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Abstract 

Using weekly returns of S&P 500 constituents, we study the time-

varying correlation structure during the period of 2006 to mid-

2011. Contrary to most of the previous correlation studies of many 

assets, we do not use rolling correlations but the DCC MV-GARCH 

model with the MacGyver strategy proposed by Engle (2009). We 

find empirical evidence that the correlation structure tends to 

change significantly during the periods of high volatility and 

market downturns. 
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I. Introduction 

Volatility and correlation between assets are crucial for option pricing and portfolio 

and risk management. We study the changes in the correlation structure between stock returns 

of current and past constituents of the S&P 500 index and their relationship to market 

volatility. We define the correlation structure as a totally ordered set of correlation 

coefficients (ρt, ≤). If this ordering changes in time t+1, the correlation structure changed. 

This has important implications for portfolio analysis. For example, in a basic Markowitz 

model, when the correlation structure changes, so will the estimated weights in the portfolio. 

Empirical studies of the relationship between market volatility and market correlations 

have shown that, in periods of high volatility, correlations between stock portfolio returns 

tend to increase (e.g. Ding et al., 2011). This is unfortunate, as diversification is needed most 

when uncertainty is high. The aim of this study is to examine empirically the relationship 

between changes in stock market volatility and the instability of correlation structure (ICS). 

Similar approaches in measuring the ICS can be found in the literature on stock market 

networks. The correlation matrix Ct of asset returns may be represented as a complete graph, 

with the vertices being stocks and the weighted edges the relationships between stock returns. 

As the topological properties of this graph are not that interesting, a Minimum Spanning Tree 

(MSTt) is usually constructed from Ct, which retains all N vertices but only N–1 edges1 (e.g. 

Onnela et al., 2003). Denote E(t) the set of edges of MSTt, then σ(t) = |E(t)∩E(t–1)|/(N–1) 

measures the ICS represented by MSTs (Onnela et al., 2003). However, some information 

from Ct is being ignored because N(N–1)/2 edges are squeezed into a graph with N–1 edges 

(Tse et al., 2010). We, therefore, do not follow this approach2. 

It is well known that correlation coefficients are distorted due to heteroskedasticity in 

the data. More importantly, when there are structural breaks accompanied by an increase in 

volatility, estimated correlations are biased upwards. Contrary to the standard approach based 

on rolling correlations in stock market network studies, we use the DCC MV-GARCH model 

of Engle and Sheppard (2001) to calculate Ct. To mitigate the known negative bias in high-

dimension DCCs, we use the MacGyver strategy of Engle (2009). 

  

                                                           
1  Technically, the correlation matrix is first transformed to a distance matrix with elements di,j = (2(1–ρi,j))

0.5. 
2  The Threshold Asset Graph in Tse et al. (2010) solves some issues but still ignores some information from Ct. 



II. Data and Methodology 

Our analysis is based on weekly stock price returns calculated from Wednesday-to-

Wednesday3 closing prices (Pt) of companies that were listed as S&P 500 constituents at some 

point within 3 January 2006 to 22 July 2011; thus, T = 290. The period was chosen because of 

the high volatilities coupled with the latest recession. As only companies with all daily prices 

available for the given period were considered, we started with N = 516 companies. 

 

Correlations 

Each series i = 1,2,…,516 of stock returns Rt,i = ln(Pt,i/Pt-1,i) was subject to unit root 

testing. First, we used the DF-GLS test without the trend component, with MAIC lag 

selection, where the maximum lag order . The finite sample critical 

values (for T = 250) were taken from Cook and Manning (2004). When the null hypothesis of 

unit root could not be rejected, we continued with the Lee and Strazicich (2004) test with one 

break in the level of the series. The number of the augmented terms was chosen according to 

Ng and Perron (1995) by first selecting the maximum lag order to  and then reducing the 

number of lags until the coefficient on the last lag remained significant. The trimming 

parameter for break detection was set at 0.1. Sample size and break dates specific critical 

values were obtained from a Monte Carlo simulation with 2500 replications. 

Next, we estimated the mean equations for each return series to obtain residuals 

without autocorrelation. We used an ARMAX model in the following form4: 

 (1) 

where εt ~ N(0,σ2), zt is the stationary ARMA component and DUt = 1 for t > Tb and 

DUt = 0 otherwise, with Tb denoting the break date. If in the previous step the series was 

determined to be stationary without a break, the β2DUt was dropped. The orders p,q = 

1,2,…,7 were selected according to AIC from a set of {(p,q),…} for which the Ljung-Box test 

on residuals from Equation 1 signalled nonrejection of the null hypothesis of no 

autocorrelation for up to 0.1T lags. 

                                                           
3  This allows us to avoid possible day-of-the-week effects. 
4  Series specific subscripts are omitted for brevity. 
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 For the estimation of dynamic conditional correlations, we have followed the work of 

Engle and Sheppard (2001). For each pair of residuals rt = (εi,t,εj,t)
T obtained from the previous 

step, it is assumed that: 

   (2) 

 
(3) 

where Ht is a decomposed variance-covariance matrix and Dt is a diagonal matrix of 

time-varying SDs from univariate GED-GARCH models (of orders up to 4, to capture the 

ARCH effects). The usual GARCH restrictions for non-negativity and stationarity were 

imposed. Ct is the time-varying correlation matrix: 

  (4) 

  (5) 

   (6) 

where st are standardized residuals,  is the unconditional correlation matrix in 

dynamic correlation structure Qt and ρi,j,t are the DCCs. 

Estimation of DCCs with large dimensions is problematic especially when N > T. One 

possibility is to estimate only bivariate DCCs, which still seems a preferable alternative to the 

rolling correlations used in stock market network studies. We followed Engle (2009), who 

proposed a better approach, the MacGyver methodology, where αp and βq are estimated as 

medians of corresponding coefficients obtained from bivariate DCC MV-GARCH models for 

all series. 

 

Stock market volatility 

Stock market volatility was estimated from S&P 500 data. First, a Garman and Klass 

(1980) range-based unconditional volatility ( ) with jump adjustment jt (Molnár, 2010) 

was used. If O, H, L, C denote opening, highest, lowest and closing prices in the given week, 

then ht = ln(Ht)–ln(Ot), lt = ln(Lt)–ln(Ot), ct = ln(Ct)–ln(Ot) and jt = ln(Ot)–ln(Ct-1): 

  (7) 

Second, we estimated the conditional variance ( ) from S&P 500 weekly 

returns using a standard GARCH(1,1) model following the procedure described above. 
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Correlation structure 

Two sets of correlation coefficients are defined as (ρt-1, ≤) and (ρt, ≤). Both have N(N–

1)/2 components, with {ρi,j: i < j, i = 1,2,…,N–1, j = 2,…,N}. Coefficients in both sets can be 

ranked separately with ranks Rρi,j,t-1 and Rρi,j,t. The ordered pair of observations (Rρi,j,t-1, Rρi,j,t) 

corresponds to the ranks of correlation coefficients between stocks i and j. If Rρi,j,t-1 ≠ Rρi,j,t, 

then ICS is present. To measure the extent of instability from time t-1 to t, we use Kendall’s 

Tau (Kt) coefficient. ICS is observed if –1 ≤ Kt < 1, with lower values indicating greater 

instability. 

As in Equation 1, we regressed the Kt on the level shift variable5 DUt, the difference of 

volatility estimate (either 1,
2

,
2

,
2

ˆˆˆ −−=∆ tGKtGKtGK σσσ  or 1,
2

,
2

,
2

ˆˆˆ −−=∆ tGARCHtGARCHtGARCH σσσ ) 

and a variable STt, which takes into account the presence of a short-term downturn in stock 

markets. We assumed that ICS would be more significant for market downturns, partly 

because of higher volatility, but primarily due to the often unique and unexpected events 

accompanying downturns that are difficult to take into account when pricing assets (see also 

Ding et al., 2011). The variable STt counts the number of negative weekly returns (Rt) in the 

last seven weeks6. The final regressions were: 

tttGKtt eSTDUK ++∆++= 3
2

,210 ˆ ασααα
 

(8) 

tttGARCHtt eSTDUK ′+′+∆′+′+′= 3
2

,210 ˆ ασααα   (9) 

 

III. Results and Discussion 

For some series, we were unable to fit ARMAX or GARCH models. Therefore, the 

final sample was N = 496 series. From Figure 1, it can be seen that the largest changes in the 

correlation structure occurred at the end of 2008 (note that lower values indicates greater 

instability). 

                                                           
5  Using the unit root testing procedure described above, Kt was found to be stationary with a break in the level of 

the series. 
6  The statistical significance of changes in volatility estimates was not sensitive to alternative calculations of the 

short-term variable, namely five and nine weeks. 



 

Figure 1: Instability of Correlation Structure 

 

The results in Table 1 – Panel A suggest that, at least in our sample, during the 

increase of conditional volatility, changes in the correlation structure were more apparent. In 

stock market downturns, this instability of correlation structure seems to increase further. The 

change of unconditional volatility was not significant. This suggests that more than just one 

week of increasing volatility is needed to observe significant changes in the correlation 

structure. 

 

 

Figure 2: Stock market volatility estimates and their differences 

 



Visual inspection of Figure 2 indicates that our results might be driven by the 

extremely high volatility in the short period from 8 September 2008 to 15 December 2008 

(the highlighted region in all plots). In Panels B and C, Equations 8 and 9 are estimated in 

subsamples prior to and after this extreme event. For both samples, only conditional variance 

was significant. 

 

Table 1: Regression coefficient estimated from Equations 8 and 9 

Dependent Kt Intercept DUt STt tGK ,
2σ̂∆  tGARCH ,

2σ̂∆  R2 adj. F-stat 

Panel A sample (11.01.2006 - 20.07.2011, T = 289) 

Equation 8 
0.9153*** 

(0.0082) 

0.0149*** 

(0.0054) 

-0.0089*** 

(0.0029) 

1.2280 

(1.1067) 
 0.1650 7.1394*** 

Equation 9 
0.9057*** 

(0.0070) 

0.0162*** 

(0.0048) 

-0.0058** 

(0.0022) 
 

-5.1487*** 

(0.3225) 
0.4718 162.2073*** 

Panel B sample (11.01.2006 - 03.09.2008, T = 139) 

Equation 8 
0.9241*** 

(0.0088) 
 

-0.0093*** 

(0.0034) 

10.3061 

(8.8294) 
 0.0880 4.3638** 

Equation 9 
0.91802*** 

(0.0096) 
 

-0.0073** 

(0.0035) 
 

-135.336*** 

(22.4598) 
0.2261 27.4709*** 

Panel C sample (24.12.2008 - 20.07.2011, T = 135) 

Equation 8 
0.8838*** 

(0.0112) 

0.0320*** 

(0.0098) 

-0.0031 

(0.0019) 

0.2573 

(2.2402) 
 0.2086 5.7249*** 

Equation 9 
0.8735*** 

(0.0069) 

0.0377*** 

(0.0049) 

-0.0015 

(0.0016) 
 

-5.3921*** 

(0.4053) 
0.6280 101.7606*** 

Notes: OLS robust estimation (HAC); SE are in parentheses. *, **, *** denote significance at the 10%, 5% and 

1% levels, respectively. Sample size corresponds to the reductions due to Kt and DUt variables. Kt breaks at Tb = 

18.05.2009 and was therefore dropped from regressions reported in Panel B. The tGK ,
2σ̂∆  was found to be 

stationary at 0.05% significance using the DF-GLS test. 

 

We conclude that with the increase of conditional stock market volatility, the 

correlation structure becomes more unstable. This instability seems to be much stronger 

during extreme market conditions and is intensified further in short-term market downturns. 
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