyzing economic time series with-tiarging
volatility (ARCH) and ,for methods of analyzing economic
time series with common trends (cointegrattprgspectively



Introduction

» traditional approach to time series analysis — decompasit
approach — decomposition into individual components (tren
seasonal, cyclical and irregular/randoomponent)

» newer approach — Box-Jenkins ARIMA methodology
— models AR, MA, ARMA, |, ARIMA:
conditional mean: time-varying,
conditional variance: constant in time

» return series — time-varying volatility, i.e. condri@ variance is
not constant; typical is varying of periods with rexhe
fluctuations and calm periods



Introduction

> typical features of return series:
-volatility clustering
-non-normal returns
-leverage effect
-comovements in volatilities
-non-trading periods
-seasonal anomalies
-relationship between volatility and trading volume



Introduction

» ARCHclass models

-nowadays a large number of modifications of thedgdaad ARCH
model have been developed (see e.g. Bollerslev j2@l8ssary
to ARCH = encyclopedic survey of ARGCtlass models,
downloadable)

-ARCH-class models are widely used in macroeconomics and
financial analysis

-concerning the functional form of the conditionablatility
equation - two types of models:

linear andnon-linear



Univariate ARCH -class models

> linear modelse.qg.
ARCH - Engle (1982)
GARCH — Bollerslev (1986)
GARCH-M — Engle, Lilien, Robins (1987)

» non-linear modelse.g.
EGARCH — Nelson (1991)
GJR — Glosten, Jagannathan a Runkle (1993)
TGARCH - Zakoian (1990)



Multivariate ARCH -class models

» alongside the univariate ARGElass models also multivariate
volatility models (MGARCH) have been developed

> the application field of MGARCH models is broad, e.g. tfmro
optimization, computation of the Value-at-Risk, anaysf the
stock market co-movements, impact of crisis on stockketaco-
movements and assessment of the contagion effect

different types of multivariate GARCH models canused, e.g.
VECH — Bollerslev, Engle and Wooldridge (1988)
BEKK — Baba et al. (1990), Engle and Kroner (1995)
CCC — Bollerslev (1990)

DCC — Engle (2002) and others



ARCH -clas: models and analysis of

BUX, PX, WIG20 and DAX return series

» analysed period: 4.1.2010-30.12.2013
» source of data: www.stoog.com
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ARCH -clas: models and analysis of
BUX, PX, WIG20 and DAX return series

» analysis in more steps:
» Descriptive statistics of logarithmic stock return series

»Diagnostic checking (Jarque-Bera statistics, ADF
statistics, Ljung-BoXQ-statistics)

»Specification and estimation of the conditional mean
equations

» Estimation of conditional variance equations (GARCH,
GJR, EGARCH)

»Static forecasts of logarithmic stock returns and of
conditional standard deviation GARCH/GJR/EGARCH

» Unconditional correlation coefficients
» Estimation of DCC models



ARCH -clas: models and analysis of
BUX, PX, WIG20 and DAX return series

» descriptive statistics of logarithmic stock return
series and some diagnostic test statistics

DLBUX DLPX DLWIG DLDAX
Mean -0,000156 -0,000141 -1,8710( 0,000476
Maximum 0,106741 0,072487 0,05063[L 0,052104
Minimum -0,069842 -0,066442 -0,075431 -0,0693303
Std. dev. 0,014686 0,012145 0,012940 0,013508
Skewness -0,015259 -0,347673 -0,467845 -0,387831
Kurtosis 7,944892 6,761803 6,10640B 6,105617
Jarque-Bera 978,12*** 585,39*** [ 421,01***  409,86***
Diagnostic test statistics
ADF -31,218*** -29,381*** | -30,039*** | -29,442***
Q(1) 0,0975 2,4672 0,8504 2,4939
Q(200) 200,20 187,42 179,64 234,79**
Q’(1) 45,444 *** 31,122*** 18,856*** 33,805***
Q?(200) 290,12*** 462,11*** 633,00*** 1139,5%**




ARCH -clas: models and analysis of
BUX, PX, WIG20 and DAX return series

» types of estimated univariate volatility models

Model type Sign. | Q(200) | Q°(200) | ARCH- | Jarque- BIC
of J; LM(1) Bera
DLBUX | GARCH(1,1) - 205,201 211,30 0,738p 04,324*%  -5,74pP4
GJR(1,0,1) Yes | 206,01 217,40 0,8119 78,992**  -5,7588
EGARCH(1,1,1) Yes| 19993 214,56 0,5222 80,315 5,7487
DLPX GARCH(1,1) - 196,16 172,00 0,7189 112,110** -6,1216
GJR(1,1,1) No 194,18 174,16 0,2584 98,735t -@11
EGARCH(1,1,1) No 194,70 166,55 0,3070 05,163** ,1%6/3
DLWIG | GARCH(1,1) - 189,09] 141,82 3,4132* 79,591*  -6,04
GJR(1,1,1) Yes| 194,68 149,74 0,5492  40,233%7* 38D
EGARCH(1,1,1) Yes | 197,78 156,91 0,5898  43,446** -6,02y5
DLDAX | GARCH(1,1) - 191,64 128,24 0,0244  372,340%* -5,95/6
GJR(1,0,1) Yes| 187,89 154,86 0,0105 231,335"** 9987
EGARCH(1,1,1) Yes | 187,60 152,93 0,0118 130,357** -6,01[12




ARCH -clas: models and analysis of
BUX, PX, WIG20 and DAX return series

» static forecasts of logarithmic returns and +/- two
standard deviations GARCH/GJR/EGARCH
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ARCH -clas: models and analysis of
BUX, PX, WIG20 and DAX return series

» analysis of stock market linkages based on DCC models

-subject of analysis: stock markets of Hungary, CzechuRkp
Poland and Germany based on stock indices BUX, PX, WIG20

and DAX
-analysis of stock market linkages:
- high correlations between the stock returs
rapid reduction of possible gain fromternational
diversification

- low correlations between returns= markets are attractive
for investors in order to exploit the potential dissdication

benefits



ARCH -clas: models and analysis of
BUX, PX, WIG20 and DAX return series

» calculation of unconditional correlation coefficients

DLBUX

DLPX

DLWIG

DLDAX

DLBUX

1,000000

0,5804471

0,61006

7

0,6083

DO

DLPX

1,000000

0,626299

0,63072

DLWIG

1,000000

0,685369

DLDAX

1,000000

-values of unconditional correlation coefficients dongive
Information about development of stock markets’ #g&s in time,
since it is only the single value for the whole gmal period

-In order to assess the development of stock marketsagas in
time, the DCC model is beeing used



ARCH -clas: models and analysis of
BUX, PX, WIG20 and DAX return series

» development of dynamic conditional correlations

DCC_BUX DAX
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Conclusion

» despite the fact that the idea of ARCH model wasliphed by
Engle more than 30 years ago, new modificationshisf model
have still been published nowadays

» present state of problematics dealing with modeldhgnancial
time series’ volatility was characterized

» thereafter the presentation was concentrated onousr
univariate linear and non-linear ARGe¢fiass models

» since the iIndividual stock markets don’t exist apasate
markets, the presentation also included selectetivawate
ARCH-class models which enable to deal with the stoakket
linkages



Conclusion

» In the final part of presentation the use of sek&RCH-class
models was presented for analysis of Hungarian BOXgch
PX, Polish WIG20 and German DAX

» based on DCC values (in average 0,53-0,63) we paaksabout
quite strong linkages of CEE markets with Germalsmarket
and also about quite strong linkages between thheidual CEE
stock markets

— these markets are not very interesting for inteomai
diversification
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