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Abstract  

In the digital age, scheduling has evolved from a static, rule-based task into a dynamic, 

strategic function deeply embedded in modern industrial and service ecosystems. This 

transformation is driven by the proliferation of advanced technologies—including Artificial 

Intelligence (AI), the Internet of Things (IoT), Cyber-Physical Systems (CPS), and cloud 

computing—under the umbrella of Industry 4.0. These technologies enable real-time data 

integration, predictive and prescriptive analytics, and adaptive decision-making, enhancing 

responsiveness, efficiency, and resilience across diverse sectors such as manufacturing, 

logistics, and healthcare. Modern scheduling must now accommodate high variability, multi-

objective optimisation, and interconnected resource constraints, necessitating sophisticated 

algorithmic solutions and robust digital infrastructures. Technologies such as digital twins, 

blockchain, Robotic Process Automation (RPA), and big data analytics further enrich 

scheduling capabilities by supporting real-time simulation, secure collaboration, and data-

driven optimisation. As operational complexity increases, scheduling systems transform into 

intelligent, self-optimising platforms that align operational execution with strategic 

organisational goals. This paper explores the core technological enablers, evolving challenges, 

and emerging trends reshaping the scheduling future in the digital transformation era. 
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1 Introduction 

The manufacturing sector is experiencing a significant transformation driven by the rapid 

expansion of production scales and heightened global competition. Conventional 

manufacturing methods rely heavily on manual labour and are insufficient to meet modern 

industrial operations' complex and dynamic demands. To address these challenges, the advent 

of advanced technologies—such as the Internet of Things (IoT), Artificial Intelligence (AI), 

and sophisticated automation systems—has opened new avenues for innovation, enabling 

manufacturers to modernise processes, enhance efficiency, and achieve greater flexibility in 

production (Ouahabi, Chebak, Kamach, Laayati, & Zegrari, 2024). These technological 

advancements have transformed production processes by introducing higher levels of 

automation and intelligence while optimising resource utilisation, lowering operational costs, 

and markedly enhancing the efficiency and quality of manufactured products (W. Zhang, Bao, 

Hao, & Gen, 2025). 
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Industry 4.0, as one of the leading trends in manufacturing, has profoundly reshaped 

manufacturing scheduling by introducing intelligent, interconnected systems that significantly 

enhance operational agility, efficiency, and responsiveness. At the heart of this transformation 

is the integration of cyber-physical systems, the Internet of Things (IoT), artificial intelligence 

(AI), and data analytics, all of which empower manufacturing environments to process vast 

amounts of real-time data for optimised decision-making (Mourtzis, 2022). These technologies 

enable predictive scheduling, where potential disruptions can be anticipated and mitigated in 

advance, a leap from traditional reactive models. Studies show that Industry 4.0 has elevated 

the complexity of scheduling tasks, necessitating advanced metaheuristic algorithms, like 

evolutionary and swarm intelligence methods, to effectively manage multi-objective 

optimisation scenarios involving energy use, costs, human-machine collaboration, and 

sustainability concerns (W. Zhang et al., 2025). Furthermore, smart factories employing 

autonomous robots for task allocation in flexible job shops highlight the necessity of hybrid 

scheduling models to manage varying machine capabilities, buffer constraints, and blocking 

conditions (Shakeri, Benfriha, Varmazyar, Talhi, & Quenehen, 2025). AI-driven tools such as 

digital twins and machine learning algorithms now simulate and optimise workflows 

dynamically, offering real-time schedule adjustments. These innovations reduce downtime and 

resource wastage and foster human-machine collaboration by allowing adaptive, decentralised 

decision-making. Consequently, scheduling has evolved from a static, isolated function into a 

core strategic enabler of competitive advantage in the era of smart manufacturing. This paper 

explores all these trends to give a solid base for understanding the state of the art. 

2 The current state of the problem  

2.1 Problem definition 

Scheduling problems constitute a fundamental category within operations research 

(Allahverdi, Ng, Cheng, & Kovalyov, 2008), extensively utilised across various practical 

domains. At their core, these problems focus on allocating limited resources to multiple tasks 

under specific constraints, intending to optimise one or more performance metrics. (Priore, 

Fuente, Gomez, & Puente, 2001) 

The scheduling process involves assigning tasks to appropriate resources and determining 

the sequence of tasks sharing the same resource, ultimately establishing their start and end 

times. Effective optimisation and scheduling strategies are essential for achieving objectives 

such as energy efficiency, resource conservation, emission reduction, cost minimisation, and 

overall production system enhancement (Wenqiang Zhang et al., 2024). These problems hold 

significant theoretical and practical relevance, with widespread applications in production 

planning, supply chain management, transportation, aerospace, entertainment, healthcare, and 

telecommunications. The academic interest in production scheduling dates back to the 1950s 

and has since remained a vibrant area of research due to its substantial practical impact 

(Serrano-Ruiz, Mula, & Poler, 2021). 

The operations scheduling problem is an optimisation problem that involves allocating 

limited resources to tasks or operations over time to achieve specific objectives while adhering 

to constraints. It is a fundamental problem in manufacturing, logistics, project management, 

computer systems, and many others (Serrano-Ruiz, Mula, & Poler, 2024). Key components of 

the problem are: 

1. Tasks/Operations: A set of jobs, tasks, or activities that must be completed. Each 

task may have multiple operations, often requiring specific sequencing or 

dependencies. 
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2. Resources: Limited entities (e.g., machines, workers, time slots, or computational 

units) needed to perform the operations. 

3. Constraints: 

• Precedence Constraints: Some tasks must be completed before others can start. 

• Resource Constraints: Limited availability of machines, tools, or personnel. 

• Time Constraints: Deadlines, start times, or specific time windows for 

performing tasks. 

4. Objectives: The goal of the scheduling process such to: 

• Minimising the total completion time (makespan), 

• Minimising delays or tardiness, 

• Maximising resource utilisation, 

• Minimising costs, 

• Balancing workloads. 

The operations scheduling problem can be mathematically formulated using an 

optimization framework. The goal is to optimise a specific criterion, such as minimising 

completion time, costs, or delays. For example: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ 𝑤𝐽𝐶𝑗
𝑛
𝑗=1                                                                           (1) 

 

Where 

Z = total weighted completion time (objective function), 

n = number of jobs or tasks 

wj = weight or priority of job j 

Cj = completion time of job j 

 

Within this field, shop scheduling problems represent the earliest and most intensively 

explored subset. Shop scheduling involves optimising key manufacturing resources—such as 

machinery, workforce, and raw materials (Wenqiang Zhang et al., 2024) —to meet production 

plan requirements while maximising operational efficiency. The primary aim is to execute 

production plans accurately, reduce operational costs, and enhance overall productivity. 

2.2 Categories of scheduling 

Scheduling problems are systematically categorised according to the underlying system 

configurations, operational constraints, and optimisation objectives, with each category 

reflecting distinct real-world production and service contexts. These classifications help 

structure the problem space, enabling the development of targeted solution strategies that align 

with specific industry requirements, resource characteristics, and workflow dynamics. The 

categorisation also facilitates a deeper understanding of the trade-offs and complexities of 

managing time, capacity, and performance across various scheduling environments. Below is a 

comprehensive overview of the principal types of scheduling problems, highlighting their 

defining features, applications, and computational challenges. 

A. Single-machine scheduling is the simplest form, where all jobs must be processed on a 

single machine. The challenge lies in determining the sequence of tasks to optimise a 

performance criterion (e.g., minimising makespan or tardiness). It applies to small-scale 

productions, single-operator workstations, etc. Even simple rules like Shortest Processing 

Time (SPT) or Earliest Due Date (EDD) can be optimal for specific objectives in this case. 

B. Multi-machine scheduling refers to a class of scheduling problems where a set of jobs or 

tasks must be assigned to two or more machines to optimise specific objectives, such as 
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minimising completion time, tardiness, or resource idleness. This broad category 

encompasses various scheduling models depending on machine configurations and job 

characteristics. Multi-machine scheduling plays a pivotal role in optimising complex 

production and service systems. The choice of model and solution method depends on 

machine capabilities, job characteristics, and the system's operational goals. Within this 

category, the following types of scheduling belong: 

a) In Parallel Machine Scheduling, jobs are assigned to multiple machines that can 

process tasks simultaneously (Li et al., 2024). There are several types of Parallel 

Machine Scheduling: 

• Identical parallel machines: All machines have the same capabilities. 

• Uniform parallel machines: Machines have different processing speeds. 

• Unrelated parallel machines: Each job has a different processing time on different 

machines. 

Despite its potential to improve throughput and flexibility, several inherent challenges 

complicate its implementation. The scheduling complexity increases when machines 

have different processing speeds (uniform) or different processing capabilities for each 

job (unrelated). Assigning the right job to the right machine becomes a combinatorial 

problem requiring careful balancing between job-machine compatibility and processing 

efficiency (van den Akker, Hoogeveen, & van de Velde, 1999). One of the main 

objectives of parallel machine scheduling is to evenly distribute the workload across 

machines to minimise makespan or idle times. Achieving an optimal load balance is 

difficult, especially when jobs have varying processing times or priorities. In many real-

world scenarios, the time required to prepare a machine for a job depends on the 

previous job executed. Scheduling must consider these sequence-dependent setup times 

to avoid performance degradation (Ramos-Figueroa, Quiroz-Castellanos, Carmona-

Arroyo, Vázquez, & Kharel, 2021). Jobs may have different weights, deadlines, or 

priorities. Incorporating these criteria into the scheduling algorithm adds complexity, 

particularly when minimising weighted tardiness or maximising on-time job completion 

(Sivrikaya-Şerifoǧlu & Ulusoy, 1999). Deciding whether jobs can be interrupted and 

resumed later (preemptive scheduling) or must be processed without interruption (non-

preemptive) impacts both model complexity and solution strategies. As the number of 

jobs and machines increases, the number of possible job-to-machine assignments grows 

exponentially, making it challenging to find optimal solutions within a reasonable 

computational time. This is especially significant in large-scale or real-time 

environments (D. Lei & Liu, 2020). Schedules must be generated or adjusted quickly in 

dynamic settings where jobs arrive continuously (e.g., cloud computing). Real-time 

constraints limit the use of computationally expensive exact algorithms, requiring fast 

heuristics or adaptive metaheuristics. Balancing multiple objectives—such as 

minimising makespan, energy consumption, and tardiness—adds another layer of 

complexity. Trade-offs between conflicting goals must be managed, often requiring 

Pareto-optimal or weighted objective approaches. Besides machines, jobs may require 

additional limited resources (e.g., operators, tools, energy), complicating the scheduling 

further by introducing multidimensional constraints (Charrua Santos & Vilarinho, 

2010). Addressing these challenges often involves advanced modelling techniques, such 

as mixed-integer programming, constraint programming, metaheuristic algorithms (e.g., 

genetic algorithms, simulated annealing), and real-time decision support systems in 

smart manufacturing environments. This scheduling problem can be found mainly in 

data centres, textile mills, customer service centres, and others. 
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b) Flow Shop Scheduling: Each job goes through the same sequence of machines or 

processes (identical routing), aiming to optimise performance metrics like minimising 

makespan, flow time, idle time, or total completion time. There are two subtypes of 

Flow shop scheduling: 

• Permutation Flow Shop: The job order is the same on every machine. 

• Non-permutation Flow Shop: The job order may vary across machines. 

Despite its structured nature, several challenges complicate effective scheduling in flow 

shop environments. Depending on the job sequence, transitioning from one job to 

another may require setup times. Efficiently scheduling jobs to minimise these setup 

times adds complexity to the problem (Singla, Kaur, Gupta, Modibbo, & Kaur, 2024). 

Certain processes require that jobs move immediately from one machine to the next 

without waiting. This constraint demands precise scheduling to prevent delays and 

maintain continuous processing.(Utama, Umamy, & Al-Imron, 2024) In scenarios 

where intermediate storage between machines is limited or unavailable, a job may block 

a machine until the next machine becomes available, leading to potential idle times and 

reduced throughput (Lan, Yuan, Wang, Han, & Zhou, 2024). 

Flow shop scheduling is widely used in industries and environments where production 

processes follow a fixed, linear sequence of operations, such as assembly lines, 

semiconductor manufacturing, Food and Beverage Processing, Textile and Garment 

Production, Printing and Packaging, Logistics and Warehousing, etc. 

c) Job Shop Scheduling involves assigning a set of jobs, each with a specific sequence of 

operations, to a set of machines, where each operation must be processed on a particular 

machine without preemption. The objective is typically to optimise performance 

measures such as minimising the makespan (total completion time), reducing delays, or 

improving resource utilisation. Job shop scheduling is notoriously difficult due to 

structural, operational, and computational complexities. The number of possible job 

sequences and machine assignments grows factorially with the number of jobs and 

machines. This combinatorial nature makes the problem NP-hard, meaning that exact 

solutions become computationally infeasible for large instances (Fan, Zhang, Tian, 

Shen, & Gao, 2024). Unlike flow shop environments, where all jobs follow the same 

machine sequence, each job has a distinct routing in job shop scheduling. This 

variability increases the complexity of managing job precedence, sequencing, and 

machine allocation. Jobs frequently compete for the same machines or resources, 

leading to scheduling conflicts. Managing these overlaps without violating precedence 

or causing idle times requires sophisticated conflict resolution strategies (Lassoued & 

Schwung, 2024). Scheduling must often balance conflicting objectives, such as 

minimising makespan, maximising throughput, reducing tardiness, and optimising 

resource utilisation. These multi-objective scenarios add complexity to decision-

making. Setup times between consecutive jobs may depend on the job sequence, 

requiring consideration of not just which jobs to schedule but in what order to minimise 

setup overhead (Allahverdi et al., 2008). Real-world job shops face uncertainties like 

machine breakdowns, urgent job arrivals, or changes in due dates. Schedules must be 

adaptable, which is difficult to achieve with static scheduling methods. Scheduling must 

comply with precedence constraints, limited machine availability, maintenance 

windows, and sometimes even workforce skill constraints, all of which compound the 

scheduling difficulty (Fernandes, Homayouni, & Fontes, 2022). These factors 

collectively make job shop scheduling one of the most challenging problems in 

operations research and industrial optimisation, requiring innovative algorithmic 
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approaches like genetic algorithms, tabu search, or reinforcement learning for practical 

solutions. 

Job shop scheduling problems can be found in manufacturing, Automotive Industry, 

Electronics Manufacturing, Healthcare, Printing Industry, Service Industry, Education, 

Transportation and others. 

d) Open Shop Scheduling is a scheduling problem in which a set of jobs must each be 

processed on a set of machines, but unlike job shop or flow shop models, the order in 

which each job visits the machines is not predetermined. This means each job requires 

processing on all machines exactly once, but the scheduler has complete flexibility to 

choose the sequence of operations for each job. Typical goals include minimising the 

makespan (total time to complete all jobs), total flow time, or machine idle time. Open 

Shop Scheduling can be found in health diagnostics (e.g., labs where tests can be 

conducted in any order), multi-skilled workforce environments, maintenance services, 

healthcare clinics, etc. 

Job Shop Scheduling and Open Shop Scheduling are two classic scheduling models used 

in operations research, particularly within manufacturing and service systems. While they share 

similarities in dealing with multiple jobs and machines, their operational constraints and 

scheduling strategies differ significantly. Job Shop Scheduling is more rigid and complex, 

suitable for environments where each job has a unique, fixed path through machines. Open 

Shop Scheduling, in contrast, offers greater flexibility by allowing any order of operations, 

making it suitable for scenarios where the job order is not fixed in advance. Each model serves 

different operational needs and requires distinct optimisation approaches. 

e) Flexible Job Shop Scheduling is an advanced and generalised version of the traditional 

Job Shop Scheduling Problem. It retains the core structure of the Job Shop Scheduling 

Problem —where each job consists of a sequence of operations—but adds machine 

flexibility, allowing each operation to be processed on one of several eligible machines, 

each potentially with different processing times (Fan et al., 2024). This type of 

scheduling is more realistic for modern production environments and provides better 

load distribution (Fu et al., 2021). 

Flexible Job Shop Scheduling is applied in  Automotive parts manufacturing, Aerospace 

Industry, Smart Factories, and electronics production. Due to its NP-hard nature, FJSS 

is typically tackled using Metaheuristics (Genetic Algorithms (Han et al., 2024), Particle 

Swarm Optimisation, Ant Colony Optimization (Liao, Zhang, Chen, & Song, 2024)), 

Hybrid Algorithms (Combinations of metaheuristics with local search or constraint 

programming (Guo, Liu, Wang, & Zhuang, 2024)), and AI-based Approaches 

(Reinforcement learning (Peng et al., 2024; Wan, Fu, Li, & Li, 2024; Workneh, El 

Mouhtadi, & El Hilali Alaoui, 2024; F. Zhang, Li, & Gong, 2024; Wenquan Zhang et 

al., 2024), deep learning for dynamic scheduling in real-time environments (Guo et al., 

2024)). Flexible Job Shop Scheduling is modelling modern manufacturing 

environments with greater realism and adaptability. It supports intelligent decision-

making for machine assignment and job sequencing, aiming to maximise efficiency and 

responsiveness in increasingly dynamic and complex production systems. 

f) Hybrid Shop Scheduling combines features of multiple scheduling types (e.g., flow 

shop and job shop) and may involve parallel machines at each stage (S. Zhang, Tang, 

Li, Liu, & Zhang, 2021). It can be found in car manufacturing (body, paint, and 

assembly with different shop dynamics). 

g) In Project Scheduling, tasks are interdependent and must follow a specific precedence 

network (e.g., PERT, CPM). Resources may be limited or renewable (e.g., personnel, 

budget). It is used in construction, software development, and research projects. 
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h) In Real-Time/Online Scheduling, decisions are made dynamically as new jobs arrive, 

often without complete future information. The focus is on fast heuristics and 

responsiveness—this type of scheduling is used in cloud computing, smart 

manufacturing, and logistics. 

i) Multi-Objective Scheduling optimises multiple, often conflicting, goals (e.g., 

minimising energy use while maximising throughput) (Hu, Zhang, Zhang, Li, & Tang, 

2024). It is implemented in Pareto efficiency, weighted sum models, or ε-constraint 

methods and used in Industry 4.0 systems (S. Zhang et al., 2021).  

Multi-objective scheduling problems (S. Zhang et al., 2021) in workshop settings 

represent a prevalent challenge within today's increasingly competitive market 

landscape. These problems demand careful balancing among various conflicting 

objectives, such as minimising production time, reducing energy consumption, and 

ensuring high product quality (Pei, Zhang, Mei, & Song, 2022). The relative importance 

of each objective can shift depending on temporal or contextual factors, requiring 

decision-makers to tailor scheduling strategies accordingly. In real-world production 

environments, this complexity is amplified as decision-makers must simultaneously 

address customer expectations and organisational goals, all while working to streamline 

production cycles and minimise operational costs. 

Each scheduling problem type is defined by unique modelling structures, operational 

constraints, and performance objectives, necessitating tailored solution approaches. These 

methods span a broad spectrum—from exact algorithms such as branch and bound, dynamic 

programming, and integer linear programming, which guarantee optimality for small to 

moderate-sized problems, to advanced metaheuristic techniques like Genetic Algorithms, Ant 

Colony Optimization, Particle Swarm Optimization, and Simulated Annealing. Metaheuristics 

are particularly valuable for solving large-scale, NP-hard problems where an exhaustive search 

is computationally impractical. The selection of an appropriate solution method depends on 

several factors, including the problem's dimensionality, the nature of constraints, the need for 

real-time responsiveness, and the trade-off between computational efficiency and solution 

quality. In dynamic and data-intensive environments, hybrid approaches integrating heuristic 

logic with machine learning or adaptive control mechanisms are increasingly adopted to 

enhance scheduling flexibility and scalability. 

2.3 Why Traditional Scheduling Methods Need Improvement in Today's 

Conditions 

In the rapidly evolving landscape of modern industries, traditional scheduling 

methods are increasingly proving inadequate (Marzia, Alejandro Vital, & Azab, 2023). 

Several factors contribute to the necessity for more advanced scheduling solutions. First is 

the complexity of operations, as modern manufacturing environments are characterised by 

high-mix, low-volume production, requiring frequent schedule adjustments (Pei et al., 

2022). Traditional tools struggle to accommodate this variability, often leading to 

bottlenecks and delays (Dios & Framinan, 2016). Conventional scheduling systems often 

lack the flexibility to dynamically adjust to changes and constraints, leading to 

inefficiencies and delays. Manual scheduling methods are prone to errors and inefficiencies, 

especially when handling large volumes of data. This can lead to miscommunication, 

double-booking, and scheduling conflicts (Rannertshauser, Kessler, & Arlinghaus, 2022). 

The advent of Industry 4.0 and smart manufacturing necessitates scheduling systems that 

can integrate with IoT devices, AI, and real-time data analytics. Traditional methods lack 

this capability, hindering operational efficiency (Salatiello, Guizzi, Marchesano, & Santillo, 

2022). Rigid scheduling can negatively impact employee morale and may not comply with 
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labour laws regarding work hours and conditions. Modern scheduling solutions offer greater 

flexibility, improving employee satisfaction and compliance (Fu et al., 2021).  

In summary, the limitations of traditional scheduling methods in handling the 

complexities and dynamic nature of modern operations underscore the need for more 

advanced, flexible, and integrated scheduling solutions. 

3 Scheduling Problems in the Digital Age  

The Scheduling Problem in the digital age has evolved significantly, transitioning 

from rigid, rule-based systems to dynamic, intelligent frameworks that harness modern 

technologies and data-centric methodologies. Driven by the advancements of Industry 

4.0—including Artificial Intelligence (AI), the Internet of Things (IoT), and Cyber-Physical 

Systems—scheduling today is characterised by adaptability, real-time responsiveness, and 

predictive capabilities (Mantravadi, Srai, & Møller, 2023). This transformation enables 

more efficient and informed decision-making while addressing long-standing challenges in 

resource allocation and task sequencing. At the same time, digitalisation has introduced new 

layers of complexity, requiring scheduling systems to manage greater variability, integrate 

with interconnected systems, and respond swiftly to operational changes. As a result, 

scheduling in the digital age emerges as a critical optimisation problem and a strategic 

enabler of agility and resilience in increasingly complex industrial ecosystems (Marzia et 

al., 2023). 

Sensors, IoT devices, and real-time monitoring systems play a pivotal role in modern 

scheduling by continuously capturing data on machine conditions, resource availability, and 

task execution status. This real-time flow of information from physical assets and enterprise 

systems directly informs scheduling algorithms, allowing them to adapt dynamically to 

evolving operational conditions (K. Lei et al., 2024). As a result, schedules can be 

automatically updated in response to machine breakdowns, workforce changes, inventory 

fluctuations, or shifting production priorities. This live data integration ensures that 

scheduling decisions remain accurate, timely, and aligned with current system states, 

enhancing responsiveness, minimising disruptions, and improving overall operational 

efficiency. 

Contemporary production systems are increasingly characterised by integrating 

diverse and advanced resources, including cloud computing platforms, robotic automation, 

and AI-driven technologies. These systems often operate under high-mix, low-volume 

conditions, where customised products and services are the norm. Effective scheduling in 

such environments requires sophisticated algorithms capable of managing heterogeneous 

resources with distinct capabilities and constraints (Romero-Silva & Hernández-López, 

2020). Furthermore, scheduling must simultaneously accommodate flexible job routings, 

dynamic resource availability, and a range of performance objectives—such as minimising 

lead time, maximising throughput, and ensuring product quality. This complexity 

necessitates intelligent, adaptable scheduling solutions to optimise operations in real time 

while maintaining agility and responsiveness. 

Traditional static scheduling approaches are increasingly inadequate in today's rapidly 

changing and complex operational environments. The digital age demands adaptive 

scheduling systems capable of dynamically responding to disruptions such as equipment 

failures, supply chain delays, or sudden demand fluctuations. To meet these challenges, 

modern scheduling leverages historical and real-time data to forecast resource constraints, 

anticipate task durations, and detect potential bottlenecks. Predictive analytics facilitates 

proactive scheduling, allowing organisations to optimise performance, minimise downtime, 

and enhance responsiveness. Unlike conventional scheduling, which typically focuses on a 
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single objective, digital-era scheduling must balance multiple, often conflicting goals—

including minimising energy consumption, maximising throughput, meeting delivery 

deadlines, and maintaining product quality—while adhering to diverse constraints such as 

workforce availability machine maintenance, and sustainability requirements (W. Zhang et 

al., 2025). To address the inherent complexity and NP-hard nature of these problems, 

advanced computational techniques such as AI-driven methods and metaheuristic 

algorithms (e.g., genetic algorithms, reinforcement learning) are employed (Ma et al., 2024; 

Neumann, Hajji, Rekik, & Pellerin, 2022; Serrano-Ruiz, Mula, & Poler, 2022; Serrano-Ruiz 

et al., 2024; Vespoli, Grassi, Guizzi, & Santillo, 2019; Xiong, Wang, Shi, & Chen, 2024). 

These approaches support both predictive and prescriptive scheduling, enabling intelligent, 

flexible, and forward-looking decision-making in increasingly dynamic industrial 

ecosystems. 

Schedulers today function within highly interconnected environments where 

machines, systems, and human operators are seamlessly linked through cyber-physical 

networks. These advanced environments demand that scheduling systems are no longer 

isolated tools but integral components of broader digital ecosystems, including Enterprise 

Resource Planning (ERP), Manufacturing Execution Systems (MES), and Supply Chain 

Management (SCM) platforms (Mantravadi et al., 2023). Such integration ensures that 

scheduling decisions consistently align with organisational goals, operational constraints, 

and real-time market dynamics. Cloud computing further enhances this integration by 

offering scalable, centralised infrastructure to coordinate scheduling activities across 

geographically dispersed facilities and business units. At the same time, edge computing 

empowers localised, low-latency decision-making directly at the shop floor or machine 

level, enabling rapid response to real-time events without the delay of cloud-based 

processing. This dual-layer architecture—combining centralised oversight with 

decentralised agility—supports intelligent, synchronised, and resilient scheduling practices 

essential for thriving in digitally transformed, fast-paced industrial ecosystems (Pinto, Silva, 

Thürer, & Moniz, 2024). 

In the digital era, scheduling has evolved from a static, rule-based planning activity 

into a strategic, intelligence-driven function that leverages real-time data, machine learning, 

and automation to orchestrate complex operations. No longer confined to predefined 

routines, modern scheduling systems dynamically adapt to shifting conditions, optimise 

resource utilisation, and align operational execution with broader organisational goals. This 

transformation has positioned scheduling as a critical enabler of agility, efficiency, and 

resilience across various industries, including manufacturing, logistics, healthcare, and 

beyond, where timely, data-informed decisions are essential to maintaining competitive 

performance in increasingly volatile and interconnected environments. 

3.1 Key Technologies Driving Modern Scheduling 

Modern scheduling has undergone a profound transformation by integrating advanced 

digital technologies that significantly enhance flexibility, precision, and real-time adaptability. 

These innovations have shifted scheduling from a reactive, manual process to a proactive, 

intelligent capability that empowers dynamic decision-making and continuous optimisation. 

Across diverse sectors such as manufacturing, healthcare, transportation, and services, these 

technologies are essential for navigating complexity, responding to disruptions, and meeting 

evolving operational demands quickly and efficiently. The following represent the core 

technological drivers fueling this evolution. 

Artificial Intelligence (AI) and Machine Learning (ML) are revolutionising scheduling 

by transforming it from static, rule-based planning into intelligent, adaptive systems capable of 
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navigating complex and dynamic environments. These technologies leverage vast volumes of 

historical and real-time data to enable predictive scheduling— forecasting demand, resource 

availability, and disruptions—and prescriptive scheduling—by recommending optimised 

actions. AI algorithms identify patterns and optimise scheduling decisions across multiple 

variables and constraints, while ML models continuously refine their accuracy by learning from 

previous scheduling outcomes. Reinforcement Learning (RL) proves especially effective in 

highly variable and time-sensitive contexts, as it adapts to evolving scenarios through feedback-

driven learning. By embedding AI and ML into scheduling frameworks, organisations can 

achieve greater operational efficiency, flexibility, and resilience, making scheduling systems 

more responsive to the demands of the digital age. 

The Internet of Things (IoT) fundamentally reshapes scheduling by enabling 

continuous, real-time data exchange between physical assets, such as machines, sensors, tools, 

and mobile resources, and digital systems. By providing accurate, up-to-date information on 

resource status, location, and operational conditions, IoT empowers scheduling systems to 

move beyond static planning toward adaptive, condition-based scheduling. This allows timely 

decisions responding to equipment performance, inventory levels, or workflow disruptions. 

Applications such as RFID tags for inventory tracking and smart sensors on machinery facilitate 

predictive maintenance, dynamic workload balancing, and efficient resource allocation. As a 

result, IoT transforms scheduling into a responsive and intelligent process, enhancing 

operational agility, minimising downtime, and supporting the evolution of lean, resilient, and 

interconnected systems in both industrial and service sectors. 

Cyber-Physical Systems (CPS) represent a foundational component of smart 

manufacturing and Industry 4.0, seamlessly integrating physical machinery with computational 

intelligence through networks of sensors, actuators, and control systems. In the scheduling 

context, CPS facilitates real-time, autonomous decision-making by enabling continuous 

monitoring, analysis, and adjustment of operations based on dynamic data inputs. This 

bidirectional interaction between digital and physical layers allows for decentralised and 

adaptive scheduling, where systems can self-optimise and respond proactively to changes in 

demand, resource availability, or environmental conditions. CPS transforms conventional 

scheduling into an intelligent, collaborative process that ensures alignment between operational 

execution and strategic planning. As industrial environments grow more complex and 

interconnected, CPS is pivotal in delivering robust, efficient, and future-ready scheduling 

solutions. 

Cloud Computing provides a scalable and flexible infrastructure that supports storing, 

processing, and analyzing large-scale scheduling data across geographically distributed 

systems. By enabling the deployment of complex scheduling algorithms on demand, cloud 

platforms facilitate real-time optimisation and coordination of operations across multiple sites 

or global networks. This centralised yet accessible architecture allows stakeholders to interact 

with scheduling systems remotely, promoting collaboration, consistency, and visibility across 

organisational boundaries. Moreover, integrating distributed computing within cloud 

environments enhances computational efficiency, rapidly resolving high-dimensional 

scheduling problems that would otherwise be intractable on local systems. As a result, Cloud 

Computing emerges as a critical enabler of adaptive, responsive, and data-driven scheduling in 

modern, interconnected enterprises. 

Digital Twins, as virtual representations of physical systems such as factories or 

production lines, offer a transformative capability for real-time simulation and evaluating 

scheduling strategies. In scheduling contexts—particularly within complex, data-intensive 

environments like manufacturing, logistics, and healthcare—Digital Twins enable the 

visualisation of system behaviour, prediction of future states, and optimisation of scheduling 
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decisions before real-world implementation. This simulation-driven approach enhances 

decision-making by allowing planners to assess the potential impacts of various scheduling 

scenarios, thereby reducing uncertainty, improving operational agility, and facilitating 

proactive adjustments. By integrating real-time data and advanced analytics, Digital Twins 

support continuous monitoring and adaptation, positioning them as a critical enabler of 

intelligent, collaborative, and responsive scheduling systems in the digital era. 

Blockchain technology, characterised by its decentralised, transparent, and tamper-

resistant ledger structure, is emerging as a significant enabler of secure and collaborative 

scheduling, particularly in multi-agent, cross-organisational, and supply chain contexts. By 

ensuring immutable and verifiable data exchange, blockchain enhances transparency, fosters 

trust, and facilitates traceability across scheduling processes involving multiple stakeholders. 

Its integration into scheduling systems supports the automation of transactional workflows and 

reinforces data integrity and accountability, which are critical in environments requiring high 

levels of coordination and compliance. Although not a substitute for optimisation algorithms, 

blockchain is a foundational infrastructure that strengthens modern scheduling operations' 

reliability, transparency, and autonomy. 

Robotic Process Automation (RPA) utilises software bots to automate repetitive, rule-

based digital tasks traditionally executed by human operators, significantly enhancing the 

efficiency and reliability of scheduling processes. In the scheduling context, RPA streamlines 

routine workflows, ensures the seamless integration of disparate information systems, and 

enables the rapid and accurate execution of planning activities. By relieving human planners 

from manual, time-consuming tasks, RPA allows them to focus on higher-level strategic 

decision-making. Although it does not replace advanced optimisation algorithms, RPA is a 

crucial enabler of scalable, responsive, and automated scheduling, particularly in data-intensive 

environments where timely updates and consistent schedule maintenance are essential. 

Big Data Analytics has become a pivotal enabler of advanced scheduling in 

contemporary operational environments by transforming traditionally static planning processes 

into dynamic, data-driven optimisation systems. Processing and analysing vast volumes of 

structured and unstructured operational data facilitates demand forecasting, workload 

prediction, and performance enhancement. This capability allows scheduling systems to 

proactively anticipate trends and disruptions, supporting more agile and responsive decision-

making. Across diverse domains such as manufacturing, healthcare, logistics, and workforce 

management, Big Data Analytics enables the extraction of actionable insights that inform 

precise, predictive, and personalised scheduling strategies. As a result, scheduling evolves from 

a routine administrative task into a strategic, insight-centric function capable of adapting to 

system variability, identifying latent inefficiencies, and fostering continuous operational 

improvement in the digital era. 
 

3.2 Industry 4.0 and Scheduling 

Current environments introduce high variability and demand adaptable scheduling to 

manage diverse product types and fluctuating production requirements (Dabwan, Kaid, Al-

Ahmari, Alqahtani, & Ameen, 2024). The primary challenges in this problem involve managing 

task allocation across multiple non-identical robots, coordinating resources to prevent delays 

caused by limited buffer space and blocking conditions, and optimising timing to avoid 

downtime (Shakeri et al., 2025). These challenges are particularly pronounced in real-world 

Industry 4.0 environments, where complex dependencies exist across multi-stage tasks and 

specific layout requirements. These challenges go beyond traditional approaches that often 
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oversimplify task allocation by assuming uniform robots or omitting buffer constraints, 

highlighting the need for a more robust scheduling approach (Shakeri et al., 2025). 

The growing demand for enhanced product customisation, a key value driver in 

production, is met by the flexibility and responsiveness offered by modern Information 

Technologies (ITs) (Vespoli et al., 2019). The rise of Cyber-Physical Systems, the Internet of 

Things, the Internet of Services, big data analytics, and cloud computing (Hermann et al., 2016) 

is ushering in a new era of manufacturing, exemplified by Industry 4.0 and Cloud 

Manufacturing, where machines are intelligently interconnected (Grassi, Guizzi, Santillo, & 

Vespoli, 2020). 

The advent of Industry 4.0 has brought a paradigm shift in how scheduling is perceived 

and executed within modern industrial and service ecosystems. Characterised by the 

convergence of cyber-physical systems, the Internet of Things (IoT), big data analytics, 

artificial intelligence (AI), and cloud computing, Industry 4.0 has redefined scheduling from a 

static planning task into a dynamic, integrated, and intelligent function. In this new context, 

scheduling is no longer confined to isolated timetables or manual adjustments but is embedded 

within real-time, interconnected systems that continuously adapt to changing conditions. The 

ability to collect, process, and respond to live data from machines, sensors, and enterprise 

platforms enables proactive decision-making, predictive maintenance scheduling, and 

optimisation of resource utilisation across distributed networks. 

Moreover, incorporating technologies such as digital twins, reinforcement learning, and 

edge computing allows for scenario simulation, decentralised control, and ultra-responsive 

rescheduling capabilities. This enhances operational agility and resilience and aligns scheduling 

with broader objectives like sustainability, customer customisation, and lean manufacturing. 

However, the complexity introduced by Industry 4.0 also necessitates a new generation of 

scheduling algorithms and frameworks capable of handling multi-objective constraints and 

collaborative decision-making in a highly volatile environment. Reflecting on this 

transformation, it is evident that scheduling under Industry 4.0 is not just a technical 

enhancement but a strategic shift toward smarter, more autonomous, and adaptive production 

systems, paving the way for a new era of operational excellence. 

A cornerstone of Industry 4.0 is the Manufacturing Execution System (MES) 

(Mantravadi et al., 2023). MES acts as a critical link between the planning and execution phases 

of production, coordinating and optimising processes (Serôdio, Mestre, Cabral, Gomes, & 

Branco, 2024). Its functionalities include data gathering, production dispatch, tool and 

equipment maintenance, detailed scheduling, resource allocation, and product quality control 

(Mehdiyev, Mayer, Lahann, & Fettke, 2024). MES ensures efficient and responsive operations 

by dynamically adjusting production schedules based on real-time data (Morgan, Halton, Qiao, 

& Breslin, 2021). 

Several benefits underscore the necessity of advanced scheduling systems: enhanced 

efficiency through streamlined operations and reduced downtime; reduced operational costs via 

optimised resource utilisation and minimised waste; improved resource management with 

effective allocation of tasks and resources; and real-time adaptation capabilities that allow 

adjustments to changing demands and conditions (Bakon, Holczinger, Süle, Jaskó, & Abonyi, 

2022; Fu et al., 2021). 

3.3 Future trends in scheduling 

As industries continue to evolve under the influence of digital transformation, the future 

of scheduling is poised to become increasingly intelligent, autonomous, and integrative. One of 

the most prominent trends is the widespread adoption of Artificial Intelligence (AI) and 

Machine Learning (ML), which will drive the development of self-optimising scheduling 
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systems capable of learning from past data, adapting to new patterns, and making predictive 

and prescriptive decisions in real-time. These systems will be critical in managing the growing 

complexity of multi-objective, constraint-rich environments. 

Another key trend is the expansion of real-time, decentralised scheduling through edge 

computing and Cyber-Physical Systems. These technologies will enable localised decision-

making at the machine or workstation level, reducing latency and enhancing responsiveness, 

especially in smart factories and logistics hubs. Coupled with the Internet of Things 

integration, future scheduling systems will leverage continuous sensor data streams to update 

and refine plans dynamically, ensuring alignment with actual conditions on the ground. 

Digital Twins will also play an increasingly central role, allowing for advanced 

simulation, scenario testing, and performance forecasting before implementing schedules in the 

real world. These virtual environments will support risk-free experimentation and continuous 

process improvement. In parallel, blockchain technology is expected to enhance trust, 

traceability, and transparency in collaborative and supply chain scheduling, ensuring secure and 

verifiable scheduling transactions across organisational boundaries. 

Furthermore, the rise of sustainability-driven scheduling will push systems to incorporate 

energy efficiency, carbon footprint reduction, and resource conservation as primary objectives, 

aligning with global environmental goals. Human-centric scheduling is also gaining 

momentum, focusing on employee well-being, ergonomic constraints, and work-life balance 

through personalised and adaptive scheduling tools. 

In summary, the future of scheduling lies in intelligent automation, real-time adaptability, 

and strategic integration—delivering operational efficiency, resilience, sustainability, and 

human-centric value in increasingly dynamic and interconnected ecosystems. 

4 Conclusion 

The transformation of scheduling in the digital age reflects a broader shift toward 

intelligent, adaptive, and interconnected operational ecosystems. Driven by Industry 4.0 

technologies, modern scheduling systems have advanced far beyond their traditional, static 

counterparts to become integral components of real-time, data-driven decision-making 

frameworks. These systems respond dynamically to disruptions and variability and anticipate 

future needs through predictive analytics and machine learning. As scheduling increasingly 

integrates with enterprise platforms such as ERP, MES, and SCM, it enables seamless 

alignment between operational processes and strategic objectives. Technologies like digital 

twins, blockchain, and cloud-edge architectures facilitate decentralised control, simulation-

based planning, and secure collaboration, making scheduling more resilient and scalable. The 

emphasis will shift toward sustainability, human-centric design, and intelligent automation, 

ensuring that scheduling continues to evolve as a cornerstone of operational excellence. In this 

rapidly changing environment, the ability to orchestrate complex, multi-constraint systems 

through smart scheduling will be essential for achieving competitiveness, responsiveness, and 

long-term value creation across industries. 
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