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Abstract

In this working paper, the topic of country vs. industry effects in stock returns is
explored. An approach based on stock market network modeling is used to assess both effects.
Three different network subgraphs are employed: Minimum Spanning Trees, Planar Maximal
Filtered Graphs and Threshold Graphs. By constructing the networks for the whole sample
covering 2003 — 2012, significance of country and industry effects are shown both by visual
inspection, as well as simulation and fitting of Exponential Random Graph Models. The
relative importance of country/industry effects are assessed using the indicators “Relative
Country Links” and “Relative Industry Links”, in a rolling windows analysis covering the

sample period, indicating dominance of country effects.
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Introduction

Since the seminal works of Markowitz (1952), many papers have been written on the
topic of portfolio diversification. The exploitation of low correlation for minimizing the risk
of a portfolio within the mean-variance frameworks has led to a search for asset classes (and
asset groups within these classes) that would offer the best risk-reward ratios. A lengthy
debate ensued on the benefits of international and cross-industry diversification. The general
idea is simple — as each sector is affected differently by the business cycle, diversification
across industries should be beneficial. International diversification should help even further,
as there are fewer common factors and thus systematic risk should be lower. This effect
however is mitigated by the development on internationalization of markets, globalization and
growing market interdependencies (e.g. cross-listings of stocks and the rise of transnational
companies). Thus, the puzzle of superiority of industry/international diversification remains.

This paper does not have the ambition to solve the long lasting puzzle. It focuses on the
use of stock market network analysis tools to compare the two approaches. The paper
analyzes the industry/country effects present in the networks constructed from stock returns of
CEE-3 markets (the Czech Republic, Poland and Hungary), together with the neighbouring
major stock market of Germany.

1. Related literature

1.1 International vs. industry diversification

The discussion of country/industry effects in stock returns go back as far as 1974, as
Lessard (1974) states that the country effects are more important. These findings were
supported by Solnik (1974), demonstrating the benefits of international diversification.

More recently, the work of Heston and Rouwenhorst (1995) have marked the beginning
of a series of papers on the topic, with ambiguous outcome. Griffin and Karolyi (1998)
confirm that little of the variation in country index returns can be explained by their industrial
composition. Cavaglia et al. (2000) followed the analysis of Heston and Rouwenhorst, used a
different return decomposition structure in their econometric treatment and expressed their
view that the preference on international diversification over the industry diversification is not
warranted. They described the relationship between the effects as a dynamic one, with a

growing trend in favour of industry factors.



Diermeier and Solnik (2001) analyzed the proportion of domestic and foreign sales, as
well as currency risk exposure. They found evidence that companies are priced globally, the
location of company’s headquarters is not a major determinant of stock price, and that foreign
stock market exposure is more important than foreign currency exposure. Cavaglia and Moroz
(2002) support the notion of related companies creating closer ties, thus aiding stronger
industry links in their paper on cross-industry, cross-country allocation. Baca et al. (2002)
confirm the rise of industry effects, and express their view that the findings suggest that
country-based approaches to global investment management may be losing their
effectiveness. In Wang et al. (2003), the authors analyze 7 equity markets and 22 industrial
group returns indexes in the period of January 1990 — February 2001. Their results support the
dominance of industry effects over country effects since 1999. They also find that country
effects tend to show a cyclical trend.

More recently, much of the research focused on a related topic of contagion of markets,
which may further reduce the meaningfulness of international diversification. In their notable
paper, Forbes and Rigobon (2002) define contagion as the rise in correlation among stock
market returns in time of crises, or an external shock in one of the economies. Although the
literature on contagion is extensive (e.g. Bekaert et al., 2002; Kearney and Lucey, 2004;
Goetzman et al, 2005; Bekaert et al, 2009 and others), we will not pursue this topic in more
detail, but rather focus on the dichotomy of industry/country effects in stock returns within

the context of stock market networks.
1.2 Stock market networks

Stock market network modeling is an area based on graph theory, studied in discrete
mathematics. The seminal paper on this topic is by Mantegna (1999), who analyzed the
constituents of Dow Jones Industrial Average and S&P500 during the period 1989 — 1995.
This paper introduced several key topics: a way to define a network as a set of vertices
(assets) and their relationships (return correlations) forming edges. It also solved a problem of
meaningful assignment of edge weights, where (possibly also negative) correlations are
transformed into distances. The problem of impracticality of working with complete graphs
was solved by the proposal of using a minimum spanning tree (MST) to select a sub-graph
retaining the most important edges while retaining connectivity and acyclic properties.

The research on stock market networks that followed was quite extensive, and several

improvements and alternative subgraph creation algorithms have been proposed. The



approach using MSTs was used e.g. on the US market by Bonanno et al. (2001), who used
high-frequency data, and Vandewalle et al. (2001). The analysis of Bonanno et al. (2004)
extended the analysis to the stock markets of 24 countries during the period 1988 — 1996. The
paper introduced some ideas dealing with stock trading non-synchronicity. The paper by
Onella et al. (2002) contributed by analyzing the dynamics of evolution of stock market
networks. Their analysis of S&P500 constituents on the sample of 1982 — 2000 demonstrated
the rise of correlations between stock returns, which justifies the dynamic approach. This rise
is demonstrably also reflected in various network characteristics, which shows the economic
meaningfulness of the network approach. They also demonstrated the relation between
portfolio diversification and the so-called normalized tree length (which is a network
property).

Coelho (2007) used the network analysis on the stocks constituting the FTSE 100 index.
They compared the industry structure of FTSE 100 to the clustering induced by the ensuing
MST, stating their similarity. Their results were in contrast with a prior analysis by Coronello
et al. (2005), who used intraday data, thus providing evidence on the significance of the
sampling frequency. Gilmore et al. (2008) on the sample of 21 EU countries demonstrated the
central role of the older EU members, such as Germany and France. They confirm the
usefulness of using MSTs. Also, the lower linkages of CEE countries suggested
diversification potential. Eryigit and Eryigit (2009) analyzed 143 stock market indices in 59
countries during the years 1995 — 2008. Apart from the traditional MST, they also used planar
maximally filtered graphs (PMFG), introduced by Tumminello et al. (2005). With both
approaches leading to similar results, the authors confirm the rise in correlations in time and
spatial clustering of stock indices, particularly in the daily data. Similarly, Di Matteo et al.
(2010) studied PMFGS, with emphasis on centrality. The results showed the dominant
position of the financial sector. More recent studies, spanning also the crisis period include
the work of Dias (2012), Sandoval Jr and Franca (2012) and Sandoval Jr (2012).



Table 1: Index constituents for indices of CEE-3 and Germany

Ticker  Company Country  Sector NACE Model specification LB LB?
ERSTE  Erste group bank CZE Financial K ARIMA(1,1,1)-sGARCH(1,1)  0.120 0.592
PM Philip morris CR CZE Consumer Goods G ARIMA(1,1,1)-sGARCH(1,1)  0.833 0.365
CEZ CEZ CZE Utilities D,E  ARIMA(1,1,1)-csGARCH(1,1) 0.308 0.504
KB Komeréni banka CZE Financial K ARIMA(3,1,1)-gjrGARCH(1,1) 0.070 0.141
UNI Unipetrol CZE Basic Materials B ARIMA(1,1,1)-eGARCH(1,1) 0.073 0.101
02 Telefonica CR CZE Technology J ARIMA(1,1,1)-eGARCH(1,1) 0.246 0.754
EGIS Egis pharmaceuticals HUN Healthcare Q ARIMA(1,1,1)-gjrGARCH(1,1) 0.330 0.090
EST Est media HUN Services I,R,H ARIMA(1,1,1)-eGARCH(1,1) 0.835 0.635
MOL MOL HUN Basic Materials B ARIMA(1,1,1)-eGARCH(1,1) 0.191 0.436
MTK Magyar telekom HUN Technology J ARIMA(2,1,1)-csGARCH(1,1) 0.136 0.055
OTP OTP bank HUN Financial K ARIMA(1,1,1)-eGARCH(3,1) 0.330 0.228
PAE PannErgy HUN Utilities D,E  ARIMA(1,1,1)-csGARCH(1,1) 0.278 0.595
REG Richter Gedeon HUN Healthcare Q ARIMA(2,1,2)-sGARCH(1,1)  0.216 0.251
SYN Synergon HUN Technology J ARIMA(1,1,1)-sGARCH(1,1) 0.109 0.276
KGHM  KGHM POL Basic Materials B ARIMA(1,1,1)-eGARCH(1,1)  0.322 0.449
PEO Bank Polska Kasa Opieki POL Financial K ARIMA(2,1,1)-sGARCH(1,1)  0.168 0.337
PKN Polski Kon. Naftowy Orlen POL Basic Materials B ARIMA(1,1,1)-sGARCH(2,2)  0.397 0.133
TPS Telekomunikacja Polska POL Technology J ARIMA(1,1,1)-eGARCH(1,1)  0.070 0.065
ACP Asseco Poland POL Technology J ARIMA(1,1,1)-sGARCH(1,1)  0.138 0.192
BHW Bank Handl. w Warszawie POL Financial K ARIMA(1,1,1)-sGARCH(1,1)  0.457 0.059
BRE BRE Bank POL Financial K ARIMA(3,1,5)-eGARCH(1,1)  0.059 0.330
BRS Boryszew POL Basic Materials B ARIMA(3,1,1)-gjrGARCH(1,1) 0.067 0.632
ADS Adidas DEU Consumer Goods G ARIMA(1,1,1)-sGARCH(1,1)  0.055 0.198
ALV Allianz DEU Financial K ARIMA(1,1,1)-gjrGARCH(1,1) 0.520 0.187
BAS BASF DEU Basic Materials B ARIMA(1,1,1)-csGARCH(1,1) 0.334 0.144
BMW Bayerische Motoren Werke DEU Consumer Goods G ARIMA(1,1,1)-sGARCH(1,1)  0.434 0.209
BAYN  Bayer DEU Healthcare Q ARIMA(1,1,1)-eGARCH(1,1) 0335 0.121
BEI Beiersdorf DEU Consumer Goods G ARIMA(1,1,1)-sGARCH(1,1) 0.377 0.410
CBK Commerzbank DEU Financial K ARIMA(1,1,1)-sGARCH(1,1)  0.107 0.663
CON Continental DEU Consumer Goods G ARIMA(1,1,1)-gjrGARCH(3,2) 0.115 0.063
DAI Daimler DEU Consumer Goods G ARIMA(1,1,1)-csGARCH(1,1) 0.515 0.084
DBK Deutsche Bank DEU Financial K ARIMA(1,1,1)-sGARCH(3,1)  0.188 0.256
DB1 Deutsche Boerse DEU Financial K ARIMA(1,1,1)-gjrGARCH(1,1) 0.219 0.085
DPW Deutsche Post DEU Services I,R,H ARIMA(1,1,1)-sGARCH(1,1) 0.131 0.104
DTE Deutsche Telekom DEU Technology J ARIMA(1,1,1)-sGARCH(1,1) 0.504 0.236
EOAN E.ON DEU Utilities D, E ARIMA(1,1,1)-sGARCH(1,1)  0.548 0.058
FME Fresenius Medical Care DEU Healthcare Q ARIMA(1,1,1)-csGARCH(1,1) 0.111 0.132
FRE Fresenius SE & Co KGaA DEU Healthcare Q ARIMA(1,1,1)-sGARCH(1,1)  0.487 0.256
HEI HEICO Corporation DEU Industrial Goods C ARIMA(3,1,2)-sGARCH(1,1)  0.105 0.090
HEN3  Henkel AG & Co. DEU Consumer Goods G ARIMA(1,1,1)-sGARCH(1,1)  0.560 0.202
IFX Infineon Technologies DEU Technology J ARIMA(1,1,1)-sGARCH(1,1) 0.366 0.321
SDF K+S Aktiengesellschaft DEU Basic Materials B ARIMA(1,1,1)-eGARCH(1,1)  0.067 0.375
LIN Linde Aktiengesellschaft DEU Basic Materials B ARIMA(1,1,1)-sGARCH(1,1)  0.200 0.085
LHA Deutsche Lufthansa DEU Services I,R,H ARIMA(1,1,1)-sGARCH(2,1)  0.326 0.107
MRK Merck KGaA DEU Healthcare Q ARIMA(2,1,2)-csGARCH(1,1) 0.088 0.498
MUV2  Munich RE DEU Financial K ARIMA(1,1,1)-gjrGARCH(1,1) 0.788 0.087
SAP SAP DEU Technology J ARIMA(1,1,1)-sGARCH(1,1) 0565 0.476
SIE Siemens Aktiengesellschaft DEU Industrial Goods C ARIMA(1,1,1)-eGARCH(1,1) 0.422 0.441
TKA ThyssenKrupp AG DEU Basic Materials B ARIMA(1,1,1)-sGARCH(1,1)  0.520 0.077
VOW3  Volkswagen DEU Consumer Goods G ARIMA(1,1,1)-eGARCH(1,1) 0.708 0.214

Notes: LB and LB” are the p-values for Ljung-Box test for autocorrelation in model residuals and squared
residuals on first 25 lags. GARCH models used are described in more detail in Appendix 1.



2. Data and methodology

The data used in the paper encompasses the major stock market index constituents in
CEE-3 markets (the Czech republic, Poland and Hungary) and Germany, with a total of
N =50 traded companies. Germany was selected as geographically closest major stock
exchange. The CEE-3 countries also have strong real economic ties to Germany.

The sample spans the time frame January, 2003 — December, 2012. This avoids the
problematic transition period before 2000, which was characterized by privatizations and
market irregularities in the CEE-3 countries. The sample includes a period of market crisis
and two recessions. In contrast to many other network studies, the analysis is conducted on
individual stock instead of stock market indices. This better corresponds to the idea, that stock
market networks should capture the structure of the analyzed markets. This also allows
avoiding several potential pitfalls, such as dealing with changes in the definition of market
indices (e.g. the Czech PX index replaced the prior PX-D and PX-50 indices in March 2006).

The daily prices were used to create the returns:

fio = IN(R) ~In(R, ) @

where r;; is return and P;; market price attimet=1, 2, ... for series i € {1, 2, ..., N}.

In order not to introduce spurious effects into the analysis, univariate ARMA-GARCH
models have been fitted for all series. Table 1 gives details on all stocks from the respective
markets, along with the ARMA-GARCH model specifications. The ARMA part is traditional,

Q- (L)L~ L), =A+a(L))e, @)

where ¢, is the error term. The feasible GARCH specifications are listed in

Appendix 1. The model fitting strategy was to fit ARMA-GARCH models which remove all

autocorrelation from residuals and their squares, and then choose the most parsimonious
model by the Bayesian information criterion (BIC).

All series were checked for stationarity (for the results of unit-root testing, see
Appendix 2). The ARMA-GARCH filtering was used in order to remove all information from
the series that can be explained by prior returns. When working with the standardized
residuals, all other identified effects are thus unambiguously a manifestation of the
relationship between series and are not induced by autocorrelation within a single series. The
calculated standardized residuals are then used to construct the stock market networks.

A network is a graph G, defined by the set of vertices V(G), corresponding to the traded

companies, and set of edges E(G) = {{u, v}; u #v, u, v € V(G) }. In this paper, we consider



only correlation based networks, the edges are therefore undirected. However, it is useful for
the edges to be weighted. The edge weights reflects the relationships of stock returns, and are
given by the formula

Cj =+/2(— p;) ?)
where cj; is the edge weight for the edge connecting vertices i,j € V(G) and pj; is the
Pearson correlation coefficient between stock returns of stocks i and j.

As correlations are defined for all pairs of return series, it is theoretically possible to use
them to create a complete graph on N = 50 vertices, having N(N — 1)/2 = 1225 edges. The
analysis of this large number of edges is not only impractical, it is also not very useful, as we
are retaining many (possibly non-significant) relationships.

The literature defines several ways a suitable subgraph may be selected. In this paper,
we will use three approaches:

1. Minimum spanning trees (MST) defined by Mantegna (1999). The strategy is to
select a subgraph, a so-called spanning tree, with minimal overall edge weights.
A spanning tree is a connected acyclic subgraph — there exists a path between
any two vertices, and there are no circles. The requirement for minimal sum of
edge weights means, that given the stated conditions, the subgraphs contains the
highest correlations possible. Less technically, the graph retains the most
important relationships under the conditions of connectedness and acyclicity. An
MST has N — 1 edges.

2. Planar maximally filtered graph (PMFG) by Tumminello et al. (2005). These
subgraphs replace the condition of MST, which requires no circles to be present
with a condition of planarity, which requires that the graph may be embedded in
an Euclidean plane without edges intersecting. This raises the number of edges
to 3N — 6, and allow for richer structures to be preserved, such as cliques of the
order 4. However, the economic reasoning behind requiring planarity is unclear.

3. Threshold graphs (THR), e.g. Tse et al. (2010). Here the subgraph is created by
comparing edge weights (or their transformations) to a pre-specified threshold,
and retaining only those edges satisfying the threshold condition. These graphs
pose no limitations on the structure of the network (unlike MST and PMFG).
The threshold is usually chosen with respect to he size, or significance of the

correlation coefficient between stock returns.



In this paper we analyze all three kinds of subgraphs. Apart from creating the networks,
it is also interesting to construct a model, which would explain the presence/absence of edges.
Particularly, it would be interesting to see how the country and industry affiliation relate to
the presence of edges between individual stocks.

A framework that allows incorporating such exogenous factors into the modeling of
edges is the Exponential random graph model (ERGM), as defined in the seminal work of
Wasserman and Pattison (1996). Here the existence of edges and other networks structures is
modeled by a logit-type model, which may (in simple cases) be modeled by maximum-
likelihood estimation, or by Markov chain Monte Carlo simulations. More formally, an

ERGM focuses on the probability

p(g -G 0)- 225G o

where G is the constructed stock market network, g is a randomly created graph, 0 is

4)

a vector of parameters and s(G) is a vector of graph characteristics, which might be node,
edge and structure related (such as number of edges, vertex degrees, number of cliques etc.).

The use of ERGM opens interesting options with respect to the modeling of the network
— since the network encompasses both stocks from different countries, as well as different
industries, it should allow for the estimation of both the country and industry effects. Thus, it
should be possible to assess whether there are country/industry effects that explain the
structure and strength of the relationships between stock returns of CEE-3 countries and
Germany.
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Figure 1: Minimum Spanning Tree (MST) for the stock returns from CEE-3 and Germany
Note: German stocks are color-coded pink, Poland is green, Hungary is blue and Czech stocks are yellow.
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Figure 2: Selected subgraphs of the MST

Note: German stocks are color-coded pink, Poland is green, Hungary is blue and Czech stocks are yellow.



3. Empirical results and discussion

Figure 1 shows the calculated MST networks for the ARMA-GARCH filtered
standardized residuals of stock returns for the whole sample period. Even after brief
consideration it is clear that the network is strongly clustered by country, which is particularly
true of Germany, Poland, and Hungary, with slight irregularities for the Czech Republic’.

The MST also has subgraphs that are economically interesting. The articulation that
connects all German stock to the CEE-3 stock is DBK (Deutsche Bank). It is itself connected
to other German financial stocks, namely Commerzbank, Deutsche Boerse and Allianz, which
Is connected to Munich RE, creating a strong cluster of German financial companies.

The aforementioned DBK is connected to the Czech ERSTE Bank, which is connected
to Hungarian OTP Bank, which in turn connect to two other banks — Czech Komer¢ni banka
(KB), but also Polish PEO (Bank Polska Kasa Opieki). The financial cluster is completed by
adding BRE (BRE Bank, currently mBank) and BHW (Bank Handl. w Warszawie).

The financial cluster is very notable for two reasons: first, all the banks in the sample
turn out as connected. This result is obtained after filtering the series with ARMA-GARCH,
and then again by the algorithm creating the MST, which retains only 49 out of 1225 edges.
Even then, the MST links all the banks together. This seems a rather strong evidence for
clustering by industry. The second reason is, that the banks form the stocks which connect the
individual country clusters — as explained before, all countries tend to create national cluster.
But in all cases, these clusters are interlinked to other country cluster by stock from the
financial sector, confirming its importance.

Figure 2 also shows other interesting clusters. For example, Daimler AG (DAI),
Bayerische Motoren Werke (BMW), Volkswagen (VOW3) and Continental AG (CON)
present a cluster of three carmakers and a company delivering components and tires to the car
industry. The last selected cluster contains Polish Kon. Naftowy Orlen (PKN), Czech CEZ
(CEZ), Hungarian MOL (MOL) and Polish Boryszew (BRS), which are all oil and energy
related companies.

These results clearly indicate that even though the filtering of the data might seem rather
extensive, the results have reasonable economic interpretation. Industry and country

clustering is also evident.

! Visualizations for PMFG and THR networks are shown in Appendix 3 and 4, due to their higher complexity
given by the larger number of edges.
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Figure 3: Simulations of random graphs and their relation to the MST

Note: The figure shows the distribution for the number of intra-country (left) and intra-industry (right) edges,
obtained in Erdds and Rényi (1960; top), as well as Viger and Latapy (2005; bottom) simulations. The red lines
represent the number of edges in the empirical MST.

To test this more explicitly, we note that there are 43 out of 49 edges connecting
vertices from the same country, and 22 edges connecting vertices from the same industry. To
see, how likely a result like this would be, if the networks were created at random, two
simulations have been performed. The first was the famous Erd6és and Rényi model (Erdés
and Rényi, 1960). This model generates random graphs on a selected number of vertices
(here, N = 50) and given number of edges (here, 49).

Although this may be considered a classical model, it has some disadvantages. First, the
structure created in the simulation might necessarily not be a tree — while the empirical
network is a MST. Also, the importance and connectivity of vertices might differ. Thus,
another simulation was performed, which retains the degree sequence in all iterations (Viger
and Latapy, 2005). By keeping the degree sequence constant, it follows that all generated

random networks are trees, and thus precisely follow the structure of the empirical network.



Table 2: ERGM for subgraphs MST, PMFG and THR

MST PMFG THR

Coef. i:‘: Coef. 2:(: Coef. i:(:
Edges -4.607 0.518 *** -3.192 0.259 *** -0.659 0.081 ***
Country 2.806 0.461 *** 2.349 0.241 *** 2.331 0.153 ***
Industry 1958 0.327 *** 1431 0.230 *** 0.647 0.190 ***
Degree 1 2.715 0574 ***
Degree 2 0.527 0.617
Degree 3 3230 0562 ***
Degree 4 2.137 0.549 ***

Note: *, **, and *** denote significance at the 10%, 5%, and 1% significance level, respectively.
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Figure 4: Relative frequency for MST ERGM models by vertex degree
Note: The vertical axis depicts relative frequency. The boxplots describe the simulations created by the specified
model. The thick line shows the vertex degrees of the empirical MST.

The necessity for a simulation stems from the Cayley formula (Aigner and Ziegler,
2010), which states that the number of trees in N = 50 vertices equals N2 = 50, which is
unfeasible. Figure 3 shows the simulations results, which clearly indicates the significance of
both the country and industry effects.

Another way to formally test the importance of both effects is the calculation of the
ERGM. Table 2 gives the results of ERGM models. The explanatory variables contain the

number of edges, country and industry factors. In case of MST and PMFG, structural



parameters given by the frequency of given vertex degrees were also included. The specific
degrees have been chosen by the Akaike information criterion (AIC).

The results in Table 2 are again very reasonable. As all network structures have
relatively few edges compared to the complete graph (the number of edges increases from
MST, PMFG to THR), the coefficient by the number of edges is negative. The coefficients for
Country and Industry factors are positive — hence, industry and country factor both matter,
and their effect is positive.

To conclude the analysis of both effects, we have to take into account the maximum
potential total number of edges that may correspond to intra-industry and intra-country links.
As the number of countries and industries is not the same, moreover, the distribution between
groups is not the same; the analysis conducted so far does not make the two effects
comparable. To make a reasonable comparison, we introduce two measures, called RCL
(Relative Country Links) and RIL (Relative Industry Links).

To define these measures, we first define the set of indices

IC ={1,2,3,4} (5)
N ={12..8 (6)

The values of IC (indices of countries), namely 1, 2, 3, 4 represent the Czech
Republic, Germany, Hungary and Poland (in that order). The values of Il (indices of
industries), e.g. 1, 2, ..., 8 represent Energy, Financial services, Industrial goods, Services,
Consumer goods, Technology, Basic materials and Healthcare (in that order).

Futher, set nk; for | € IC the number of links from country I. Similarly, set no; the
number of stocks from individual industries.

Lastly, define ZK(i, j, I, G), which for network G and any pair of vertices i, j € V(G)
and country index | € IC has value 1 in case both vertices correspond to stock from country |,
otherwise its value is 0. Similarly, function ZO(i, J, t, G) is set to 1 if both stock corresponding
to vertices i and j in network G belong to the same industry t € 11, and O otherwise.

The function RCL characterizes the number of edges from the same country within a
network. For a given network (MST) we define RCL,"*"(G) for fixed | € IC:

V(G)-1V(g)
> D ZK(i, j,1,G)

RCL:VIST(G): i=l =i+l (7)
nk, -1
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Figure 5: Evolution of RCL a RIL for rolling MST during 2003 — 2012
Note: The colored lines correspond to 32-week centered moving average.
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Figure 6: Evolution of RCL a RIL for rolling THR during 2003 — 2012
Note: The colored lines correspond to 32-week centered moving average.

For a network as a whole we set

max(IC)V (G)-1V (g)

> Y ZK(i, j,1,6)

RCLMST (G) — 1=1 i=1l  j=i+l (8)

max(IC)

Z (nkl - 1)

1=1

The previous equation follows the idea, that for every group of stocks (partitioned by
the country of origin) of nk; vertices there may be a maximum of nk; — 1 edges. As we are
considering a MST, the subgraph induced by the vertices belonging to the country | has to be



a tree — and the maximum number of edges is thus nk; — 1. RCL"*"(G) may therefore be
interpreted as a ratio of the empirical and theoretically possible number of edges. RCLY*"(G)

is not just a summation of RCL*"(G), in order to keep the interpretation of RCL as a

percentage.

Similarly, we may define RIL*"(G):

V(G)-1V(9)
2. 2.Z0(, j,1,6)
RILMST(G): i=1  j=i+l (9)
' no, —1
max (1) V(G)-1V(g) o
Y200, j.t,G)
RILMST (G) — t=1 I;J:UIX(IJI=)I+1 (10)

Z (not _1)

t=1

The calculations for MFG and THR networks can be found in Appendix 5.

Figure 5 and 6 depict a rolling window analysis of RCL and RIL for the cases of MST
a THR (results for PMFG are nearly identical to MST). The rolling analysis was conducted on
the sample period of the years 2003 — 2012, the window length was one year (52 weeks). As
can be seen, the difference for country/industry effects is quite dramatic for the case of MST.
Empirically, country effects clearly dominate industry effects. The picture is less clear for the
case of THR, where the effects are similar. As the main difference between MST and THR is
mostly in the number of edges they retain (THR sometimes retains as much as half of the
edges in the complete graph), we may conclude that the difference between country and
industry effects is stronger when considering the most important relationships, as defined by
MST. These differences tend to “average out”, as we include higher number of (potentially)
less relevant link into the analysis.



4. Concluding remarks

In this working paper we explored a previously heavily researched topic of
comparison of country and industry effects for portfolio diversification. Even as we do not
construct stock portfolios per se, we use an alternative methodology based on stock market
networks to compare these effects.

First, we use the whole sample to construct MST, PMFG and THR networks. By
analyzing particularly the MST, we identify interesting relationships, providing evidence for
both country and industry clustering, with the finance sector dominating the inter-country
relationships. Second, the apparent clustering identified by visual inspection is shown to be
significant and non-random, as shown by the results of Erdés — Rényi (1960), as well as Viger
— Latapy (2005) simulations. Third, the result is also confirmed by an ERGM model, where
country and industry level factors are shown to significantly contribute to the way the
networks are constructed. Fourth, we define the RIL and RCL indicators in order to reasonably
compare the effects of industry/country linkage. By conducting a rolling window analysis we

demonstrate the differences, with country factors dominating in case of MST.
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Appendix

Appendix 1: Specifications of the fitted GARCH models

SGARCH m q p
(Bollerslev, 1986) gtz = [a)+z§jvjtJ+zajgt2j +Zﬂjo—ij,

=1 = =1
eGARCH m q p
(Nelson, 1991) Ioge(of)= (w+Z§jvjt]+Z(ajzt_j 17 (]zt_j‘— E‘Zt—i‘))Jr 25 Ioge(af_j)

j=1 j=1 i=1
Elz|= J|z|f(z,0,1,...)dz

gjrGARCH =

m q p
(Glosten, 1993) o) = [a” ZgjvjtJ + Z(aigtz—j +7iliEl )+ 2Bl
=1 =1

j=1
0, &,;>0
|, e . <0

t—-] —

APARCH m q p
. 5 _ 6
(Ding, 1993) ol =| o+ DLV [+ e, qgt_j‘_}/jgt_jf +D piol;
=1 j=1 j=1
e SGARCH (Bollerslev, 1986): 0 = 2, %= 0.

e avGARCH (Schwert, 1990): 0 = 1, %= 0.

e (jrGARCH (Glosten et al., 1993): ¢ = 2.
o tGARCH (Zakoian, 1994): 6 = 1.
e Nonlinear ARCH (Higgins, 1992): %= 0, ﬁj =0.

e Log ARCH (Geweke, 1986; Pantula, 1986): 6 — 0.

fGARCH m q . p
A — A A
(Hentschel, 1995) o] =| o+ E CiVie |+ E ajUHQZt_j —7721-‘—771]-(2(_1- —7721-))& +Zﬂjo_t—i
i1 i1 i1

e SGARCH (Bollerslev, 1986): 1 =6 = 2, 1= 125 = 0.
e avGARCH (Schwert, 1990): 1 =6 =1, |’llj|51-

e (QjrGARCH (Glosten, 1993): 2 =0 =2, n2j = 0.

o tGARCH (Zakoian, 1994): 1=6 =1, ’72j:0’ |r]1j|§1.
e nGARCH (Higgins, 1992): 6 = 4, nj = n2j = 0.

e naGARCH (Engle, 1993): 6 =1 =2, nj = 0.

e APARCH (Ding etal., 1993): § = 4, n2j = 0, |’71j| <l
e ALLGARCH (Hentschel, 1995): 6 = /.

csGARCH ) q ) p )
(Lee, 1999) oy =0 +Zaj (gt—j — 0 )+ Zﬂj (O-t—j _qt—j)
= j=1

G =0+, + ¢(gt2—1 _O-tz—l)

Note: v are exogenous regressors and & are random deviates from the selected probability distribution
(Normal, Student or GED).



Appendix 2:Unit root testing results

BW  Hobijn Sul BW  Hobijn Sul
ERSTE 6 0.289 0.239 BMW 5 0.080 0.081
PM 6 0.132 0.128 BAYN 5 0.062 0.061
CEZ 8 0.298 0.268 BEI 4 0133 0.129
KB 7 0.045 0.045 CBK 8 0397 * 0.393 *
UNI 7 0.218 0.222 CON 8 0.143 0.149
02 8 0.230 0.238 DAl 6 0.077 0.075
EGIS 7 0.079 0.076 DBK 7 0.198 0.196
EST 5 0.172 0.161 DB1 6 0.232 0.148
MOL 5 0174 0.165 DPW 4 0.186 0.177
MTK 6 0.104 0.108 DTE 7 0.061 0.058
oTP 7 0.179 0.174 EOAN 8 0353 * 0.351 *
PAE 6 0.225 0.193 FME 12 0.102 0.101
REG 3 0142 0.155 FRE 2 0.201 0.180
SYN 4 0.206 0.182 HEI 9 0.245 0.183
KGHM 8 0.055 0.056 HEN3 5 0.243 0.241
PEO 5 0.153 0.158 IFX 6 0.080 0.076
PKN 7 0.164 0.153 SDF 4 0.076 0.069
TPS 12 0.241 0.240 LIN 6 0.085 0.085
ACP 6 0.279 0.289 LHA 6 0.144 0.142
BHW 3 0.070 0.071 MRK 8 0.145 0.113
BRE 5 0.105 0.105 MUV2 7 0.068 0.069
BRS 9 0.127 0.091 SAP 5 0.094 0.092
ADS 11 0.157 0.159 SIE 3 0.072 0.066
ALV 5 0.097 0.098 TKA 8 0.141 0.138
BAS 7 0.052 0.052 VOW3 6 0.073 0.071

Note: Column BW denotes the bandwidth parameter in the estimate of covariance matrices. The columns
denoted “Hobijn” give the test statistics for the test defined in Hobijn et al. (1994). Critical values for 10%, 5%
and 1% significance are 0.348, 0.460 and 0.754. The columns denoted “Sul” give the test statistic for the test
defined in Sul et al. (2005). Critical values for 10%, 5% and 1% significance are 0.347, 0.463 and 0.739. No
statistics are significant at 5%.



Appendix 3: Planar maximally filtered graph (PMFG)
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Appendix 5: Definitions of RCL and RIL for graphs PMFG and THR

V(G)-1V(9)
D ZK (i, j,1,6)

RCLFMFG(G): i=l  j=i+l

3nk, —

V(G)-1V(9)

> .20 jt,G)

RIL|PMFG(G) — i=1  j=i+l

3no, -6

V(G)-1V(9)
D > ZK(i,j,),6)

i =i

RCL™ (G)=

nk (nk, —-1)/2

V(G)-1V(9)
Z0(i, j,t,G)

+1

j=i
no, (no, —-1)/2

RIF™ (G)=—

max(IC)V (G)-1V(g)
D ZK(i, j,1,6)

RCLPMFG(G): 1=1 i=l j=i+l

max(IC)

> (3nk, - 6)

1=1

max(l1)V(G)-1V (g)
> Y700, j.t,G)
t=1 i=l j=i+l
max(ll)
3no, -6)

RI LPMFG (G) —

t=1

max(IC)V (G)-1V(g)
> D K, jl.6)

1=1 i=1 =i+l
max(IC

Z(nk (nk, —1)/2)
1=1

RCL™ (G) =

max(I1)V(G)-1V(g)
> 200, j.1,6)
t=1 i=1  j=i+l
max(ll)

> (no,(no, -1)/2)

t=1

RIL™(G) =




