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Resume
The Internet of Vehicle (IoV) is revolutionizing the automobile sector by 
allowing vehicles to interact between them and with roadside infrastructure. 
The Controller Area Network (CAN) is a vital component of such Autonomous 
vehicles (AVs), allowing communication between various Electronic Control 
Units (ECUs). However, the CAN protocol's intrinsic lack of security renders 
it opens to a variety of cyber-attacks, posing substantial hazards to both 
safety and privacy. This research proposes a defence mechanism for the 
real-time threat detection. It investigates the use of deep learning with 
multi-layer perceptron to improve the security of CAN networks inside the 
IoV framework. The suggested method is highly effective in identifying and 
mitigating potential risks, as evidenced by extensive testing on real-world 
CAN datasets.
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as rerouting or autonomous braking without human 
intervention.
According to the Society of Automotive Engineers 

(SAE), automation in autonomous cars can be categorized 
into six separate levels, ranging from SAE Level 0 (fully 
manual) to SAE Level 5 (entirely autonomous) [2-3]. 
Table 1 gives a description of these levels.

Although customers are not yet able to acquire 
fully autonomous vehicles, we are already in the 
phase of partially automated automobiles [3]. The 
Internet of Vehicles (IoV), an interconnected network 
of autonomous vehicles, roadside infrastructure, and 
components that communicate and interact with one 
another using wireless technology, is derived from the 
Internet of Things (IoT), with the objective of improving 
the effectiveness, efficiency, and safety of autonomous 
vehicles [4-5].

The electrical and electronic system of autonomous 
vehicles is a scattered and complicated network of 
Electronic Control Units (ECUs), sensors, and actuators. 
ECUs, which are computing units, are required 
to operate a specific subsystem and make critical 
autonomous driving decisions. They must interact with 
one another and exchange sensitive data using a set 
of standard protocols. The CAN bus is regarded as the 
de facto standard for the in-vehicle communication 

1 Introduction

With the latest technological developments, 
autonomous vehicles (AVs) that were formerly deemed 
science fiction have become a reality. Despite the 
fact that it is still in its early stages of development, 
the concept of autonomous vehicles is gaining global 
acceptance [1]. Autonomous cars are capable of sensing 
their environment and operating independently 
of people. A passenger is not required to drive the 
automobile at any time, nor is their presence within 
the vehicle required. An autonomous vehicle can go 
anywhere a conventional car can go and accomplish all 
the functions carried out by a competent human driver.

The applicability of a proposed solution to CVs 
or AVs depends on the specific nature of the proposed 
solution in terms of driving function, which can be 
classified hereunder:
• Conventional vehicles (non-AVs) participating in 

IoV rely on their human drivers for decision-
making. The IoV solutions for these vehicles 
typically focus on” information sharing”, warnings, 
or driver assistance, e.g., alerting drivers to nearby 
accidents or real-time traffic updates.

• Autonomous vehicles (AVs), on the other hand, can 
process the IoV data to directly execute actions such 

https://orcid.org/0000-0002-7362-7870
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anti-lock braking, suspension, and Advanced Driver 
Assistance System, which perform real-time, safety-
critical operations, are included in the Chassis and 
Safety domain. The Body and Comfort domain includes 
operations that do not frequently need real-time 
processing, such as in-vehicle climate control, seat 
control, door, window, or light control. The remote 
communication, information, and entertainment services 
are managed by the Telematics and infotainment 
domain. Each domain’s performance and reaction time 
requirements vary depending on the function performed. 
Figure 1 depicts how these domains are integrated via 
various standards, like CAN, Media Oriented Systems 
Transport (MOST), and Local Interconnect Network 
(LIN). The CAN Bus protocol is most commonly used 
in the internal communication network of vehicles to 
support the aforementioned operations [9-14].

network, and it is ubiquitously used in almost all the 
automobiles [1, 6-7]. 

The remaining sections of this article are organized as 
follows. In Section 2 the relevant background knowledge 
is introduced. In Section 3 is discussed related work and 
their limitations. In Section 4, the specific design details 
of the intrusion detection model are described, while the 
performance evaluation is shown in Section 5, followed 
by the conclusion in Section 6.

2 Background knowledge

The power train, chassis and safety, body and 
comfort, and telematics and infotainment domains are 
the four main segments of an autonomous vehicle’s 
internal communication system [8]. The airbag control, 

Table 1 SAE levels of driving automation

SAE Level Description

0 The driver is the one who controls the entire vehicle. In the form of alerts, such as lane departure or blind spot 
warnings, driver aid is offered.

1

With one autonomous function to help, the driver has complete control over the car. Adaptive cruise control, 
for example, uses automated acceleration and braking to maintain a safe distance from oncoming traffic. 
Alternatively, automated steering can be used, which involves the assistance of lane centering and other 
features to keep the car moving at a consistently high speed.

2 The driver has complete control over how the vehicle performs, with assistance from two automated operations 
such as steering, braking, and acceleration.

3 The car may function autonomously under a set of predetermined configurations, and the driver can take 
control of the vehicle at any time.

4 The vehicle may operate autonomously under specified settings, eliminating the need for the driver to oversee 
it. The car is extremely close to being totally autonomous.

5 At this level, the car is supposed to be completely autonomous and capable of operating without restrictions. 
There is no need for the driver to supervise it.

Figure 1 In-Vehicle sub-systems adapted from [9] 
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a range of ways to identify the CAN bus intrusions, 
including rule-based, machine learning-based, and other 
technologies. The authors of the article [24] present 
a deep learning-based Convolutional Neural Network 
(CNN) model for protecting the CAN bus in autonomous 
vehicles. The findings are also compared to various 
traditional methods; among them, the deep learning 
system achieves excellent accuracy. The study conducted 
in [25], describes another deep learning-based intrusion 
detection model that utilizes Long Short-Term Memory 
(LSTM) and CNNs network models. LSTM is a type of 
recurrent neural network (RNN) architecture used in 
deep learning, particularly for analysing sequential or 
time-series data, whereas identical research has been 
done by authors in [12, 26-29]. These studies have 
shown that standard CAN network data is growing 
increasingly sophisticated, and neural network-based 
models, particularly deep learning models, are the most 
effective way to handle the identified weaknesses in 
IoV security [30].

The majority of DNN-based solutions were built 
using the Convolutional Neural Networks (CNN) 
and Recurrent Neural Networks (RNN), which are 
extensively utilised to solve complicated problems in 
computer vision, text processing, audio recognition and 
classification, and so on. Due to their complexity, the 
DNNs often take a long time to train on input data. 

Figure 2 depicts the CAN data frame, which begins 
with an 1-bit Start of Frame (SOF) field, followed by an 
Arbitration field containing an 11- or 29-bit Identifier 
(ID) (CAN 2.0A has an 11-bit ID, whereas CAN 2.0B 
is the extended format with a 29-bit ID), and an 1-bit 
Remote Transmission Request (RTR).

Cybercriminals can get access to the internal 
communication network of the targeted vehicle using 
the aforementioned interfaces and carry out a range 
of attacks, including “replay”, “DoS”, or “spoofing” 
attacks [11]. Table 2 shows a list of effective attacks 
undertaken and analysed by various researchers on the 
IoV subsystem.

3 Literature review

Encryption, authentication, protocol stack redesign, 
and intrusion detection systems are among the 
suggested security options for the CAN Bus protection 
[8]. Some studies in recent years have focused on 
encryption techniques to secure the CAN system. 
However, adopting similar algorithms may need extra 
hardware or modifications to current ECUs. Intrusion 
detection methods that do not need changes to the 
network protocol or hardware are a better alternative 
for security inside AVs [7]. Researchers have utilised 

Figure 2 The CAN frame structure

Table 2 Attacks executed and analysed on IoV subsystem

Ref. Attack Surface Impact

Eisenberth et al. [15] Keyless entry system Control the door lock, unlock, and the engine

Koscher et al. [16] Interfaces Infotainment using OBD-II/
USB port CAN Bus injection, full access to the vehicle

Miller et al. [17] OBD-II port Control brakes, wheels, and get access to the CAN Bus 
of a real vehicle

Petit et al. [18] LiDAR, Cameras Sensors Signal jamming

Zorz et al. [19] OBD-II Cellular Dongle CAN Bus injection in Real vehicle

Palanca et al. [20] OBD-II interface DoS attack on CAN Bus

Woo et al. [21] OBD-II interface Replay, impersonation attack using the smartphone 
application

Nie et al. [22] Wi-Fi, GSM Replay, impersonation using access to CAN network 
using browser exploit

Mukherjee et al. [23] OBD-II port DoS attack by compromise ECU using the data link layer 
exploit
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balanced and in a format suitable for Deep Neural 
Networks [33-37]. Table 3 shows the class and sample’s 
information, while Table 4 shows the retrieved features. 
The dataset is subsequently divided into training and 
testing datasets. The data is divided into 60:40 ratios, 
which means that 60% is utilised for model training and 
40% is used for model validation.

4.3 Proposed deep learning model  
and experimental setup

Multi-Layer Perceptron (MLP), which serves as the 
foundation for this deep learning approach, is a neural 
network with multiple hidden layers. It is best suited 
for regression or classification problems in which inputs 
are allocated to a class. The neurons (or nodes) are 
arranged in different layers, as illustrated in Figure 3, 
and are connected to every neuron in the next layer, so 
the output of one neuron becomes the input of the next. 
Each connection between neurons has a weight, which 
is one of the variables that change throughout training. 
The weight of the link influences how much information 
is sent between neurons. Once a neuron gets inputs 
from all the other neurons linked to it, the output (y) is 
determined using the formula provided in Equation (1).

y x w bi ii

N

1
)= +

=
^ h| , (1)

where xi is an input of the neuron, wi is the associated 
weight, and b is the bias. The output value (y) is then 
given to the activation function g(y), which introduces 
nonlinearity into the neuron’s output. Finally, the model 
employs the backpropagation algorithm to update the 
weights of the input layer based on the error at the 
output layer. 

The proposed MLP-based deep learning model 
consists of an input layer, an output layer, and two 
dense hidden layers. The model receives input that is 
extracted from the data packet transmitted over the 
internal communication channel of the vehicle. Due 
to 153 features being extracted from the in-vehicle 
network traffic, the same number of neurons is inserted 
in the first layer. It is followed by the two dense hidden 
layers of two and eight neurons, respectively. Since the 
CAN network traffic is to be classified into six classes 
(TARGET LABEL in Table 4), the output layer is made 
up of completely linked six neurons. The model has 
a total of 386 trainable parameters. Figure 4 depicts the 
layer relationships, while Table 5 provides the model’s 
summary.

The activation functions in MLP are critical for 
generating complex decisions and predictions. This 
article uses the ReLU activation function in the 
intermediate layers, which operates by performing 
a basic mathematical operation on the input value. If the 
input value is higher than or equal to zero, the output is 
the same as the input. If the input value is negative, the 

They also require powerful computers with specialized 
processing units like Tensor, and Neural Processing 
Units. In this study, the deep learning-based IDS for 
CAN bus networks is presented, which outperforms 
previous work due to its simpler and more optimized 
network model.

4 Defence mechanism

To detect and categorize various assaults on 
autonomous vehicles by recognizing abnormal CAN 
network traffic patterns, the Multi-Layer Perceptron 
(MLP) based deep learning model is presented that 
may be deployed as an extra CAN Bus node, such as an 
OBD-2 dongle. It is more affordable and practical, and 
there is no need to modify the CAN Bus. It can detect 
and identify several types of attacks on the IoV CAN 
network. In Section 4.1 are described the methods to 
mitigate identified threats in the proposed IoV defence 
solution, while in Section 4.2 are described the realistic 
and most recent dataset used to train the model, 
whereas in section 4.3 is described the structure of the 
suggested solution.

4.1 Methods to mitigate identified threats  
in the proposed IoV defence solution

The proposed deep learning-based defence 
mechanism (e.g., using CNNs and LSTMs) provides an 
effective approach to intrusion detection. However, as 
IoV networks are highly dynamic and interconnected, 
they are susceptible to a wide range of cyber threats, 
such as DoS attacks, spoofing, man-in-the-middle 
attacks, data manipulation, and more.

This section outlines potential attack mitigation 
techniques that could complement or enhance the 
proposed solution to improve security within IoV 
systems.

4.2 Description of the dataset

In this study, the Canadian Institute for Cyber 
security (CIC) IoV2024 dataset is used [31-32]. It is 
a benchmark dataset; generated using a testbed of the 
real vehicle, to encourage the development of innovative 
security solutions for IoV processes, and it is published 
on the CIC dataset homepage. It contains traces for 
normal as well as five attack scenarios: DoS, “spoofing-
steering wheel”, “spoofing-RPM”, “spoofing-GAS”, and 
“spoofing-SPEED” attack, carried out by leveraging the 
unique characteristics of the CAN protocol in a real 
testbed of a Ford automobile equipped with all ECUs 
[31]. The original dataset was cleaned to eliminate 
noise (irrelevant data) and extract a specific amount 
of samples for each class to maintain the dataset 
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learning model. The loss function is mathematically 
represented by:

logL N y p1
, ,i j i jj

K

i

N

11
=-

==
^ ^ hh|| . (4)

Here, N is the number of instances in the dataset, 
K is the number of classes, yi,j is the true output 
for the i-th sample and j-th class, and pi,j is the 
predicted probability for i-th sample and j-th class. The 
Adam optimizer, which stands for “Adaptive Moment 
Estimation”, is employed to iteratively minimize the loss 
function during training. 

5 Results and comparative analysis

In the domain of deep learning, a perfect fit model 
is desired since it assures strong generalization and 
consistent performance on new data. Overfitting and 
underfitting, on the other hand, provide unreliable 
results and poor generalization. A well-performing deep 
learning model should have training and validation loss 
curves that converge to a comparable, low data point. 

result is zero. The mathematical representation of the 
ReLU function is as follows:

, .maxf x x0=^ ^h h  (2)

The output layer employs the softmax activation 
function, which transforms the raw output scores of the 
model into probabilities, facilitating the distribution 
of these probabilities across various classes. This 
transformation is mathematically represented by:

maxSoft Z
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Here, Zi represents the input value for the Softmax 
function and is the output value of the node for i-th class 
at the output layer. K is the total number of nodes at the 
output layer. 

Cross entropy measures the difference between the 
predicted probability and the true probability. Multiclass 
Cross-Entropy Loss, also known as categorical cross-
entropy, is used as a loss function in the proposed deep-

Table 3 Number of samples collected for each class

S. No. Class # of Samples

1 BENIGN 80000

2 DoS 74660

3 SPOOFING_GAS 9991

4 SPOOFING_RPM 54899

5 SPOOFING_SPEED 24950

6 SPOOFING_STEERING_WHEEL 19976

TOTAL 264476

Table 4 Features extracted from the dataset

S. No. Features Description

1 ID Arbitration ID

2 to 9 “DATA_0” to “DATA_7” 1st to 8th byte of data transmitted through CAN data frame

10 LABEL Type of traffic (Benign/Malicious)

11 TARGET LABEL Six Specific Class of the traffic 
(“Benign”, “DoS”, “Spoofing_GAS”, “Spoofing_RPM”, “Spoofing_SPEED”, and “Spoofing_
STEERING_WHEEL”)

Table 5 Proposed MLP Model Summary

Layer Shape of the Output Number of Parameters Activation function

dense_136 (Dense) (None, 2) 308 Rectified Linear Units (ReLU)

dense_137 (Dense) (None, 8) 24 Rectified Linear Units (ReLU)

dense_138 (Dense) (None, 6) 54 Softmax

Total parameters: 386 (1.51 KB)
Trainable parameters: 386 (1.51 KB)
Non-trainable parameters: 0 (0.00 Byte)
Optimizer: “Adam”, 
Loss function: “categorical_crossentropy”,
Performance Metrics: “Accuracy”
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training and validation loss curves demonstrates that 
the suggested model is learning the core trends in the 
data and generalizing successfully to the validation set. 
It indicates that the model is neither overfitting nor 
underfitting, as well.

Evaluating the performance of a deep learning 
model incorporates a series of procedures and metrics 
that offer a full picture of how well the model is doing. 

This shows that the model is generalizing properly and 
not overfitting or underfitting. Analysing the behaviour 
of these curves during the training gives vital insights 
into the model’s learning process and aids in making 
the required changes to increase performance. Table 
6 shows the training and validation losses reported 
for each epoch throughout the simulation, which are 
also represented in Figure 5. The convergence of the 

Table 6 Training and Validation efficiency of the proposed model

Epoch Tr_loss Tr_accuracy Val_loss Val_accuracy

1.4293 0.4142 1.1413 0.4878

1.0016 0.4883 0.8921 0.4884

0.8277 0.4973 0.7646 0.5072

0.6848 0.6311 0.5988 0.7578

0.5273 0.7775 0.4573 0.8402

0.3966 0.8415 0.3480 0.8423

0.3133 0.8789 0.2821 0.9425

0.2539 0.9430 0.2272 0.9428

0.2022 0.9431 0.1805 0.9428

0.1628 0.9594 0.1486 0.9805

0.1366 0.9809 0.1274 0.9805

0.1187 0.9809 0.1123 0.9805

0.1056 0.9809 0.1010 0.9805

0.0956 0.9809 0.0922 0.9805

0.0877 0.9809 0.0850 0.9805

0.0811 0.9809 0.0790 0.9805

0.0757 0.9809 0.0739 0.9805

0.0710 0.9809 0.0696 0.9805

0.0670 0.9809 0.0658 0.9806

0.0635 0.9809 0.0625 0.9806

0.0604 0.9809 0.0595 0.9806

0.0577 0.9809 0.0570 0.9806

0.0553 0.9809 0.0547 0.9806

0.0532 0.9809 0.0527 0.9806

0.0514 0.9811 0.0509 0.9808

0.0497 0.9811 0.0494 0.9809

0.0483 0.9811 0.0480 0.9809

0.0470 0.9811 0.0468 0.9809

0.0459 0.9811 0.0457 0.9809

0.0449 0.9812 0.0447 0.9809

0.0439 0.9812 0.0435 0.9809

0.0423 0.9812 0.0415 0.9809

0.0399 0.9812 0.0387 0.9809

0.0367 0.9812 0.0353 0.9809

0.0333 0.9973 0.0318 0.9999

0.0298 0.9999 0.0283 0.9999

0.0265 0.9999 0.0251 0.9999

0.0234 0.9999 0.0222 0.9999

0.0207 0.9999 0.0196 0.9999

0.0184 0.9999 0.0174 0.9999
Tr_loss: Training Loss; Tr_accuracy: Training Accuracy; Val_loss: Validation Loss; Val_accuracy: Validation Accuracy



C20  M O H A M M E D

C O M M U N I C A T I O N S    2 / 2 0 2 5  V O L U M E  2 7

F F
Precesion Recall
Precesion Recall

1 1 2score )
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+

^ h . (8)

The results from the Confusion matrix (Figure 6) 
and Tables 7, 8, and 9 show that the proposed deep 
learning model can detect and classify an attack on an 
autonomous vehicle’s CAN network with an average 
Recall of 0.999927477, Precision of 0.999930671, and 
F1-Score of 0.999929069. The model performed better 
than the benchmark research [31] in terms of accuracy, 
recall, precision, and F1-Score. It also outperformed 
previous studies [24] with the highest accuracy of 
99.99%. Achieving an average accuracy of 99.99% is 
an impressive feat, but it is important to provide 
transparency regarding the factors that contributed to 
this result and to discuss any potential limitations or 
biases. To clarify achieved results some succeeded points 
can be addressed such as: dataset quality and size, 
model architecture, training process, evaluation metrics.

On the other hand, there are some potential 
limitations and biases that can be summarized due to: 
dataset bias concerning both causes (class imbalance or 
synthetic data), overfitting risk, limited attack types, 
real-world conditions, model complexity and deployment 
feasibility.

Figure 6 depicts the confusion matrix obtained as 
a consequence of the simulation and used to calculate 
accuracy, precision, recall, and F1-score. Precision and 
recall are measures used to assess the effectiveness 
of a classification model, particularly in the cases 
with unbalanced classes or where different types of 
classification errors have varying costs.

The performance evaluation metrics, shown in 
Table 7, can be produced using Equations (5) to (8), 
where α, β, γ, and μ denote True Positive, True Negative, 
False Positive, and False Negative, respectively.

Precision and recall should both be high, however, 
they should be used in conjunction with other assessment 
measures like accuracy and F1-score to have a thorough 
view of a classifier’s performance. The F1-score, which is 
the harmonic mean of the Precision and Recall values, 
provides a more balanced assessment of the model’s 
performance.

Accuracy
a b c n

a b
=

+ + +
+

, (5)

Precision P a c
a= +

^ h , (6)

Recall R a n
a= +

^ h , (7)

Figure 5 (a) Accuracy curve, (b) Loss curve

Figure 6 Confusion Matrix
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of 0.999927477, Precision of 0.999930671, and F1-Score 
of 0.999929069. The proposed model outperformed 
benchmark studies and other related work in terms of 
accuracy, recall, precision, and F1-Score, achieving the 
highest accuracy of 99.99%. Future work should focus 
on improving the scalability of the proposed system and 
integrating it with broader IoV security frameworks to 
provide a holistic defence strategy. 
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6 Conclusion and scope for future work

The CAN protocol is a key component of the internal 
communication network of autonomous. However, the 
protocol’s inherent lack of security makes it susceptible 
to a wide range of cyber threats, posing significant risks 
to both the safety and privacy of the driver, passenger 
or the vehicle itself.

This paper has explored the effectiveness of the 
DL-based approach to enhance the security of internal 
communication networks of autonomous vehicles 
in the IoV framework. A novel deep-learning based 
defence mechanism is proposed that provides the 
real-time threat detection. The findings highlight the 
potential of deep learning to significantly enhance 
the security of CAN networks in IoV, contributing 
to safer and more reliable vehicular communication  
systems. 

The simulation results indicate that the proposed 
DL-based model is capable of successfully detecting 
and classifying attacks (DoS and spoofing) on the CAN 
network of an autonomous vehicle, with an average Recall 

Table 7 Recall, Precision, and F1-Score values for the proposed model

Class Recall Precision F1-Score

BENIGN 0.99990625 1 0.999953123

DoS 1 0.999966517 0.999983258

SPOOFING_GAS 1 1 1

SPOOFING_RPM 0.999908925 0.999817867 0.999863394

SPOOFING_SPEED 1 0.999799639 0.99989981

SPOOFING_STEERING_WHEEL 0.999749687 1 0.999874828

Macro Average 0.999927477 0.999930671 0.999929069

Table 8 Proposed solution vs. the benchmark study 

Ref. Accuracy Recall Precision F1-Score

Neto et al. [31] 95% 0.68 0.74 0.63

Proposed Model 99.99% 0.999927477 0.999930671 0.999929069

Table 9 Proposed solution vs. related work

Ref. Solution Type Attack type  (Avg. Accuracy)

Sudhakar et al. [38] Deep learning (CNN) Malware 98.63%

Ahmed et al. [24] Deep learning (CNN) DoS, Fuzzy 96 %

Neto et al. [31] Deep learning (MLP) DoS, Spoofing 95%

Proposed Model Deep learning (MLP) DoS, Spoofing 99.99%
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