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Abstract: The rapid changes in information and communication technology (ICT), the increasing
availability of processing power, and the complexity of mathematical software demand a radical re-
thinking of science, technology, engineering, arts, and mathematics (STEAM), as well as mathematics
education. In the transition to technology-based classrooms, the constant use of educational software
is a requirement for sustainable STEAM and mathematics education. This software supports a collab-
orative and actionable learning environment, develops 21st-century skills, and promotes the adoption
of active and innovative methodologies. This paper focuses on learning and teaching mathematics
and analyzes the role and utility of ICT tools in education as computer algebra systems (CAS) and
dynamic geometry systems (DGS) in implementing active and innovative teaching methodologies
related to sustainable STEAM education. Likewise, it highlights the necessity for learners to have
extensive knowledge of mathematical theory, an essential asset to ensure the reliable and effective
use of mathematical software. Through a practical experiment, this study aims to highlight that a
mixed teaching method can significantly improve the sustainability of math knowledge. It provides
various solid examples of CAS and DGS applications to emphasize its usage rooted in a mathematical
background to enable learners to identify when the computer solution is unreliable. The study high-
lights that the proper use of CAS and DGS is an efficient method of deepening our understanding of
mathematical notions and solving tasks in STEAM subjects and real-life applications. This paper’s
goal is to direct our attention to the proper and intelligent use of computer tools, especially symbolic
calculators, such as CAS and DGS, without providing an in-depth analysis of the challenges of these
technologies. The outcomes of the paper should offer educators and learners new elements of active
strategies and innovative learning models that can be immediately applied in education.

Keywords: mathematics education; STEAM; ICT; wise use of symbolic calculators; computer algebra
systems (CAS); dynamic geometry systems (DGS); graphing functions; didactics of mathematics;
sustainable integration of technology; 21st-century skills

1. Introduction

Education in the 21st century must be focused towards developing learners’ creativity
and innovativeness to teach them how to be more entrepreneurial and face the challenges of
a rapidly changing world. These areas received limited attention in 20th-century education,
which consisted of educational practices that are outdated need to be revised. As Yong
recalled, “The system results in a population with similar skills in a narrow spectrum of
talents” [1]. Education is the main driver of development, and it is still challenging to
reform 20th-century education to provide the best teaching possible for a new generation.
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Nevertheless, as Stephen Sterling argues, in a rapidly changing world, formal education
“largely remains part of the problem of unsustainability” [2]. This anticipates the concept of
‘Sustainable Education’, which “offers the possibility of education that is appropriate and re-
sponsive to the new systemic conditions of uncertainty and complexity that reflected in the
headlines every day; one that nurtures the increasingly important qualities of adaptability,
creativity, self-reliance, hope and resilience in learners” [2].

Technological advances are encouraging changes in 21st-century teaching. The widespread
use of ICT tools modifies the structure, format, and running of teaching and learning at all
levels of school education. This learning process can be recorded and archived through
teaching platforms and reused for further analysis to improve teaching and find optimal
methods to solve problems during learning. Computer tools and mathematical software
give new dimensions to teaching methodologies, opening up new innovative ways for
introducing and applying pedagogical methods [3–5]. The rethinking of education in
the digital era is today’s main challenge. Policymakers, professionals, and the whole of
society are engaged in finding answers to the most pressing questions such as: What is
the role of education? How can education give learners the adequate skills to succeed in
a rapidly changing digital world? How can new and traditional teaching methodologies
work together in the 21st-century education system to develop skills that make young
professionals succeed in the workforce? [6,7].

The COVID-19 pandemic accelerated the technologization of many industries and
has brought significant educational changes [8], which were created under the intense
time pressure of the “new normal.” The different ways of integrating information and
communication technologies (ICTs) in the curriculum exemplify how education has adapted
to the “new normal” in all parts of the world [9,10]. According to Yong Zhao, “the pandemic
has created a unique opportunity for educational changes that have been proposed before
COVID-19 but were never fully realized” [11].

Education improved with technology, and this process is irreversible. However, not
all students will have equal access to technology in the future; therefore, the problem of
a digital divide persists [12]. Teaching in the 21st century needs to be different from the
20th- or 19th-century tutoring. The 21st-century population lives in a globalized, rapidly
changing, chaotic, and less controllable world. Education is responsible for preparing the
next generation to thrive in such an environment by equipping them with the necessary
skills and abilities to understand problems, make decisions, learn from mistakes, and grow
personally and professionally. Generation Alpha (those born after 2010) [13] already grow
up in a Web 4.0 environment. They begin to use technology from their early childhood;
therefore, acquiring new skills and broadening their knowledge through ICT constitutes a
powerful tool that is easier for them to understand and adopt. Nevertheless, it is essential
to highlight that computer tools can only be efficient when under human control.

It is widely accepted that integrating ICTs in the curriculum has many advantages:
new innovative teaching and learning methods can be implemented; educators can employ
a wide variety of learning styles to identify the best combination to meet the student’s
individual needs; in the technology-based classroom, learners are active participants and
teachers are more equipped with different teaching tools [14]. According to [15], ICT tools
offer a new means of communication, which is the basis of the educational process, allowing
teachers to individually communicate with every student and students with each other,
thus enabling a differentiated approach. Therefore, it can be stated that the introduction and
usage of ICT in the curriculum revolutionizes education and helps transform the teaching-
learning process toward the development of sustainable education [16–18]. However,
there are large obstacles to achieving this: finding ways to incorporate ICT tools in the
curriculum, teachers’ preparedness, the development of digital skills, and students’ access.
Furthermore, it is very important to educate preservice teachers to acquire the relevant
skills and competencies needed to teach generation alpha. According to [19], “educators are
powerful change agents who can deliver the educational response needed to achieve the



Sustainability 2022, 14, 12991 3 of 23

Sustainable Development Goals (SDGs). Their knowledge and competencies are essential
for restructuring educational processes and educational institutions towards sustainability”.

For the sustainable development of STEAM (Science, Technology, Engineering, Arts
and Mathematics) and mathematics education, emerging technologies, especially the use
of symbolic calculators as computer tools (SCCT), present a great tool and opportunity
to implement active and innovative teaching methodologies [20]. In this paper, under
the SCCT framework, we will consider computer algebra systems (CAS) and dynamic
geometry systems (DGS). The general term of computer algebra (CA) and separately
CAS or DGS will be used when a difference must be emphasized. SCCT offers new
directions in teaching and learning mathematics by offering a visualization of basic notions
in mathematics and science and challenging users to solve complex mathematical problems.
CA develops critical thinking and problem-solving skills by helping the user to understand
and interpret unique theoretical examples [21,22]. Nevertheless, the successful utilization
of CA and CAS in complex problems requires a solid theoretical understanding. According
to Buchberger, “in the application of mathematics to itself, there lies an enormous driving
force, which has reached a new dimension, especially through new mathematical software
systems, and there is an unprecedented dynamism in mathematical research, education,
and applications“, and the “computational mathematics is one of the technologies, if not
the key technology, of today’s information society“ [23].

In addition to the benefits of using math software, downsides and dangers must also
be considered. It is essential to identify factors and define the criteria used to determine
the effectiveness of these tools [24]. The paper of [25] reveals the side effects of education
policies and practices and stresses the importance of considering them in the same way as
medical products, which are required to disclose both their intended outcomes and known
side effects.

The present paper points to the possible ‘side effects’ of CAS usage. In this respect,
this paper warns that the simulations and results provided by SCCT must be looked at
with a solid mathematical theory background to avoid any ‘side effect,’ the misleading
interpretation. Only an extensive knowledge of mathematics can lead the user to the correct
interpretation of the offered solutions. It is also crucial to know the barriers to the utilized
SCCT in order to drive the development of critical thinking and problem-solving skills. At
the same time, this can lead to incorrect decisions and solutions if the person who uses this
method does not possess sufficient theoretical math knowledge. Moreover, teachers must
have control over technology in this case. A theoretical background and knowledge are
required to control and interpret the results obtained by CAS and DGS. The user has to
decide whether to accept or reject the results provided by the computer and validate them
against real-life conditions.

The present paper focuses on some unique aspects of teaching and learning mathemat-
ics. It analyzes the role and utility of using ICT tools and CAS/DGS toward implementing
active and innovative teaching methodologies for sustainable STEAM education. Further-
more, it highlights the requirements for using these tools effectively. It provides concrete
examples of CAS/DGS usage to highlight the importance of having a solid theoretical
math background to detect when a computer solution is unreliable. This paper aims to
demonstrate through a practical experiment that a mixed teaching method can significantly
improve mathematical knowledge.

The paper’s goal is to direct attention to the proper and intelligent use of these
technologies and the importance and possibility of renewing the mathematics curriculum
and teaching methods to follow rapid changes in the available ICT tools. The conclusions
of this study provide educators and learners with new elements of active strategies and
innovative learning models to be applied during the education process.

The paper is based on quantitative research led by the following questions: What are
the most efficient, active, and innovative teaching and learning methods that ensure a higher
level of mathematics learner comprehension? What is the most effective way of introducing
CAS and DGS in mathematics teaching? What are the advantages of introducing CAS and
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DGS in math education to develop 21st-century skills? Is using CAS/DGS in teaching and
learning correlated with learners’ mathematical knowledge and skills?

The paper also contains an integrative literature review to analyze the theoretical
background and study recent research results. Furthermore, this literature review helps
validate the accuracy of the obtained results in the context of the research questions.

The primary keywords used during this research are ICT use and CA use in math
teaching, challenges, and failures, the effective use of CAS and DGS, mixed teaching
methods, the effectiveness of math teaching, math curricula in the 21st-century, learning
strategies and models, 21st-century skills, math computation and real-life confrontation,
CAS/DGS use and the development of reliable knowledge in math, sustainable STEAM
education, innovative and active teaching, and learning methods.

This article is organized as follows: Section 2 describes a practical experiment on
the mathematics learning process with or without computer tools; Section 3 presents a
short overview of computer tools used in STEAM education and why these tools are
used; Section 4 introduces relevant methodological examples in graphing functions, with a
comparative discussion of some possible failures and challenges in different CAS and DGS.
Lastly, Section 5 presents our conclusions and further research possibilities.

2. Math Learning Process—With or without ICT Tools?—Practical Experiment
2.1. Materials and Methods

The goals of the experiment (presented below) were to study the utility of computer
tools in math education, to analyze the need to redefine the didactical aspects of teaching
in the 21st century, and to evaluate the necessity of identifying the most efficient, effective
math teaching methods in the context of the new paradigm [26]. Our research question
is: What are the most efficient, active, and innovative teaching and learning methods
that ensure a higher level of mathematics learner comprehension? Is it the theoretical
method—the classical teaching method (teacher-centered method/traditional method)
or exclusively teaching through new technology, using computer tools—the innovative
method (learner-child-centered method/laboratory method), or a combination of the two?

This section presents the main conclusions and methodological outcomes of the experiment.

2.1.1. Procedure and Sampling, Tools

For this extensive pedagogical research, the authors conducted a study at the Uni-
versity of Economics in Bratislava, a public institution of higher education in Slovakia.
Forty-seven bachelor’s level 1st year students participated in the study. The experiment fo-
cused on the most challenging teaching topic, as confirmed by students: graphing functions
of one real variable and their transformations. To accomplish the primary research goal (to
assess the impact of math software on the understanding of math concepts), a comparison
between traditional teaching methods and teaching using ICT tools, the MS Excel envi-
ronment, was used. A didactical software was created—Elem_F_Grapher (programmed
and developed by Zsolt Simonka), Figure 1—which allows graphs of all elementary func-
tions and their transformations to be interactively drawn (off-line function grapher). The
program creates an internet-independent and syntax-free technological environment for
graphing functions.

The MS Excel environment was chosen predominantly due to its accessibility for each
student, whether at the university or home, and because all users had the basic skills
required to use it [27,28].
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Figure 1. Elem_F_Grapher—the main window and the power functions.

2.1.2. Sample Description

The experiment itself was carried out in the first semester with a sample of 3 first-year
student groups using the test–retest method. Non-probability sampling (non-random
selection) was used to ensure that students with different high school backgrounds were
equally represented in the test groups, guaranteeing the equivalence of groups. Test–retest
is a method of repeating a test after a specific time with the same participants [29]. It
is considered “One of the most suitable methods for researching the effectiveness of the
educational process” [30]. The test–retest method is considered of high reliability [31].

The socio-demographic variables of the participants in relation to their university
were as follows: the first group was called the control group (ContGr) and consisted
of 16 students of the Faculty of Business Management. The second group was called
experimental group 1 (ExpGr1) and consisted of 18 students of the Faculty of Business.
The third group was called experimental group 2 (ExpGr2) and consisted of 13 students
from the Faculty of Economics. The students were not acquainted with the goal of the
experiment in order to not influence their behavior.

2.1.3. Procedure

A procedure was designed to help identify the most efficient teaching method be-
tween only traditional teaching, only computer tools, and a combination of traditional and
computer tools as measured through the level of students’ knowledge in graph functions
before and after teaching.

In the first seminar, with the topic of the recapitulation of high school knowledge
regarding functions, the knowledge level of all students in all three groups was tested
by having them individually complete identical tests (Appendix A). Then, the completed
tests from all students were collected and evaluated. The data obtained were named
Test results 1. Next week, during the second seminar, different teaching methodologies
were applied for each of the three groups. In the control group (ContGr), teaching was
carried out using a classical method without the use of computer tools. Transformations
of the linear, quadratic, power, square root, and rational graph functions were shown to
students by manually building the graphs on the blackboard. At the end of the seminar,
students were told that they needed to practice function graphing in preparation for the
next seminar. In experimental group 1 (ExpGr1), teaching was carried out using computer
tools only, without the classical method. A demo version of the program Elem_F_Grapher
was distributed so that each student in group 1 could individually practice graphing
functions on their computer in preparation for the next seminar. In experimental group 2
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(ExpGr2), teaching was carried out using a combination of the classical teaching method
applied to control and ICT tool-based teaching applied to group 1. A laptop/computer
and video projector with a brief presentation of the program Elem_F_Grapher (used with
experimental group 1) was used. Next, a demo version of the program was distributed
for individual use. The experiment continued in the next math seminar, during the third
week, where students from all three groups had to repeat the same test that was used in the
first seminar (Appendix A). The completed test data (called Test results 2) were collected,
analyzed, and evaluated. In each group, Test results 2 were separately compared with
Test results 1 in order to identify the improvement in the level of students’ knowledge of
function graphing.

2.1.4. Data Analysis

The completed tests by the students in the first seminar form the data, called Test
results 1, and show the level of the students’ knowledge acquired in high school. The
relationship between the Test results 1 and the mathematical entry exam results of the
students participating in the experiment was checked. The calculated Pearson correlation
coefficient, r = 0.8782, confirmed a high validity.

The second round of test, named Test results 2, contains the data used to evaluate the
efficiency of the used teaching methods. The students’ results and the data of Test results 1
and Test results 2 were separately compared in case of each group, measuring the level of
knowledge progress of groups. A quantitative analysis is presented in Section 2.2.

2.2. Results

A quantitative analysis was conducted using the data of Test results 1 and Test results 2,
and average group scores and average relative success rates were calculated. The maximum
score that can be achieved by students is 16. Table 1 and Appendix B contains the average
group scores noted by x and x′.

Table 1. The average scores. Own calculation.

TEST RESULTS 1 TEST RESULTS 2

Control Group
(ContGr) xContGr =

∑ContGr xi
nContGr

= 4.375 x′ContGr =
∑ContGr x′i

nContGr
= 10.0625

Experimental Group 1
(ExpGr1) xExpGr1 =

∑ExpGr1 xi

nExpGr1
= 7.05 x′ExpGr1 =

∑ExpGr1 x′i
nExpGr1

= 11.72

Experimental Group 2
(ExpGr2) x ExpGr2 =

∑ExpGr2 xi

nExpGr2

·
= 5.154 x′ ExpGr2 =

∑ExpGr2 x′i
nExpGr2

·
= 11.46

To determine the winning teaching methodology, the relative improvement in the
level of knowledge was compared as measured via Test results 1 and 2. As each of the three
groups had a different average score in Test results 1, an analysis needed to be conducted to
assess the improvement based on relative changes in the average scores (∆p) of Test results
1 and 2. The following formula was used:

∆p =
x′ − x
xmax

· 100%,

where xmax = 16 is the maximum achievable score of the math test (Appendix A). The
results are shown in Figure 2.
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Figure 2. The change in average relative success rates in each group. Own calculations.

The data show that only providing access to ICT tools (a specialized math software in
our case) for individual use is not sufficient for improving students’ knowledge levels, as
stated by [32]. Moreover, based on the above quantitative analysis, it was concluded that
the most efficient teaching and learning method was a mix of traditional and ICT tools, as
applied to experimental group 2. This supports the innovativeness and the sustainability
of the transfer of math knowledge. For the teacher, the relative success according to
individual tasks (in this case, the relative change in success according to individual tasks)
of the didactic test is also important.

3. Short Overview of Computer Tools used in STEAM Education
3.1. Reasoning for the Use of CAS and DGS

Based on the above quantitative analysis (Section 2), it was concluded that the most
successful method of learning mathematics, the process to achieve sustainable knowledge,
is to use a mix of traditional teaching methods and computer tools.

The rapid changes in ICT, the increase in the available computer power, and the
complexity of mathematical software accessible to students demand a radical re-thinking
of how topics in the curriculum should be presented and the impact that they have on the
teaching of mathematics in STEAM education [33–41].

There are two connected but distinct issues related to the increased availability of
computers and software, which are both of considerable importance to the mathematics
curriculum. The first issue is that new, innovative approaches to teaching and learning are
made possible. The second issue is that enormously sophisticated mathematical software is
now commonly available, allowing problems of such size and complexity to be tackled,
problems that have only become part of research in recent years. Students require a personal
knowledge of mathematics to be able to use mathematical software reliably and effectively.
Students must not simply learn the relevant commands in the software package available
to them. They must learn to discerningly use these packages, from a base of mathematical
knowledge that will inform them when the computer solution may become unreliable.

According to Philip J. Davis: “In the hands of Newton and Leibnitz, calculus was
a theory that involved geometrical figures. These formed a part of the reasoning. There
followed thereupon a gradual decline of the image in mathematics in favor of the symbolic,
and by the early 20th century, the image was all but dead. Why? Computer graphics has to
some extent restored the image to its former prominence in mathematics and promises in
the future to be an important but uneasy partner with the symbolic” [42].
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CA System (such as Maple, Mathematica, Mathcad, Mathlab, Derive, Maxima, Reduce)
is a software package “that facilitates symbolic mathematics. The core functionality is the
manipulation of mathematical expressions in symbolic form” [43]. Dynamic Geometry
Systems (DGS) (such as GeoGebra, Cabri, Cinderella, Geometer’s SketchPad) “or interactive
geometry software”, “allows one to create and then manipulate geometric constructions,
primarily in plane geometry” [43]. This software is based on programs using results of
computer algebra and contains more or fewer possibilities for symbolic computations
and graphing. CAS and DGS are compelling tools, but only to the extent that they are
consciously used to correctly interpret the computer’s “responses” and consciously find the
methods that are most appropriate for a specific task or technical application. Questions
need to be asked “correctly” and “translated” to the language of mathematics to solve
real-life tasks using a computer program or other technical questions. Furthermore, the
results obtained need to be interpreted and “reversed” into real-life language or technical
applications. The principle of white box mathematics means that computer algebra tools
help those who use them not only to assist them in solving tasks but also to develop them
further, raise new questions and, ultimately, reach a higher level of understanding and
application in mathematics [23].

Equally, the variety of available software could be an obstacle for teachers or students
when deciding on the right software to use for different educational scenarios. The avail-
ability of software (commercial software, such as Maple [44], Mathematica, Geometer’s
SketchPad [45], or open-source software, such as Reduce, wxMaxima [46], GeoGebra [47])
might also be critical, especially for low-income countries. There are different ways to find
more about computer tools, and this can be a good method for understanding the way that
these tools function [34,36].

3.2. Short Overview of the Most Relevant Software Packages

The large variety of computer tools, CAS and DGS [48], can be analyzed and presented
from different angles. It is essential to know details such as the operating systems and their
support, the platforms these tools are available on, the language to implement them, their
functionalities, and the main mathematical functions built in the software. Furthermore, it
is important to know if the tools are commercial products. These tools make computations
based on their programmed algorithms; therefore, the results must be analyzed in the
context of mathematical or real-life problems in order to choose the solution that is suitable
for the task in question. This analysis must rely on a solid mathematical background. Thus,
the most crucial thing is to make the user aware that CAS data must be interpreted using
mathematical knowledge.

The present paper contains examples of the comparative use of wxMaxima, GeoGebra,
Maple, and Excel.

wxMaxima is an open-source mathematics software, and it is released and distributed
under the terms of the GNU General Public License (GPL). This allows everyone to mod-
ify and distribute it, as long as its license remains unmodified. In this article, the term
“wxMaxima” is used more often, but the terms “Maxima” and “wxMaxima” can be used
interchangeably. “wxMaxima is a document-based interface for the CAS Maxima . . . pro-
vides menus and dialogs for many common maxima commands, autocompleting, inline
plots, and simple simulations” [49]. A brief presentation on wxMaxima’s strengths and
limitations through the use of examples was recently published; see [50]. GeoGebra for in-
teractive geometry and algebra is globally quite well-known among mathematics educators.
It is an open-source mathematics software. In the article by Kovacs et al. [51], examples
of GeoGebra’s impact on different educational contexts are presented. Maple [52] is pow-
erful math software that is easy to use and meets the requirements needed for STEAM
education. It is one of the well-known commercial 3M mathematical software programs
(Maple, Matlab, Mathematica); thus, one needs to purchase a license before using it. In [53],
topics in education and different applications of Maple are presented. The well-known
commercial spreadsheet program from Microsoft, MS Excel, was launched in 1985 and
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is widely available to students. When using MS Excel, the change in the content of one
cell automatically leads to the recalculation of one or more cells based on a user-defined
relationship. The user can activate its Tool packages, and the Solver package is successfully
used in Operation research education for STEAM students. With the latest version of
Excel 2019 and Excel365, it became the most flexible and most commonly used business
application in the world due to its ability to adapt to almost any business process [54,55].

4. Challenging Examples in Graphing Functions: Comparative Discussion of Selected
Failures in the Use of Different CAS and DGS

This section presents examples using symbolic calculators such as CAS and DGS, as
well as MS Excel, highlighting the challenges of using these math software tools correctly
and strategically. As the examples prove, these software tools support students’ creativity
in visualization, using innovative methods, and presenting graphical schemas to solve
real-life problems and tasks. Besides their benefits, this section covers the limitations of
such tools for both students and teachers, helping to develop a suitable methodology and
find the right use case to adopt them.

4.1. MS Excel Environment

Examples of incorrect graphical displays of the MS Excel (in which the program
Elem_F_Grapher was created) may appear accidentally, namely at the points of discontinu-
ity in the case of rational functions (see Figure 3: Rational functions in Elem_F_Grapher). It
is important to emphasize the need for the active participation of the teacher and their abil-
ity to explain these phenomena to students (the software errors/failures) in a suitable way.

Figure 3. Rational functions in Elem_F_Grapher.

4.2. Computer Algebra Systems (CAS) and Dynamic Geometry Systems (DGS)

Failures may also appear when using CAS and DGS tools, and some examples are
described in this section.

Example 1
Let us consider a frequent example in calculus—the computation of the following limit:

lim
x→1

x2 − 1
x2 − 3x + 2
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Usually, the students are advised to consider the factorization of the numerator and
the denominator and conclude by simplifying the fraction, as shown below:

x2 − 1
x2 − 3x + 2

=
(x− 1)(x + 1)
(x− 1)(x− 2)

=
x + 1
x− 2

Now, the computation of the limit is reduced to obtain the limit by the value of the
simplified fraction for x = 1:

lim
x→1

x2 − 1
x2 − 3x + 2

= lim
x→1

x + 1
x− 2

= −2

The question here is: are the two functions equal or not?
The use of CAS and DGS might help to find the right answer, but suddenly, as can be

seen below, the computer gives “different” answers.
Let us consider the following functions, noted by f and g, and point out their domains:

f (x) = x2−1
x2−3x+2 , Dom( f ) =]−∞, 1[∪]1, 2[∪]2, ∞[

g(x) = x+1
x−2 , Dom(g) =]−∞, 2[∪]2, ∞[

First, the GeoGebra program is used to look for the answer (Figures 4 and 5).

Figure 4. GeoGebra answer 1: “g and f are equal”.

Figure 5. GeoGebra answer 2: “f and g are not equal”.

Note here that the two “relations” from above differ only in the order; thus, normally,
the answers should be the same. In addition, the mathematical reasoning is making a
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clear distinction between the two functions, as, by definition, the equality of two functions
is true if their domains and codomains are the same, and the two functions have equal
values for all the elements of the domain. In the above example the first condition fails, the
domains differ. Most likely, the built-in command “relation between two objects” used by
GeoGebra does not coincide with the content of the mathematical notion. Things might be
more confusing in the following example with two logarithmic functions.

Example 2
Let us consider the following functions:

f (x) = ln(x− 1) + ln(x + 1), Dom( f ) =]1, ∞[
g(x) = ln(x2 − 1), Dom(g) =]−∞,−1[∪]1, ∞[

The GeoGebra gives a strange answer here, “the two function are equal” (Figures 6 and 7)
no matter of the order, but their graphs are represented differently of course (see Figures 8 and 9),
reflecting the difference between the domains.

Figure 6. GeoGebra answer 1 for logarithms: “g and f are equal”.

Figure 7. GeoGebra answer 2 for logarithms: “f and g are equal”.
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Figure 8. GeoGebra graph for function f.

Figure 9. GeoGebra graph for function g.

In another type of failure, the GeoGebra answers that the two functions are equal,
and this is true only at the intersection of the two domains for the interval ]1, ∞[. From a
mathematical point of view, the two functions are different.

When the same GeoGebra draws a graph, the difference between the two functions
can be visualized, as seen in the subsequent two figures (Figures 8 and 9).

This difference is evident again from a mathematical point of view when considering
the difference between the two domains. Even this example could offer an excellent oppor-
tunity for the teacher to argue for the importance of emphasizing the difference between the
domains in case of the well-known algebraic relation, true only at the intersection of the two
domains. The intersection of the two domains is in fact: D f ∩ Dg =]1, ∞[. Thus, the equal-
ity: ln(x− 1) + ln(x + 1) = ln(x2 − 1) holds only for the interval ]1, ∞[, the intersection of
the two domains. The function f (x) = ln(x− 1) + ln(x + 1) has the domain D f =]1, ∞[,
while the function g(x) = ln(x2− 1) has the domain Dg =]−∞,−1[∪]1, ∞[, thus D f 6= Dg.
The intersection of the two domains is D f ∩Dg =]1, ∞[; thus, the above equality holds only
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for the interval ]1, ∞[. When checking the results with other computer tools, and graphing
the above two functions, one obtains the same answers. Below, Figures 10–12 show the
respective graphs plotted in Maple and wxMaxima.

Figure 10. Maple graph for f (x) = ln(x− 1) + ln(x + 1).

Figure 11. Maple graph for g(x) = ln(x2 − 1).

Example 3
The following example shows that some other confusing facts may appear in a similar

case. If the same logic is repeated for another two functions, the same problem appears but
in a different manner. Let us consider the following functions:

f (x) =
√

x− 1 ·
√

x− 1, Dom( f ) = [1, ∞[g(x) =
√

x2 − 1, Dom(g) =]−∞,−1] ∪ [1, ∞[
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Figure 12. wxMaxima graphs for f (x) = ln(x− 1) + ln(x + 1) and g(x) = ln(x2 − 1).

The GeoGebra gives a strange answer again here—“the two functions are equal”
(Figures 13 and 14)—no matter the order. However, when illustrated, their graphs are
different, reflecting the difference between their domains (Figures 15 and 16).

Figure 13. GeoGebra answer 1 for irrational functions “f and g are equal”.
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Figure 14. GeoGebra answer 2 for irrational functions “g and f are equal”.

Figure 15. GeoGebra graph of function f (x) =
√

x− 1 ·
√

x + 1.

The GeoGebra graphs of the two functions reveal a similar difference as seen in the
previous case:

Once again, it is crucial to emphasize the validity of the equality of the two irrational
algebraic expressions. The algebraic equality

√
x− 1 ·

√
x + 1 =

√
x2 − 1 is only true at

the intersection of the two domains. The function f (x) =
√

x− 1 ·
√

x + 1 has the domain
D f = [1, ∞[, while the function g(x) =

√
x2 − 1 the domain Dg =]−∞,−1] ∪ [1, ∞[, thus

D f 6= Dg. The intersection of the two domains is D f ∩ Dg = D f = [1, ∞[; thus, the above
equality holds only for the interval [1, ∞[.

Therefore, it is possible to verify this by plotting the two functions in Maple; however,
a new challenge appears here, the two graphs not only differ in their domain, but Maple
seems to tackle the function f in a different way to how GeoGebra does (Figures 17 and 18).
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Figure 16. GeoGebra graph of function g(x) =
√

x2 − 1.

Figure 17. Maple graph of function f (x) =
√

x− 1 ·
√

x + 1.

Figure 18. Maple graph of function g(x) =
√

x2 − 1.
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What happened here? Maple graphing uses complex functions too, and this ex-
plains the difference of the two graphs, obtained first by GeoGebra only working with
real functions (Figures 15 and 16). However, Maple can also handle complex functions
(Figures 17 and 18), and the difference is clear when comparing Figures 15 and 17.

Remark 1. In the last two Maple graphs, the graph of the functions is apparently not
touching the x-axes. The reason for this is that, in x = −1 and x = 1, the graphs have almost
vertical tangents. The teacher could ask students to compute the derivatives and challenge
them to analyze the case.

The wxMaxima graphing gives similar results to Maple, as shown in Figure 19.

Figure 19. wxMaxima graphs for f (x) =
√

x− 1 ·
√

x + 1 and g(x) =
√

x2 − 1.

Example 4
The phenomenon met in Example 3 can also be seen by the students in the case of the

following well-known function. Let us consider the functions: f (x) =
√

x2 + 2x + 1 and
g(x) =

√
x + 1 ·

√
x + 1, where D f =

]
−∞, ∞[ and Dg = [−1, ∞[ .

A similar challenge can be formulated for the students when graphing these two
functions (Figures 20–22).

The differences are rooted in the way GeoGebra and wxMaxima/Maple are using
real and complex numbers. GeoGebra only makes computations restricted to real num-
bers, while the computation with wxMaxima and Maple are using complex numbers
by definition.

The above two examples show that the right CAS program for the given educational
environment is needed. For secondary schools, the use of GeoGebra covers most of the
content of their curricula. In contrast, for higher education (STEAM education), where
complex functions are included in curricula, it is helpful to provide a detailed explanation
of the differences between the graphs obtained using GeoGebra and Maple/wxMaxima.
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Figure 20. GeoGebra graph of function f (x) =
√

x2 + 2x + 1.

Figure 21. GeoGebra graph of function g(x) =
√

x + 1 ·
√

x + 1.

Figure 22. wxMaxima graphs for f (x) =
√

x2 + 2x + 1 and g(x) =
√

x + 1 ·
√

x + 1.
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5. Conclusions

Technology is prevalent in all areas of life, and the possibilities offered by Web 4.0 are
gradually becoming a reality. It is widely accepted that the integration of information and
communication technologies (ICTs) and the wide variety of digital tools available are caus-
ing changes in traditional education and accelerating its transformation. Education must
keep up with this transformation; thus, its technologization is both essential and inevitable.

During the experiment (Section 2), the increase in group knowledge level was mea-
sured through participants’ individual progress. Based on the findings, the most significant
improvement in knowledge, as shown in Figure 2, occurred when the mixed method was
used (the case of experimental group 2).

Thus, the practical experiment shows that the winning methodology in teaching
mathematics is a mix of traditional methods and the usage of computer tools/mathematical
software. The experiment highlighted that giving only the computer tools for individual
use is insufficient for improving students’ sustainable knowledge level, as also stated
by [33].

The transition to technology-based classrooms and the constant use of educational
software is a prerequisite for sustainable STEAM and mathematics education. This enables a
collaborative learning environment, and the teacher must be able to use digital technologies
to foster and enhance learners’ activities. Moreover, students can use digital technologies
as part of collaborative assignments, improving communication, creativity, critical thinking,
and collaborative knowledge-sharing [14]. According to [56], in the digital era, problem-
solving using learners’ cognition is the only skill required for artificial intelligence (AI).
These transition challenges demand expanding the already known and applied pedagogical
methods and adopting new, active, and innovative methodologies.

As the presented examples in Section 4 show, using CAS and DGS, the visualization of
functions becomes easier. A deeper understanding of concepts can also be achieved [57–59]
using the “black box mathematics” [60] method, i.e., only focusing on the advantages
of clickable mathematics and the so-called principle of “white box mathematics” [60]
notions [61,62]. This powerful tool can be used to “walk around” the concepts to be learned
and understood several times, seeking a more precise outline and a deeper understanding
of them. This helps to comprehend the limits and possible contradictions of applying these
concepts in theoretical and real-world practical problems.

The examples chosen in the paper are considered the most efficient examples for stu-
dents according to authors’ teaching experience. Students’ attention can easily be directed
toward the possible or real-life mistakes that can appear in software usage, motivating
them to find their own examples, and thus ultimately mastering these computer tools.

The outcomes of Section 4 offer educators and learners new ideas and elements for
innovative learning models that can be immediately applied in math teaching.

CAS and DGS are essential tools for teaching and learning mathematics, developing
students’ math knowledge and performance, and increasing their analytical and critical
thinking. It is a powerful and innovative tool for developing 21st-century skills. The
CAS and DGS tools are useful not only in the education/teaching process (as observed
during online teaching in the pandemic period), but they proved to be highly motivating
and engaging for students. Among more skilled and qualified students, using these tools
proved to be more stimulating, as they are more motivated to push the boundaries and
constraints of the programs. The presented examples in this paper are significant for all
users. They demonstrate the need for an enhanced, mathematical background knowledge
in this case, in addition to adequate technical and user knowledge.

6. Limitations

The research was limited to one area of math, the graphing of functions, since it is one
of the most critical and problematic issues faced by 1st year university students. From a
critical point of view, the challenges were analyzed in this area to highlight the need for the
proper and intelligent use of math software.
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7. Future Research

The examples presented in Section 4 of this paper could serve as a starting point to
deepen our understanding of the analysis of functions: the understanding of key notions
and problems related to the computation of the limits of functions, studying continuous
functions or points of discontinuity of functions, and studying graphing functions with
two variables.
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