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ABSTRAKT 

CSÁPAI, Ádám: Prognózovanie Makroekonomických Premenných Použitím Metód Strojového 

Učenia: Prípad Slovenska.  – Ekonomická Univerzita v Bratislave. Fakulta hospodárskej 

informatiky; Katedra operačného výskumu a ekonometrie. – Školiteľ: prof. Ing. Martin Lukáčik, 

PhD. – Bratislava: FHI EU, 2024, 148 s. 

Táto dizeračná práca sa zameriava na skúmanie účinnosti modelov strojového učenia (ML) pri 

zlepšovaní makroekonomických prognóz, konkrétne zameraných na ukazovatele priemyselnej 

produkcie a inflácie v Slovenskej republike. Porovnaním rôznych modelov ML, ako sú 

regularizované metódy najmenších štvorcov, techniky strojového učenia založené na ensemble, 

neurónové siete a podporné vektory, s tradičnými metódami, výskum zdôrazňuje, že ML je 

nadradené v zachytávaní zložitých, nelineárnych vzťahov, ktoré tradičné modely často 

prehliadajú. Významná pozornosť štúdie je venovaná prognózovaniu po COVIDe, s dôrazom 

na odolnosť a adaptabilitu modelov na náhle ekonomické zmeny. Zistenia ukazujú, že modely 

ML, najmä tie, ktoré využívajú techniky ensemble a regularizácie, konzistentne predčia 

tradičné metódy prognózovania, čo naznačuje významný potenciál ML pri zvyšovaní presnosti 

makroekonomických predikcií. Štúdia nielenže poskytuje tvorcom politík a ekonomickým 

analytikom presvedčivé dôvody pre integráciu ML do ekonomického prognózovania, ale tiež 

prispieva do akademického diskurzu tým, že kládne silný empirický základ pre budúci výskum 

aplikácie ML v ekonomickom prognózovaní. 

 

Kľúčové slová: prognózovanie, strojové učenie, Slovensko, inflácia, priemyselná produkcia 

 

ABSTRACT 

CSÁPAI, Ádám: Forecasting Macroeconomic Variables Using Machine Learning: The case of 

Slovakia.  – Unviersity of Economics in Bratislava. Faculty of Economic Informatics; Department 

of operations research and econometrics. – Thesis Advisor: prof. Ing. Martin Lukáčik, PhD. – 

Bratislava: FHI EU, 2024, 148 p. 

This study aims to explore the effectiveness of machine learning (ML) models in improving 

macroeconomic forecasting, specifically targeting industrial production and inflation indicators 

within Slovakia. By comparing various ML models, such as Regularized Least Squares, 

Ensemble Machine Learning techniques, Neural Networks, and Support Vector Machines, 

against traditional methods, the research highlights ML's superior ability to capture complex, 

nonlinear relationships that conventional models often miss. A notable focus of the study is on 

post-COVID economic forecasting, emphasizing the models' resilience and adaptability to 

sudden economic shifts. The findings reveal that ML models, particularly those using ensemble 

and regularization techniques, consistently outperform traditional forecasting methods, 

suggesting a significant potential for ML to enhance the accuracy of macroeconomic 

predictions. The study not only offers policymakers and economic analysts compelling reasons 

to integrate ML into economic forecasting but also contributes to the academic discourse by 

laying a strong empirical foundation for future research in ML's application to economics. 

 

Key words: forecasting, machine learning, Slovakia, industrial production, inflation 
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Introduction 

Forecasting plays a vital role in assessing the economic condition and guiding economic 

policymaking. It is foundational for crafting government budgets and crucial for policymakers, 

like Central Banks, to time interventions effectively based on forecasts of key economic 

indicators such as Gross Domestic Product (GDP), inflation, and unemployment. Current 

models, however, often fail to capture the true dynamics between economic variables. For 

example, Medeiros et al. (2019) illustrate how governments and international bodies, especially 

the ECB, tend to consistently overestimate inflation projections. Such discrepancies can lead to 

significant welfare losses and skew inflation expectations, underlining the need for more precise 

forecasting models. 

With the emergence of big data, enhanced computational capabilities, and advances in 

statistical learning, economists now have access to a variety of new methods, including those 

based on machine learning. These methods have become increasingly popular in 

macroeconomic applications over the last decade, particularly in the last five to six years.  

This thesis presents a rigorous assessment of machine learning models for forecasting in 

Slovakia. We aim to determine the relative efficacy of machine learning models in capturing 

the complexities of the Slovak economy compared to conventional methods. 

Our contributions to macroeconomic forecasting are varied and significant. Firstly, we 

propose a hybrid approach, inspired by Medeiros et al. (2019), that effectively captures 

nonlinearities and variable interactions. This is particularly useful in post-socialist economies 

of Eastern Europe, where datasets are often short. Regularizing these datasets before applying 

nonlinear methods significantly improves the performance of nonlinear models. Secondly, we 

compare the effectiveness of regularization and principal component analysis (PCA) in 

handling dimensionally reduced datasets. Our findings indicate that regularization, a machine 

learning (ML) technique, yields more accurate forecasts. Thirdly, we explore the use of ML 

methods as tools for combining forecasts, demonstrating that these can enhance the accuracy 

of individual forecasts. Fourthly, we demonstrate that regularization can significantly enhance 

forecasting capabilities compared to traditional benchmarks. Fifthly, we highlight and capture 

nonlinearities in the data using Ensemble ML models. To our knowledge, this is the first 

application of these two techniques using ML in a small, open industrialized economy within a 

monetary union with a short dataset. Sixthly, we are the pioneers in assessing the directional 

accuracy of ML models, as existing studies typically focus only on error magnitudes. However, 
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the directions of change are equally crucial. Seventhly, we provide a comprehensive overview 

of ML model performance in both pre-COVID and post-COVID periods, showing that ML 

models perform even better during periods of increased economic volatility and uncertainty. 

Although other studies involve periods of crisis as well, they have decades worth of data that 

can smooth out the effects of crises. Our sample has two crises despite having only 16 years 

data, both at the beginning and end. One model even completely accurately forecasts the highly 

uncertain inflation one to three months ahead. Eighthly, we demonstrate how ML methods can 

more effectively capture trends based on soft indicators. Ninthly, all of this should serve as a 

response to the critique of Makridakis et al. (2018), further elaborated on in Chapter 1.  

The thesis is organized as follows. The first chapter reviews the existing literature on 

macroeconomic forecasting with machine learning methods. It provides a general overview, 

highlights the key findings in the field and justifies our benchmark. The second chapter states 

our primary and partial aims, along with the scientific hypotheses. The third chapter provides 

an exhaustive overview of our methodology, including the mathematical formulation of the 

models, the codes we utilize, the forecast evaluation process and the data preprocessing steps. 

The fourth chapter presents the results for both the pre-COVID and post-COVID samples. The 

fifth chapter summarizes and interprets the results, while also giving recommendations. The 

final chapter concludes.  
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1 Current state of the field at home and abroad 

Breiman (2001) promotes the use of models driven by data that don't rely on any fixed 

structures. He emphasizes that these models should not make any assumptions about the Data 

Generating Process (DGP), which makes them more adaptable to changes in the DGP. 

Moreover, Breiman (2001) argues that models should not assume any specific relationships 

between predictors and target variables, making them more robust to errors in model design. 

Machine learning models fit these requirements well. 

Before moving on to machine learning, it is important to explain why we chose our 

benchmark models and how machine learning compares with traditional methods found in 

academic studies. Stock and Watson (2007) analyze a model that evolves over time based on 

unobserved components. Then, Stock and Watson (2010) examine models based on Random 

Walks and univariate time series, finding that these models are very challenging to improve 

upon for macroeconomic forecasting. Faust and Wright (2013) review previous research and 

agree with these findings. Therefore, we choose Random Walk and ARIMA models as our 

benchmarks, as these are commonly used standards in economic forecasting literature. 

Vargas (2020) observes that advancements in computing power, statistical learning 

theory, and the increased availability of big data over the past decade have led to the adoption 

of machine learning methods in economic forecasting. Historically, these methods were 

primarily applied to classification tasks, such as predicting loan delinquencies or consumer 

purchasing decisions, where they surpassed the performance of traditional models. Although 

these applications focus on discrete variables, Vargas (2020) points out that machine learning 

can also effectively predict continuous variables such as GDP or inflation. According to Vargas 

(2020), machine learning's ability to capture nonlinear relationships in the data enhances our 

understanding of complex economic phenomena like asymmetric business cycles, stock market 

volatility, and regime switches. 

The conclusions of Vargas (2020) are supported by Athey (2019), who notes that over the 

past decade, economists have increasingly turned to machine learning for forecasting, 

especially when large datasets are available. These methods are mostly used for forecasting 

financial variables such as stock prices, as there is ample data. An example case study of 

machine learning forecasting is provided by Cibuľa and Tkáč (2023), who use machine learning 

methods to predict bitcoin and other cryptocurrency spot prices. They compare the prediction 

capacity of multiple supervised learning algorithms, including ensemble machine learning and 
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neural networks. They conclude that their machine learning algorithms are capable of beating 

the benchmark. While Cibuľa and Tkáč (2023) focus on cryptocurrencies and Athey (2019) 

primarily discusses the use of microdata for forecasting, Mullainathan and Spiess (2017) 

investigate the application of these methods in macroeconomic forecasting. All of these authors 

argue that macroeconomists should add machine learning tools to their forecasting arsenal. 

Bolhuis and Rayner (2020) analyze the theoretical aspects of Ordinary Least Squares 

(OLS) in comparison to factor models and machine learning. They point out that OLS 

predictions may be unsuitable due to issues like predictor relevance, nonlinearity, collinearity, 

and high dimensionality. While factor models have been central in data-driven forecasting for 

decades and can mitigate problems related to dimensionality and collinearity, they fall short 

when it comes to addressing nonlinearity and predictor relevance, often resulting in less 

accurate forecasts. In addition to theoretical limitations, Shintani (2005) and Maehashi and 

Shintani (2020) provide empirical evidence showing that factor models often underperform. 

These authors not only use dynamic factor models for forecasting, but they also employ 

principal component analysis to extract common factors. They then apply machine learning 

techniques using these factors as a basis. Their findings support that while methods based on 

common factors can surpass the benchmarks, as noted by Stock and Watson (2002), they 

generally fall short when compared to machine learning models that utilize hard data. With 

regards to theory, Bolhuis and Rayner (2020) state that in contrast to factor models, machine 

learning methods excel at capturing nonlinear dynamics within high-dimensional datasets. 

They adeptly learn from complex historical data relationships without making unwarranted 

future projections. Thus, despite the effectiveness of simple data-driven models, their 

drawbacks have prompted researchers to explore machine learning as a viable alternative for 

macroeconomic forecasting. 

To elaborate further, we describe these methods within a macroeconomic framework. 

Masini et al. (2021) review recent progress in the field and note that machine learning 

encompasses various approaches. Specifically for macroeconomic forecasting, they describe 

machine learning as the integration of automated algorithms and statistical methods to identify 

patterns in large datasets. They also summarize the differences between the three widely used 

categories of machine learning, namely supervised, unsupervised, and reinforcement learning.  

Like Masini et al. (2021), we utilize supervised learning techniques for our forecasting 

purposes.  Supervised learning involves training the model on data that is structured as input-

output pairs. For example, in linear regression models, the inputs (or predictors) and the outputs 
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(target variable forecasts) are paired clearly. The model learns a function that maps the input to 

the output, aiming to predict the value of the target variable effectively. The specifics of 

individual machine learning methods employed are discussed in the methodological section of 

this thesis.  

The empirical evidence on the macroeconomic forecasting capacity of machine learning 

methods is scarce but compelling. Chakraborty and Joseph (2017) apply machine learning to 

predict medium-term inflation rates and report that their selected methods can outperform 

traditional benchmarks by as much as 29%. Similarly, Jung et al. (2018) employ methods like 

Elastic Net, SuperLearner, and Recurrent Neural Networks to forecast macroeconomic 

variables for seven advanced and emerging economies, achieving results that surpass the 

benchmark World Economic Outlook (WEO) forecasts. 

The most often cited study claiming that machine learning models are inadequate 

forecasting tools is that of Makridakis et al. (2018).  Makridakis et al. (2018) conduct a 

comparative examination of machine learning (ML) and traditional statistical approaches to 

forecasting, utilizing data from the M3 Competition. They employ various models, including 

basic neural networks (such as the Multilayer Perceptron and Bayesian variant), advanced 

neural networks (such as Recurrent and Long-Short Term Memory), Support Vector Machine, 

a single CART Regression Tree, and basic ensemble models. Their sample spans 14 years and 

encompasses 3003 time series. They discuss how traditional statistical methods like ARIMA 

and ETS often outperform more complex ML techniques, noting that ML methods entail higher 

computational costs and tend to overfit. However, they acknowledge that their findings may be 

specific to the dataset used, which comprises a maximum of 126 monthly observations for 3003 

variables. In our thesis, we demonstrate that with a dataset of comparable length but fewer 

variables, regularization can significantly enhance forecasting performance. Additionally, 

recent papers by Masini et al. (2021) and Coulombe et al. (2022), which offer updated 

perspectives on ML forecasting, largely disregard eight of the ten methods proposed by 

Makridakis et al. (2018), except for RNN and LSTM networks, as Medeiros et al. (2019) argue 

that the remaining methods are too simplistic. Similarly, we conclude that employing more 

advanced methods leads to substantial improvements in forecasting over general benchmarks 

like ARIMA and its variants, employed by Makridakis et al. (2018).  

In response to the critique by Makridakis et al. (2018), Medeiros et al. (2019) demonstrate 

that machine learning can improve forecasting accuracy by up to 30% for U.S. inflation data. 

They utilize a large dataset and employ various methods, analyzing data from periods of both 
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high and low economic uncertainty. According to Medeiros et al. (2019), the main criticisms 

against machine learning are unfounded when more advanced methods are applied.  

Although these studies recognize that machine learning methods can outperform 

traditional benchmarks at both micro and macro levels, they often overlook the underlying 

reasons for this superior performance. A second significant limitation, as pointed out by 

Coulombe et al. (2022), is their limited scope. These studies typically rely on relatively small 

datasets, forecast only a single target variable across a few time horizons, and generally use 

between one and three models. The notable exception is Medeiros et al. (2019), which responds 

directly to the critique of Makridakis et al. (2018). Furthermore, except for Medeiros et al. 

(2019), the primary goal of these papers is to conduct a "forecasting horserace" using hard 

macroeconomic data, focusing predominantly on one accuracy metric, such as mean squared 

error or root mean squared error. They neglect the performance of machine learning methods 

based on common factors, an aspect only explored by Shintani (2005) and Maehashi and 

Shintani (2020). Additionally, these studies often concentrate solely on minimizing forecast 

error, overlooking directional accuracy. They also generally fail to explain why these methods 

perform well or what might cause one method to outperform another. 

These shortcomings are identified by Coulombe et al. (2022), who conduct a forecasting 

exercise using US data from the past four decades to explore the factors contributing to the 

superior performance of machine learning methods. They forecast multiple target variables 

across five different time horizons using various models, pinpointing the critical success factors 

for machine learning in forecasting. Firstly, they find that nonlinearities significantly impact 

the data generating process in the US, enhancing the predictive power of machine learning 

models. Secondly, they demonstrate that regularization techniques greatly improve forecasting 

accuracy, outperforming traditional factor models. Lastly, they establish that B-fold cross-

validation is more effective for model selection than the traditional information criteria 

typically used in econometrics. 

Medeiros et al. (2019) also delve into why regularization and nonlinearities are critical in 

macroeconomic forecasting. Starting with regularization: in recent years, as big data becomes 

more prevalent, macroeconomists are reevaluating the significance of each variable within 

these large datasets. In addition to factor models, there has been an increased use of shrinkage 

and variable selection techniques. Notably, Medeiros and Mendes (2016), and Giannone et al. 

(2021) recommend Lasso models for macroeconomic forecasting, which have shown to 

outperform traditional benchmarks. These studies primarily focus on US inflation data and 
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short-term forecasting. The most extensive study by Medeiros et al. (2019) reveals that although 

shrinkage methods are slightly less precise than tree-based methods in the US, they significantly 

enhance forecasting accuracy. 

Regarding nonlinearities, Medeiros et al. (2019) also provide a theoretical backdrop. For 

example, the relationship between inflation and employment is nonlinear and depends on 

economic slackness. Additionally, nonlinearity arises from uncertainty; for instance, the 

nonlinear hiring practices due to the high costs associated with firing employees. Furthermore, 

the zero lower bound (ZLB) on nominal interest rates introduces nonlinearity between inflation, 

employment, and interest rates, especially under unconventional monetary policies. The role of 

houses as collateral and their interaction with monetary policy and financial intermediation 

further complicates this nonlinearity. As evidenced during the Great Recession, the burst of a 

housing bubble can precipitate severe credit downturns, marked by nonlinear dynamics. Our 

dataset for Slovakia encompasses the Great Recession and a prolonged period of near-ZLB 

interest rates, suggesting that nonlinearities are significant in the timeframe under study. What 

is more, Obradović and Lojanica (2022) provide further evidence of nonlinearities in inflation. 

They test the presence of a unit root in the inflation of the selected Western Balkan countries. 

The authors find that inflation in Serbia and Bosnia and Herzegovina are best described by 

nonlinear mean reverting behavior.  

To summarize the theoretical section, we first highlight the importance of providing 

accurate macroeconomic forecasts. We then outline the key advantages of data-driven models 

that rely on statistical and machine learning techniques. We also explain our rationale for 

selecting specific benchmark models. Additionally, we highlight the limitations of the main 

forecasting models commonly cited in the literature and discuss how machine learning can 

address these shortcomings. Moving forward, we delve into the application of machine learning 

within the macroeconomic framework, noting that while empirical results are promising, they 

often have a limited scope. Most studies focus on a small number of models over few 

forecasting horizons, are predominantly conducted on large economies, and largely neglect 

directional accuracy. Finally, we conclude this section by emphasizing the importance of 

considering regularization techniques and nonlinear relationships in the data to enhance 

forecasting accuracy and model robustness. In the next chapter we describe our aims. dataset, 

the forecasting setup and the methods selected for forecasting. 
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2 Aims of the thesis 

In this chapter, we outline the objectives of our research. Our principal aim is to rigorously 

evaluate the forecasting performance of various selected machine learning models and compare 

these results against an econometric benchmark model. To the authors’ knowledge, there is no 

published study at the time of writing this thesis that dwells on the applicability and 

performance of these methods in a small open industrialized economy in a monetary union.   

We forecast key Slovakian macroeconomic time series; specifically, industrial production 

and inflation. Medeiros et al. (2019), Coulombe et al. (2022), and Maehashi and Shintani (2020) 

also forecast these variables, deemed to be representative indicators of a nation's economic 

health, to assess the performance of machine learning models. 

To fulfill the principal objective of our study, we have established several specific goals: 

 Methodological detailing. In Chapter 3, we describe the machine learning 

methods used in our research in detail. We also outline our three key 

methodological contributions. These consist of combining regularized and 

nonlinear methods, using machine learning methods as forecast combination 

tools, and comparing the performance of principal component analysis with 

regularization as a dimensional reduction technique.  

 Data description. We provide a detailed description of the macroeconomic 

database provided by the National Bank of Slovakia. This part also includes an 

overview of the data gathering and preprocessing steps taken to prepare the data 

for analysis.  

 Performance analysis. We conduct a thorough analysis of the performance of 

various machine learning models in forecasting Slovakian macroeconomic 

variables. This involves testing specific hypotheses related to the effectiveness of 

these models compared to traditional forecasting methods. 

 Summarization and Recommendations. Finally, we aim to summarize the 

results of our study and provide policy and methodological recommendations 

based on our findings. We also suggest areas for further research that could build 

on our work, potentially leading to improved forecasting methods or applications 

in other economic contexts. 
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By systematically addressing these aims, we hope to contribute significantly to the field 

of economic forecasting, particularly in the context of applying advanced computational 

techniques to the analysis of macroeconomic data. 

To achieve our objectives, we need to adopt the following primary and secondary 

scientific hypotheses for each forecasted variable. The primary scientific hypotheses are: 

H1 Nonlinearities play a Nonlinearities play a statistically significant role in the data generating process of the 

Slovak macroeconomic time series. 

H2 Regularization can statistically significantly improve the quality of the macroeconomic 

forecasts of our target variables. 

 

If true, then when employing observable "hard" data, at least one machine learning model 

from either the Regularized Least Squares or the Ensemble Machine Learning categories, as 

specified later in Chapter 3, should statistically significantly outperform the benchmark at every 

forecast horizon.  

Our primary aim is a rigorous assessment of model performance, which lacks an exact 

definition. However, based on Coulombe (2022) we believe that, in addition to the main 

hypotheses, our secondary scientific hypotheses can be considered comprehensive. These 

secondary scientific hypotheses are: 

H3 Hybrid models can enhance the forecast accuracy of nonlinear methods. 

H4 
When using indicator data, forecasting models based on machine learning are 

more likely to forecast the correct direction of the change in the variable than 

the benchmark model. 

H5 Regularization based methods based on hard macroeconomic data deliver 

better performance than dimensional reduction based on PCA. 

 

To summarize, this chapter presents the principal aim of the thesis along with the partial 

aims, and both the primary and secondary hypotheses. In the following section, we describe the 

tools used to achieve these aims. 
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3 Methodology and methods 

In this chapter, we outline the methods and methodology used to obtain our results. 

Firstly, we briefly describe the R statistical programming software used for our calculations. 

The packages used for modeling are listed in Table 1. Secondly, we introduce our benchmark 

models. As we automate the exploration of functional space, Table 2 presents different 

benchmark possibilities. 

Thirdly, we discuss the first group of methods, known as Ensemble Machine Learning. 

Fourthly, we provide a theoretical description of Regularized Least Squares methods. We 

selected multiple models from each category to provide a thorough overview of each category's 

performance and to highlight the main benefits and limitations of each method. We categorize 

the models following Coulombe et al. (2022), grouping them by their ability to either regularize 

or capture nonlinear relationships. We chose three methods from each category to ensure our 

results are robust and not merely due to chance from selecting a single method. 

Fifthly, we present one of our key methodological contributions: the potential to combine 

these two model categories to enhance results. Sixthly, we outline the two types of neural 

networks considered for forecasting. Seventhly, we characterize the Support Vector Machine 

Regression. Eighthly, we describe our forecasting setup, focusing on the rolling window 

approach, extracting and applying common factors, and the methods by which we prepare 

composite forecasts using machine learning. 

The ninth subchapter presents the forecast evaluation procedures. The tenth subchapter 

explains stationarization, describes the macroeconomic database of the National Bank of 

Slovakia, and outlines our database and observation periods. 

In summary, this chapter provides a comprehensive overview of our methodology, 

machine learning methods, the evaluation of their performance, and data description.  

 

3.1 RStudio 

RStudio1 is an integrated development environment (IDE) tailored specifically for the R 

programming language, which is extensively utilized in scientific research and data analysis. It 

                                                
1 https://posit.co/download/RStudio-desktop/ 
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features a variety of packages and offers a user-friendly interface for composing, executing, and 

debugging R code, making it an indispensable tool for researchers engaged in statistical 

analysis, data visualization, and scientific modeling. 

RStudio enhances productivity through tools like syntax highlighting, code completion, 

and built-in data visualization capabilities, which help streamline data-driven workflows. This 

makes it a highly efficient, intuitive, and user-friendly platform with extensive resources for 

implementing machine learning methods. The list of the packages, along with their respective 

machine learning methods is provided in Table 1. The code snippets of each method along with 

the CV and manual hyperparameter setup are presented in the subchapters of the particular 

method’s description.  

Table 1: R packages 

Method Package 

Benchmark “forecasting” by Hyndman and Khandakar 

(2008) 

Ridge “glmnet” by Friedman et al. (2010) 

Lasso “glmnet” by Friedman et al. (2010) 

Elastic Net (EN) “glmnet” by Friedman et al. (2010) 

Random Forest (RF) “randomForest” by Liaw and Wiener (2002) 

Boosting “caret” by Max (2008) 

Bagging “caret” by Max (2008) 

Support Vector Machine (SVM) https://cran.r-

project.org/web/packages/e1071/index.html2 

Feedforward Neural Network (FFNN) “nnet” by Venables and Ripley (2002) 

Long Short-Term Memory Neural 

Network (LSTM) 

https://tensorflow.RStudio.com/3 

Source: authors’ own work 

Moreover, except for a few hyperparameters which we have to manually specify, we 

utilize these packages to automatically adjust the hyperparameters during each iteration of the 

forecasting procedure. This approach ensures that we achieve the optimal values for each 

individual forecast. In summary, RStudio serves as an effective and straightforward tool for 

macroeconomic forecasting with machine learning, so we use it. 

 

 

 

                                                
2 This package lists no citation info at the website so I can only provide the website link.  
3 This package lists no citation info at the website so I can only provide the website link. 
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3.2 Benchmark models 

In this subchapter we detail the forecasting methods employed in our study. Our 

computational work is conducted using RStudio. As benchmarks, we employ models such as 

Autoregressive Integrated Moving Average (ARIMA) and Random Walk (RW), the latter being 

a simpler subset of ARIMA models. These models are selected based on their fit as determined 

by the Akaike Information Criterion (AIC), which RStudio calculates automatically. 

    𝑦𝑡+ℎ = 𝑦𝑡 + 𝜖𝑡+ℎ ,          (1) 

where 𝑦𝑡+ℎ  represents the forecast of the target variable at time 𝑡 + ℎ, 𝑦𝑡 is the last observed 

value of the target variable at time 𝑡, and 𝜖𝑡+ℎ is the white noise error term at time 𝑡 + ℎ. Besides 

Stock and Watson (2010), Atkenson and Ohanian (2001) also show that despite being a simple 

model, the Random Walk is hard to beat in forecasting exercises. Pratap and Sengupta (2019), 

Mahajan and Srinivasan (2019) and Medeiros et al. (2019) also use this model as one of their 

benchmarks.  

Additionally, Pratap and Sengupta (2019) and Chakraborty and Joseph (2017) also 

incorporate the ARIMA(p,d,q) model of Box and Jenkins (1970) as another benchmark, 

underlining its prevalent use for comparative analysis in time series forecasting.  We write an 

ARIMA model as 

        𝜙(𝐵)(1 − 𝐵𝑑)𝑦𝑡 = 𝑐 + 𝜃(𝐵)𝜀𝑡,      (2) 

where 𝜀𝑡 is a white noise error term, d is the order of integration, 𝐵 represents the lag operator, 

and 𝜙 and 𝜃 are the AR and MA polynomials of order p and q, respectively, which describe the 

order of the autoregressive and moving average terms.  

As the model selection procedure is automated in R with the auto.arima function from the 

forecasting package of Hyndman and Khandakar (2008), other possible benchmark models, 

nested in the ARIMA framework, are presented in Table 2. 

Table 2: Possible benchmark specifications  

White noise ARIMA(0,0,0) with no constant 

Random walk ARIMA(0,1,0) with no constant 

Random walk with drift ARIMA(0,1,0) with a constant 

Autoregressive ARIMA(p,0,0) 

Moving average ARIMA(0,0, q) 
Source: Box and Jenkins (1970) 
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3.3 Ensemble Machine Learning 

This subchapter presents the Ensemble Machine Learning methods, namely Random 

Forest, Boosting and Bagging. It is largely based on Masini et al. (2021). Before describing the 

methods, we provide a brief note on the symbols used.  An uppercase letter like 𝑋 represents a 

random variable, whereas a lowercase letter 𝑥 indicates a fixed (non-random) value. Bold type, 

used for both 𝑿 and 𝒙, signifies multivariate entities like vectors or matrices. The notation ∥⋅∥𝑞 

for 𝑞 ≥ 1 stands for the ℓ𝑞 norm of a vector. For any set 𝑆 we use |𝑆| to denote its size.  

The objective is to forecast 𝑌𝑇+ℎusing 𝑇 observations of the random (𝑌𝑡, 𝒁𝑡
′ )′, where ℎ =

1, … , 𝐻. The following derivations of machine learning methods assume that {(𝑌𝑡 , 𝒁𝑡
′ )′}𝑡=1

∞  is a 

covariance-stationary stochastic process on ℝ𝑑+1. As a result, we stationarize the data prior to 

training.   

To continue with, we define an 𝑛-dimensional vector of predictors 𝑿𝑡: =

(𝑌𝑡−1, … , 𝑌𝑡−𝑝, 𝒁𝑡
′ , … , 𝒁𝑡−𝑟

′ )
′
 using fixed integers 𝑝 ≥ 1 and 𝑟 ≥ 0, where 𝑛 = 𝑝 + 𝑑(𝑟 + 1). 

In the rest of the thesis, we consider the direct forecasting model 

𝑌𝑡+ℎ = 𝑓ℎ(𝑿𝑡) + 𝑈𝑡+ℎ ,  ℎ = 1, … , 𝐻,  𝑡 = 1, … , 𝑇.      (3) 

Here, 𝑓ℎ : ℝ𝑛 → ℝ is an undefined (measurable) function, and 𝑈𝑡+ℎ: = 𝑌𝑡+ℎ − 𝑓ℎ(𝑿𝑡) is 

presumed to have zero mean and finite variance. 

In equation (3), the function 𝑓ℎ(𝑿𝑡) is unknown, and for many applications, the 

assumption of linearity proves too limiting, necessitating more flexible forms. Assuming a 

quadratic loss function, the estimation problem becomes the minimization of the functional \( 

𝑆(𝑓), defined as 

𝑆(𝑓): = ∑  𝑇−ℎ
𝑡=1 [𝑌𝑡+ℎ − 𝑓(𝑿𝑡)]2,      (4) 

where 𝑓 ∈ 𝒢, a generic function space. 

 

3.3.1 Decision Tree 

Masini et al. (2021) explain the basic concept of a decision tree as follows. A decision 

tree is a nonparametric approach that through local approximations estimates an unknown 

nonlinear function 𝑓ℎ(𝑿𝑡) from (3). This is achieved by recursively splitting the covariate space.  
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Masini et al. (2021) provide a graphical example. Figure 1 presents a decision tree on the 

left side, which corresponds to the spatial partitioning shown on the right side for a two-

dimensional case. For instance, consider predicting basketball players' scores based on their 

height and weight. The tree’s initial split divides players based on a height threshold of 1.85 

meters, separating taller players from shorter ones. Following this, the tree further divides each 

group based on weight: the left branch continues with shorter players, and the right with taller 

ones. The scores are then predicted at each terminal node by calculating the average score 

within each group. The process of developing the tree involves determining the optimal point 

for splitting at each node, which involves selecting the best variable and the specific value for 

the split, such as height at 1.85 meters in the given example. 

   Figure 1: Decision Tree 

 
Source: Masini et al. (2021) 

The decision tree approximates the function 𝑓ℎ(𝑿𝑡) using the formula  

ℎ𝐷(𝑿𝑡) = ∑  
𝐽𝑇
𝑗=1 𝛽𝑗𝐼𝑗(𝑿𝑡),   where  𝐼𝑘(𝑿𝑡) = {

1  if 𝑿𝑡 ∈ ℛ𝑗 ,

0  otherwise. 
.    (5) 

This model essentially represents a linear regression on 𝐽𝑇 dummy variables, with each 𝐼𝑗(𝑿𝑡) 

being a product of indicator functions that activate based on whether 𝑿𝑡 ∈ ℛ𝑗 defined by the 

tree's splits. Let 𝐽: = 𝐽𝑇  denote the set of indices for parent nodes (where a leaf begins) and 𝑁: =

𝑁𝑇 for terminal nodes (where a leaf ends). The tree's structure has regions labeled as ℛ1, … , ℛ𝑗, 

with the root node (first parent node) located at position 0. Each parent node at position 𝑗 has 
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two child (split) nodes located at positions 2𝑗 + 1 and 2𝑗 + 2. Each parent node is associated 

with a threshold (split) variable 𝑋𝑠𝑗𝑡, where 𝑠𝑗 ∈ 𝕊 = {1,2, … , 𝑝}.  

Figure 2 presents an example based on Masini et al. (2021). On Figure 2 the parent nodes 

are indexed by 𝕁 = {0,2,5} and the terminal nodes, which are the leaf ends where predictions 

occur, are indexed by 𝕋 = {1,6,11,12}. This example shows how different regions and splits 

are organized within a regression tree to categorize data points based on their covariate values, 

thus facilitating the stepwise prediction process modeled by ℎ𝐷(𝑿𝑡). 

 Figure 2: Parent and terminal nodes of a decision tree 

 
Source: Masini et al. (2021) 

 

The approximating model can be written as 

ℎ𝐷(𝑿𝑡) = ∑  𝑖∈𝕋 𝛽𝑖𝐵𝕁𝑖(𝑿𝑡; 𝜽𝑖) ,      (6) 

where 
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𝐵J𝑖(𝑿𝑡; 𝜽𝑖) = ∏  

𝑗∈J

 𝐼 (𝑋𝑠𝑗,𝑡; 𝑐𝑗)

𝑛𝑖,𝑗(1+𝑛𝑖,𝑗)

2
× [1 − 𝐼 (𝑋𝑠𝑗,𝑡; 𝑐𝑗)]

(1−𝑛𝑖,𝑗)(1+𝑛𝑖,𝑗)

,

𝐼 (𝑋𝑠𝑗,𝑡; 𝑐𝑗) = {
1  if 𝑋𝑠𝑗,𝑡 ≤ 𝑐𝑗

0  otherwise, 

𝑛𝑖,𝑗 = {

−1  if the path to leaf 𝑖 does not include parent node 𝑗;
0  if the path to leaf 𝑖 include the right-hand child of parent node 𝑗;
1  if the path to leaf 𝑖 include the left-hand child of parent node 𝑗.

 

Here, the notation 𝕁𝑖 refers to the indices of parent nodes that are included in the path leading 

to leaf node 𝑖. Each leaf node 𝑖, which belongs to the set 𝕋, is associated with a set of conditions 

𝜽𝑖 = {𝑐𝑘} where 𝑘 belongs to 𝕁𝑖. These conditions 𝑐𝑘 are thresholds or decision criteria at each 

parent node that must be satisfied for the path to proceed towards the terminal node 𝑖.  

The expression ∑𝑗∈𝕁  𝐵𝕁𝑖(𝑿𝑡; 𝜽𝑗) = 1 describes a fundamental property of the decision 

tree structure. Here, 𝐵𝕁𝑖(𝑿𝑡; 𝜽𝑗) is a binary function that evaluates to 1 if the input 𝑿𝑡 meets the 

criteria specified by 𝜽𝑖 for the path to node 𝑖, and 0 otherwise. This implies that for any given 

input 𝑿𝑡, exactly one path through the tree will satisfy all the conditions from the root to a 

terminal node, ensuring that each input is uniquely classified into one region ℛ𝑖. 

 

3.3.2 Random Forest 

Breiman (2001) introduces Random Forest (RF), while Wager and Athey (2018) prove 

consistency and asymptotic normality of the RF estimator of 𝑓ℎ(𝑿𝑡). Masini et al. (2021) 

provide a brief overview. Random Forest consists of multiple regression trees, each developed 

from a bootstrap sample of the initial dataset. Considering the context of time series data, a 

block bootstrap approach is utilized. Let's assume there are 𝐵 bootstrap samples. For each 

sample 𝑏, 𝑏 = 1, … , 𝐵, a tree containing 𝐾𝑏 regions is constructed using a randomly chosen 

subset of the original regressors. The parameter 𝐾𝑏is selected to ensure a minimum number of 

observations in each region. The ultimate prediction is derived by averaging the outputs from 

each tree when applied back to the original data in the following way 

�̂�𝑡+ℎ∣𝑡 =
1

𝐵
∑𝑏=1

𝐵  [∑𝑖=1
𝕋𝑏  �̂�𝑖,𝑏𝐵] ]𝑖,𝑏(𝑿𝑡; �̂�𝑖,𝑏)].    (7) 

Besides the work of Wager and Athey (2018) on inference from random forests, Davis 

and Nielsen (2020) also demonstrate a uniform concentration inequality for regression trees 
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based on nonlinear autoregressive stochastic processes and establishes the consistency for a 

broad range of random forests.  

Figure 3 depicts the R code for the Random Forest method, utilizing the "train" function 

from the caret package for optimal training outcomes. We restrict the number of variables 

randomly sampled as candidates at each split (known as "mtry") to 60 or fewer. This is a 

reduction from the default setting, which samples about one-third of the total variables, 

approximately 80 variables, and would significantly increase computational costs. However, 

we allow for fewer than 60 variables at splits if the data indicates that this is optimal. Other 

hyperparameters of the Random Forest method, such as the number of trees ("ntree"), the size 

of terminal nodes ("nodesize"), and their maximum number in a forest ("maxnodes"), are 

determined through 5-fold cross-validation at each iteration of the rolling window process4. 

Figure 3: R code of the Random Forest method 

 
Source: based on Max (2008) 

 

3.3.3 Boosting 

Masini et al. (2021) reviews the Boosting algorithm. Boosting is a method that 

progressively refines the approximation of nonlinear functions using simple base learners, 

through a process called sequential approximation. Specifically, the version known as Gradient 

Boosting, introduced by Schapire (1990) and Friedman (2001), operates like a Gradient Descent 

in the space of functions. 

This approach is iterative, where boosted decision trees aim to adjust the gradient of the 

loss function using small trees in each cycle. For a quadratic loss as in (4), which is the focus 

of this discussion, the algorithm effectively refits the residuals left from the previous round. 

The described boosting algorithm, particularly for quadratic losses, employs a shrinkage 

parameter 𝑣 ∈ (0,1] within the range of (0,1] to moderate the learning speed. When 𝑣 

                                                
4 For more information on our forecasting setup, please refer to Subchapter 3.8.1 
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approaches 1, the model converges faster and fits better to the training data, though it risks 

overfitting and potentially poor performance on new, unseen data. Overfitting can significantly 

skew derivative estimates, even when only considering training data. Therefore, a learning rate 

between 0.1 and 0.2 is suggested to achieve a balance between convergence speed and 

overfitting mitigation. 

The boosting algorithm works as follows: 

1. Initialize: 

𝜙𝑖0 = 𝑌‾ : =
1

𝑇
∑𝑡=1

𝑇  𝑌𝑡. 

This value serves as the initial approximation of the response variable. 

2. For each iteration 𝑚 = 1, … , 𝑀: 

(a) Compute residuals as 

𝑈𝑡𝑚 = 𝑌𝑡 − 𝜙𝑡𝑚−1. 

This step involves calculating the residuals between the actual data points and the predictions 

from the previous iteration. 

(b) Fit a tree model as  

�̂�𝑡𝑚 = ∑𝑖∈𝕋𝑚
 �̂�𝑖𝑚𝐵𝕁𝑚𝑖(𝑿𝑡; �̂�𝑖𝑚). 

Here, a tree model is grown to fit these residuals. Each tree makes a prediction �̂�𝑡𝑚 which is a 

sum over the leaves 𝑖 of the tree 𝕋𝑚, weighted by coefficients �̂�𝑖𝑚, and evaluated using basis 

functions 𝐵𝕁𝑚𝑖  parameterized by �̂�𝑖𝑚. 

(c) Optimize the contribution of the tree 

𝜌𝑚 = arg min𝜌  ∑𝑡=1
𝑇  [𝑢𝑡𝑚 − 𝜌�̂�𝑡𝑚]2. 

This step involves finding the optimal scaling factor 𝜌𝑚 that minimizes the squared error 

between the actual residuals and the scaled predictions from the current tree. 

(d) Update the model 

𝜙𝑡𝑚 = 𝜙𝑡𝑚−1 + 𝑣𝜌𝑚�̂�𝑡𝑚. 
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The predictions are updated by adding a fraction (controlled by the shrinkage parameter 𝑣 of 

the scaled tree predictions to the previous predictions. 

3. Final Model: 

The final prediction for a future value �̂�𝑡+ℎ is given by 

�̂�𝑡+ℎ  = 𝑌‾ + ∑  𝑀
𝑚=1  𝑣𝜌𝑚�̂�𝑡𝑚

 = 𝑌‾ + ∑  𝑀
𝑚=1  𝑣�̂�𝑚 ∑  𝑘∈𝕋𝑚

  �̂�𝑘𝑚𝐵𝕁𝑚𝑘(𝑿𝑡; �̂�𝑘𝑚)
    (8) 

This expression represents the initial average plus the accumulated contributions of all trees, 

adjusted by their respective optimal scaling 𝜌𝑚 and the shrinkage factor 𝑣. 

This sequential building and updating process is designed to iteratively reduce errors in 

the predictions, using trees to model residuals at each step and adjusting the contribution of 

each tree to prevent overfitting. 

Figure 4: R code of the Boosting method 

 
Source: based on Max (2008) 

In the case of Boosting, we specify additional values for the hyperparameters, either for 

computational efficiency or based on theoretical considerations. We continue to utilize the 

"train" function from the caret package of Max (2008). Initially, we set the shrinkage parameter 

to either 0.01 or 0.1, following the recommendations of Masini et al. (2021) to strike a balance 

between fit quality and computational expense. Furthermore, we determine the number of trees 

to grow ("n.trees"), and we set potential values for interaction depth as well as for the minimum 

number of observations required in each node ("n.minobsinnode"). Subsequently, we employ 

5-fold cross-validation to compute the remaining hyperparameters at each iteration of the 

rolling window process and to evaluate our specified values, ultimately selecting the best-

performing model. 
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3.3.4 Bagging 

Breiman (1996) introduces the concept of bagging, short for Bootstrap Aggregating, 

Bagging is a method to decrease the variance of unstable predictors. It gained traction within 

the time series analysis community through the work of Inoue and Kilian (2008). They applied 

it to generate predictions using multiple regression models that have nearly zero regression 

coefficients and potentially correlated or conditionally heteroscedastic errors. In the context of 

time series, the bagging algorithm must consider the temporal aspect when creating bootstrap 

samples. Bagging is particularly useful when the predictor count is large compared to the 

sample size, as in our case. Masini et al. (2021) describes the bagging algorithm for times series 

models as follows:  

1. Organize the set of tuples (𝑦𝑡+ℎ , 𝒙𝑡
′ ), 𝑡 = ℎ + 1, … , 𝑇 into a matrix 𝑽 which has 

dimensions (𝑇 − ℎ) × 𝑛. This matrix contains the target variable 𝑦𝑡+ℎ and the predictors 𝒙𝑡
′  

from each corresponding time period. 

2. Generate bootstrap samples. For 𝑖 = 1, … , 𝐵 (where 𝐵 is the number of bootstrap 

samples we create), draw blocks of 𝑀 rows from matrix 𝑽 with replacement. These blocks form 

the bootstrap samples {(𝑦(𝑖)2
∗ , 𝒙(𝑖)2

′∗ ), … , (𝑦(𝑖)𝑇
∗ , 𝒙(𝑖)𝑇

′∗ )}. 

3. Compute Bootstrap Forecasts. For each bootstrap sample, calculate the forecast 

�̂�(𝑖)𝑡+ℎ∣𝑡
∗  as 

�̂�(𝑖)𝑡+ℎ∣𝑡
∗ = {

0  if |𝑡𝑗
∗| < 𝑐∀𝑗,

�̂�(𝑖)
∗ �̃�(𝑖)𝑡

∗  otherwise, 
,     (9) 

where �̃�(𝑖)𝑡
∗ : = 𝑺(𝑖)𝑡

∗ 𝒛(𝑖)𝑡
∗  and 𝑺𝑡 is a diagonal selection matrix with the 𝑗-th diagonal element 

given by 

𝕀{|𝑡𝑗|>𝑐} = {
1  if |𝑡𝑗| > 𝑐,

0  otherwise ,
. 

Here 𝑐 is a critical value predefined in our analysis, and �̂�(𝑖)
∗  is the Ordinary Least Squares 

(OLS) estimator recalculated for each bootstrap sample. 

4. Average the forecasts. Finally, compute the average forecast �̃�𝑡+ℎ∣𝑡 over all bootstrap 

samples as  
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�̃�𝑡+ℎ∣𝑡 =
1

𝐵
∑  

𝐵

𝑖=1

�̂�(𝑖)𝑡∣𝑡−1
∗ . 

This structured approach iteratively assesses the robustness and stability of the model 

predictions by using the block bootstrap method, accounting for temporal dependencies and 

potential heteroscedasticity in the time series data. 

The bagging algorithm outlined above necessitates the ability to estimate and analyze in 

a linear model. However, this becomes impractical when the number of predictors exceeds the 

sample size (𝑛 > 𝑇), necessitating modifications to the algorithm. Garcia et al. (2017) and 

Medeiros et al. (2019) implement the following modifications to the algorithm: 

0. Perform n univariate regressions of 𝑦𝑡+ℎ on each covariate in 𝑥𝑡. Calculate the t-

statistics and retain only those that are significant at a predetermined level. Label this new set 

of regressors as �̌�𝑡.  

1-4. Follow the same steps as previously, but replace 𝒙𝑡 with �̌�𝑡. 

 

3.4 Regularized Least Squares 

 Regularized Least Squares (RLS) encompasses penalized regression methods. Here we 

consider the Lasso, Ridge and Elastic Net. Before we dive deep into the methods, we outline 

our notation. This subchapter is based on the work of Kock et al. (2020). 

For any vector 𝑥 ∈ ℝ𝑛, the ℓ2-norm of  𝒙  is defined as ∥ 𝑥 ∥= √∑𝑖=1
𝑛  𝑥𝑖

2, which 

represents the Euclidean norm. The ℓ1-norm of 𝑥, denoted as ∥ 𝑥 ∥ℓ1
, is the sum of the absolute 

values of the entries of 𝑥, or ∑𝑖=1
𝑛  |𝑥𝑖|. The ℓ0-"norm" of  𝒙 , although technically not a norm, 

counts the number of non-zero elements in 𝑥, given by ∥ 𝑥 ∥ℓ0
= ∑𝑖=1

𝑛  1{𝑥𝑖≠0}. 

For any subset 𝐴 ⊆ ℝ𝑛, the cardinality of 𝐴 is represented as |𝐴|. The vector 𝒙𝐴 is derived 

from  𝒙  and contains only those entries of 𝒙 whose indices are in 𝐴, resulting in a vector of 

length ∣ 𝐴 ∣̅̅ ̅̅ . Similarly, for an 𝑛 × 𝑛 matrix 𝑩 denotes the submatrix consisting of rows and 

columns indexed by 𝐴, and is thus of dimension |𝐴| × |𝐴|. 

Next, this chapter explores variants of the classical linear regression model, written as 

𝑦𝑡 = 𝛽′𝑥𝑡 + 𝜖𝑡 ,  𝑡 = 1, … , 𝑇,     (10) 
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where 𝑇 ∈ ℕ and 𝛽 is a 𝑘 × 1 vector of unknown parameters. The subscript 𝑡 indicates that the 

observations are sequential, reflecting the time series nature of the data. Furthermore, 𝛽0 

denotes the true parameter vector, which is assumed to be unique within the context of this 

chapter. Define 𝒜 = {𝑖: 𝛽𝑖
0 ≠ 0}. The cardinality of 𝒜, denoted 𝑠0 = |𝒜|, reflects the number 

of non-zero coefficients. When 𝑠0 is substantially smaller than  𝑘, 𝛽0 is described as sparse. 

This sparsity is crucial for certain statistical methods and interpretations within time series 

analysis. 

Consider the equation 𝒚 = 𝑿𝜷 + 𝝐 represented in the standard matrix format, where 𝒁 =

(𝒚, 𝑿). A penalized regression estimator �̂� is derived by solving the following optimization 

problem: 

�̂� ∈ argmin
𝜷∈ℝ𝑘

[∥ 𝒚 − 𝑿𝜷 ∥2+ 𝜆𝑝(𝜷, 𝜶, 𝒁)].    (11) 

Here, 𝜆 ≥ 0 acts as a penalty or tuning parameter, and p: ℝ𝑘 × ℝ𝑑 × ℝ𝑇×(1+𝑘) → [0, ∞) is the 

penalty function, which imposes a cost on the elements of 𝜷 for being non-zero. The parameter 

𝜶 is a d-dimensional tuning parameter chosen by the user. Although the penalty function 𝑝 

generally does not depend on any tuning parameter, it can be influenced by the observed data 

𝑍. 

In all of the following forms of 𝑝, for any (𝜶, 𝑩) ∈ ℝ𝑑 × ℝ𝑇×(1+𝑘), 𝑝(𝜷, 𝜶, 𝑩) = 0 if and 

only if 𝜷 = 0. This condition means p penalizes 𝜷 when it is not zero, thereby the estimator �̂� 

from equation (11) is termed penalized as it minimizes both the regular least squares objective 

and the penalty function 𝑝. The value of 𝜆, when increased, assigns more importance to the 

penalty function, leading to �̂� having generally smaller (in absolute terms) entries compared to 

the least squares estimator. Moreover, Kock et al. (2020) emphasize that the penalties discussed 

lead to estimators that are viable even when 𝑘 > 𝑇.  

 

3.4.1 Ridge  

The first penalty term, Ridge, is presented in Hoerl and Kennard (1970) and concisely 

described in Kock et al. (2020). It uses 

p(𝜷, 𝛼, 𝒁) = ∑  𝑘
𝑖=1 𝛽𝑖

2.     (12) 
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The Ridge Regression estimator, �̂�ridge (𝜆), is derived from the closed-form solution 

�̂�ridge (𝜆) = (𝑿′𝑿 + 𝜆𝑰𝑘)−1. Note that �̂�ridge (0) = �̂�OLS when well-defined. Ridge Regression 

proves particularly useful when 𝑋′𝑋 is (nearly) singular, where the ordinary least squares (OLS) 

estimator faces issues such as non-uniqueness and high variance. Although unbiased in cross-

sectional data, the high variance of the OLS estimator leads to a significant mean square error 

(MSE). In contrast, �̂�ridge  is biased for any 𝜆 > 0; however, there is always some 𝜆 > 0 for 

which the MSE of �̂�ridge (𝜆) is strictly lower than that of the OLS estimator, as detailed in Hoerl 

and Kennard (1970). This lower variance underpins the effectiveness of Ridge Regression even 

in time series analysis. However, it's important to note that although Ridge Regression reduces 

the magnitude of the parameter estimates (i.e., ∥∥�̂�ridge (𝜆)∥∥
2

< ∥∥�̂�𝑂𝐿𝑆∥∥
2
 for 𝜆 > 0), it does not 

produce coefficients that are exactly zero, thus limiting its utility for variable selection.  

Figure 5 illustrates the R code for implementing the Ridge regression method. We 

optimize the parameter values for 𝜆 as suggested by Friedman et al. (2010), while setting  𝛼 =

0 to configure a Ridge model. We proceed with the model training using 5-fold cross-validation 

and utilize the "train" function from the care package of Max (2008) to select the optimal 𝜆 

during each iteration of the rolling window process. Upon determining the best 𝜆 value, we 

estimate the Ridge model using the "glmnet" function from the glmnet package by Friedman et 

al. (2010). Subsequently, we use the estimated model for predictions and calculate the forecast 

errors. 

Figure 5: R code of the Ridge method 

 
Source: based on Friedman (2010) and Max (2008) 
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3.4.2 Least Absolute Shrinkage and Selection Operator (LASSO) 

The second penalty term is Lasso, introduced by Tibshirani (1996) and briefly outlined 

in Kock et al. (2020). It uses 

p(𝜷, 𝛼, 𝒁) = ∑  𝑘
𝑖=1 |𝛽𝑖|,    (13) 

within the framework described by equation (11). This contrasts with Ridge Regression, which 

employs the squared ℓ2-norm; the Lasso uses the ℓ1-norm. A distinctive feature of the Lasso is 

its ability to produce coefficient estimates that are exactly zero when the penalty parameter 𝜆 is 

sufficiently large, effectively performing variable selection.  

The Lasso combines estimation and variable selection in a single step, starkly contrasting 

traditional methods which typically estimate parameters first and then conduct hypothesis tests 

to determine which parameters are non-zero. Traditional model testing procedures heavily 

depend on the sequence and type of tests conducted, such as sequential t-tests or a combination 

of joint and individual tests, leading to final models that vary based on the testing approach. 

Alternatives like using information criteria (AIC, BIC, HQ) for model selection also exist. Both 

of these variable selection methods are generally applicable only to least squares estimates for 

𝑘 < 𝑇 and become computationally burdensome as 𝑘 increases. The Lasso, therefore, is 

particularly popular in high-dimensional settings where the number of predictors 𝑘 < 𝑇. 

With regards to inference, van de Geer et al. (2014) introduces the desparsified LASSO 

to create (asymptotically) valid confidence intervals for each 𝛽𝑗,0 by adjusting the original 

LASSO estimate �̂�.  Van de Geer et al. (2014), however, do not explore time series analysis. 

Adámek et al. (2020) further develop the foundational work by van de Geer et al. (2014), 

applying it to time-series models. They adapt the desparsified LASSO for time series analysis, 

even when the number of regressors may increase faster than the sample size.  

The code for optimizing Lasso, as illustrated in Figure 5, remains identical except for the 

modification where 𝛼 is set to 1. This adjustment configures the model for Lasso regression, 

which enables variable selection by shrinking certain parameter coefficients to zero. 

 

3.4.3 Elastic Net 

The third penalty term, introduced by Zou and Hastie (2005), is the Elastic Net. The 

method is briefly characterized in Kock et al. (2020).  The penalty function is 
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p(𝜷, 𝜶, 𝒁) = 𝛼 ∑  𝑘
𝑖=1 𝛽𝑖

2 + (1 − 𝛼) ∑  𝑘
𝑖=1 |𝛽𝑖|   (14) 

for 𝛼 ∈ [0,1]. This penalty represents a convex combination of the Ridge Regression penalty 

(𝛼 = 1) and the Lasso penalty (𝛼 = 0), effectively harnessing the benefits of both approaches. 

Particularly in scenarios where there is high correlation among explanatory variables—

common in time series applications—the Lasso tends to select only one variable from a group 

of correlated variables. This selection might not be ideal depending on the specific application 

requirements. For instance, if the objective is to consider all relevant variables within a highly 

correlated group, the elastic net becomes preferable as it tends to include multiple correlated 

variables rather than selecting just one. This makes the elastic net particularly useful in 

applications where the representation of all related variables is critical. 

Figure 6 presents the R code for the Elastic Net method. This code is nearly identical to 

that shown in Figure 5, with the key distinction being the optimization of both 𝜆 and 𝛼 at each 

iteration. This dual optimization ensures that we assign the optimal weight to both the squared 

ℓ2-norm (Ridge) and the ℓ1-norm (Lasso) at each iteration, effectively balancing shrinkage and 

variable selection. 

Figure 6: R code of the Elastic Net method 

 
Source: based on Friedman (2010) and Max (2008) 

 

3.4.4 Selection of penalty parameters 

Kock et al. (2020) show an example of cross-validation applied to RLS models. Cross-

validation (CV) is one of the most commonly used methods for selecting models and variables. 

In penalized regressions, CV is utilized to choose the penalty parameters. This technique 

involves dividing the sample into two separate groups: a training set (known as "in-sample") 

and a validation set (referred to as "out-of-sample"). The model parameters are determined only 
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using the data from the training set, and the model's performance is then evaluated on the 

validation set. Consider Λ and 𝐴 as the sets of possible values for the parameters 𝜆 and 𝛼, 

respectively. Also, let V ⊆ {1, … , 𝑇} be the indices for the validation set observations, and T ⊆

{1, … , 𝑇} the indices for the training set observations. Typically, but not always, the training set 

indices are the complement of the validation set indices as T: = V𝑐 . The estimated parameter, 

�̂�T(𝜆, 𝜶), is calculated from the training data 𝑇 for each pair of tuning parameters (𝜆, 𝛼) ∈ Λ ×

𝐴. 

For each pair of tuning parameters (𝜆, 𝛼), the function  

𝐶𝑉(𝜆, 𝛼, V) = ∑  𝑡∈V (𝑦𝑡 − 𝑥𝑡
′�̂�T(𝜆, 𝛼))

2

  

represents the summation of squared prediction errors over the validation set V, where 𝑦𝑡 and 

𝑥𝑡
′ are the observed outcomes and predictor values, respectively, and �̂�T(𝜆, 𝛼) is the parameter 

estimate from the training set. The variable V refers to a pre-defined collection of validation 

sets, denoted as 𝑉 = {V1, … , V𝐵}, each paired with corresponding training sets {T1, … , T𝐵}.  

The cross-validation error for a given combination of tuning parameters (𝜆, 𝛼) is 

computed as  

𝐶𝑉(𝜆, 𝛼) = ∑  𝐵
𝑖=1 𝐶𝑉(𝜆, 𝛼, V𝑖),  

where each 𝐶𝑉(𝜆, 𝛼, V𝑖) represents the prediction error for a specific validation set V𝑖. To 

identify the optimal set of tuning parameters, one selects  

(�̂�, �̂�) ∈ argmin
(𝜆,𝛼)∈Λ×𝐴

𝐶𝑉(𝜆, 𝛼). 

The final estimate of the parameters, �̂�(�̂�, �̂�) is then calculated using all observations 1, … , 𝑇. 

The determination of 𝐵 and the corresponding sets {V1, … , V𝐵} involves choosing between two 

primary types of cross-validation (CV) methods: exhaustive and non-exhaustive.  

In the exhaustive category, the most prevalent method is the leave-𝑣-out CV. This 

approach involves using 𝑣 observations as the validation set and the remaining observations to 

estimate the model parameters. This process is repeated for all possible combinations of 𝑣 

observations chosen from the total 𝑇 observations. Consequently, 𝐵 = (𝑇
𝑣
), where each V𝑖 

contains exactly 𝑣 observations, and T𝑖 = V𝑖
𝑐 , 𝑖 = 1, … , 𝐵. A frequently used configuration 

within this framework is the leave-one-out CV, where 𝑣 = 1. This results in 𝐵 = 𝑇, and each 
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validation set Vi = {𝑖} consists of a single observation indexed by 𝑖. This method is especially 

thorough as it tests each data point individually as a validation set, ensuring that the model is 

robustly validated across all data points. 

Non-exhaustive CV methods offer a practical solution to the high computational demands 

of exhaustive CV by reducing the number of sample splits. One of the most common non-

exhaustive methods is 𝐵 -fold cross-validation. In this approach, the sample is divided into 𝐵 

subsamples, or "folds," each containing approximately the same number of observations. This 

partitioning is typically done randomly to ensure that each subset is representative of the whole. 

In 𝐵 -fold CV, the 𝐵 validation groups V1, … , V𝐵 are disjoint, meaning each observation is 

included in exactly one validation group. Consequently, the training sets are defined as T𝑖 =

V𝑖
𝑐 , 𝑖 = 1, … , 𝐵.  This setup allows for each subsample to be used as a validation set once, while 

the remaining 𝐵 − 1 subsamples are used as the training set. The results from each fold are then 

averaged to produce a final model estimate. Common choices for 𝐵 are 5 or 10, balancing 

between computational efficiency and the reliability of the validation process. This method is 

widely used due to its robustness and relatively lower computational load compared to 

exhaustive methods. In this thesis we use 5-fold cross-validation for both linear and nonlinear 

models.  

 

3.5 Combined RLS and EML methods 

One of the main methodological contributions of this thesis is the proposal of machine 

learning method combination. To be more precise, we use RLS methods for data preparation 

and then apply nonlinear methods to the pre-selected or shrinked variables.  

According to our knowledge, the only other paper that proposes something similar is 

Medeiros et al. (2019). Their methodology involves two distinct specifications that integrate 

Random Forests, adaLASSO (adaptive Least Absolute Shrinkage and Selection Operator), and 

Ordinary Least Squares (OLS) regression.  

Their first specification begins with the use of a Random Forest to select relevant 

variables from a dataset. Random Forests, being robust and capable of handling nonlinearities 

and interactions between variables, effectively determine which variables are most influential. 

The variables selected through this process are then used in a traditional OLS regression. The 
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OLS model, known for its simplicity and interpretability, provides a linear relationship between 

these selected variables and the target variable, in this case, inflation.   

Their second specification starts with variable selection using adaLASSO, a modification 

of the LASSO technique that adapts the penalty terms based on preliminary estimates of the 

coefficients. This method is particularly effective in reducing the bias in variable selection, 

promoting a more refined set of predictors. Following the selection of variables through 

adaLASSO, these are then utilized within a Random Forest model. The idea here is to explore 

how the selected variables perform in a nonlinear modeling context, provided by Random 

Forest, thus assessing the impact of including or excluding certain predictors. 

The overarching goal of both methodologies is to dissect and understand the roles of 

variable selection and the handling of nonlinear relationships in economic forecasting. By 

experimenting with these hybrid approaches, Medeiros et al. (2019) aim to ascertain which 

aspects—variable selection or the ability to model nonlinear dynamics—play a more crucial 

role in accurately forecasting inflation.  

The results of Medeiros et al. (2019) show that they cannot improve upon a simple 

Random Forest benchmark, which still performs best in their dataset. In contrast to their 

methodology and results, we employ 9 different specifications (combining each RLS and EML 

method with the other) and show that the combination of these methods can lead to substantial 

improvements in forecasting accuracy. 

Figure 7: R code of the combined Elastic Net and Random Forest methods 

 
Source: based on Friedman (2010) and Max (2008) 
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Figure 7 presents an example of a hybrid specification combining the Elastic Net and 

Random Forest methods. The initial part of the Elastic Net code mirrors that shown in Figure 

6. At each iteration, we select the optimal 𝜆 and 𝛼 values using 5-fold cross-validation. We then 

estimate the Elastic Net model and select variables corresponding to non-zero coefficients. 

These selected variables are subsequently used in training the Random Forest model, also 

through 5-fold cross-validation. Finally, we use the Random Forest model, which has been 

trained on the variables identified by the Elastic Net, for forecasting. This approach leverages 

the strengths of both methods—variable selection or shrinkage from Elastic Net and the 

predictive power of Random Forest.  

 

3.6 Neural Networks 

In this subchapter, we introduce the Feedforward and Long Short -Term Memory (LSTM) 

neural networks that we employ, starting with the former. LeCun et al. (2015) provide a detailed 

examination of the Feedforward Neural Network (FFNN), offering a comprehensive review of 

neural network theory. The FFNN is described as a predictive model featuring a single hidden 

layer, written as 

𝑦𝑡+ℎ = 𝑓(𝑋𝑡) + 𝜀𝑡+ℎ,                                                  (15) 

where 

       𝑓(𝑋𝑡) = ∑  
𝑞
𝑗=1 𝜽𝑗𝜎(𝑤𝑗

′𝑿𝑡 + 𝑏𝑗) + 𝑏.               (16) 

Here, 𝜎 represents an activation function, 𝑞 denotes the number of hidden units (neurons), and 

𝜀𝑡+ℎ is the forecast error. We estimate the parameters (𝜃𝑗, 𝑤𝑗
′, 𝑏𝑗, 𝑏) for 𝑗 = 1, … , 𝑞 by 

minimizing the least square criterion. 

For the FFNN the literature standard activation functions are the sigmoid function written 

as 

𝜎(𝑧) =
1

1+𝑒−𝑧,      (17) 

and the ReLU (rectified linear unit) function written as 

                  𝜎(𝑧) = {
0  if 𝑧 < 0
𝑧  otherwise 

,                   (18) 

where 𝑧 represents the input of a hidden layer. These activation functions help introduce 
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nonlinearity and allow the FFNN model to capture complex nonlinear relationships in the data. 

We test the performance of both and find they provide similar forecast results. In this study we 

specify the FFNN according to Masters (1993) and Gu et al. (2019). Their hidden layers range 

from 1 to 5 with the number of a hidden unit 𝑞ℓ in each layer ℓ following the geometric pyramid 

rule of Masters (1993).  The geometric pyramid rule of Masters (1993) is a method used in the 

training of neural networks. The rule suggests a geometric progression in the size of each layer 

of the network. Typically, this means that each successive hidden layer in a neural network 

should have fewer neurons than the one preceding it, forming a pyramid shape if you were to 

graph the number of neurons per layer. This can aid in preventing overfitting and improving 

the generalization capabilities of the network. By systematically reducing the number of 

neurons, the network is forced to capture the most essential features in the early layers, which 

can be more effective for learning complex patterns with fewer parameters. 

In conclusion, the FFNN can be an appropriate tool to analyze complex nonlinear 

relationships, but correctly specifying the model to meet the data is a huge computational cost 

which is the main reason the performance of this networks lacks behind the performance of other 

machine learning methods in our study. 

Continuing, we introduce the LSTM network, a variant of Recurrent Neural Network 

(RNN). The forecasting model of a recurrent neural network with one hidden layer can be 

formulated as 

𝑦𝑡+ℎ = ∑  
𝑞
𝑗=1 𝜃𝑗ℎ𝑗𝑡 + 𝑏 + 𝜀𝑡+ℎ,    (19) 

where 

        ℎ𝑗𝑡 = 𝜎(𝑤𝑗
′𝑋𝑡 + ∑  

𝑞
𝑘=1  𝜃𝑗𝑘ℎ𝑘𝑡−1 + 𝑏𝑗),                (20) 

where 𝑏 stands for bias, ℎ1𝑡, ℎ2𝑡, … , ℎ𝑞𝑡 represent the 𝑞 hidden units in the hidden layer at 

period 𝑡 and 𝜎 represents the activation function used to produce the output of the hidden layer. 

The hidden layer of this network receives inputs from both the preceding layer and from its 

own outputs in the previous time step, via an internal loop referenced in (17). This structure 

allows it to capture the serial dependencies inherent in time series data. As Hochreiter and 

Schmidhuber (1997) noted, this type of simple recurrent neural network is prone to the 

exploding or vanishing gradient problem, which complicates the learning of long-term 

dependencies. To address this issue, a specific version of the RNN, such as the LSTM, is 

necessary to effectively capture and maintain these long-term dependencies within the data. 
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Hochreiter and Schmidhuber (1997) introduce the Long Short-Term Memory (LSTM) 

network, a specialized form of the Recurrent Neural Network (RNN) that is particularly 

prevalent in the field of macroeconomic forecasting. The LSTM network incorporates a 

unique component known as the memory cell within its RNN framework. This memory cell 

is crucial for capturing long term information, as it primarily relies on the memory from the 

previous time step. Additionally, the LSTM network includes two essential gating 

mechanisms: the input gate and the forget gate. The input gate regulates the entry of new 

information into the memory cell, whereas the forget gate determines when to remove 

outdated information. These features make the LSTM network exceptionally suitable for 

analyzing time series data due to its capability to maintain relevant historical information over 

extended periods, thereby enhancing its predictive accuracy. 

Because our computer resources are limited and we don't have access to advanced computing, 

we cannot use grid search5 to choose the best settings for our neural network. Instead, we follow the 

advice of Maehashi and Shintani (2020) and manually set the number of parts in the network to 10. 

For the parts of the network that need activation functions, we use the hyperbolic tangent function, 

which is a common choice. For the special parts of the network called gates, we use the sigmoid 

function. This setup helps us manage our limited resources while still following established methods 

in the field. 

In summary, we use the LSTM neural network for forecasting with 10 hidden units and 

two different activation functions. Given better computational capacity, our results could have 

been more accurate, as stated in Chapter 4. 

Figure 8: R code of the LSTM neural network 

 
Source: based on “keras” and “tensorflow” packages in R 

Figure 8 depicts the code snippet for an LSTM network. We must predefine all critical 

hyperparameters, including the activation function, optimizer, batch size, and epochs. The 

section titled "Train the LSTM model" is normally part of a rolling window loop; however, it 

                                                
5 Grid search for neural networks involves systematically exploring multiple combinations of model parameters 

to determine which configuration performs best for a given task. 
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is presented separately here to illustrate its functional form in R. Ideally, all previously 

mentioned hyperparameters should be optimized within the forecasting loop of the rolling 

window scheme to enhance model performance and accuracy in predictions, but this comes at 

a high computational cost. 

 

3.7 Support Vector Machine 

Vapnik (1995) presents the Support Vector Machine (SVM) method and Fiszeder and 

Orzeszko (2021) provide a brief review. This subchapter is based on the latter paper. Consider 

the regression model defined as 

𝑦 = 𝑟(𝐱) + 𝛿     (21) 

Here, 𝑟(𝐱) represents the regression function, 𝑦 is the dependent variable, 𝐱 is the set of 

predictors, and 𝛿 is zero-mean noise with a variance of 𝜎2. Using a training dataset 

{(𝐱𝑡 , 𝑦𝑡)}𝑡=1,…𝑇, our goal is to estimate the unknown regression function with a function 𝑓(𝐱), 

such that 𝑓(𝐱) varies from the actual outputs 𝑦𝑡 by no more than 𝜀 and is as smooth as possible. 

In SVM, the input 𝐱 is initially transformed into a high-dimensional feature space through 

a fixed (nonlinear) mapping. Following this transformation, a linear model is established within 

this new feature space, written as 

𝑓(𝐱) = ∑  𝑑
𝑖=1 𝜔𝑖𝜑𝑖(𝐱) + 𝑏.    (22) 

The dimension 𝑑 of the feature space, along with functions 𝜑𝑖(𝐱) representing nonlinear 

transformations, coefficients 𝜔𝑖, and a bias term 𝑏 are crucial components. The 𝜑𝑖(𝐱) functions 

transform the input 𝐱 into the feature space. It's important to highlight that the capacity of the 

SVM model to approximate a smooth input-output mapping is influenced by the dimension 𝑑 

of this space. Essentially, a larger value of 𝑑 results in a more precise approximation. 

According to (22), to determine the function 𝑓(𝐱), one needs to estimate the coefficients 

𝝎 = (𝜔1, 𝜔2, … , 𝜔𝑑)′ and the bias term 𝑏. To assess the quality of this estimation, Vapnik 

(1995) proposes the usage of the 𝜀-insensitive loss function of the form 

𝐿𝜀(𝑦, 𝑓(𝐱)) = {
0, |𝑦 − 𝑓(𝐱)| ≤ 𝜀,
|𝑦 − 𝑓(𝐱)| − 𝜀,  otherwise 

.   (23) 



 

40 

 

This function implies that errors smaller than 𝜀 incur no penalty. SVM employs this 𝜀-

insensitive loss function to perform linear regression in the 𝑑-dimensional feature space, while 

simultaneously striving to reduce model complexity by minimizing the squared norm of 𝝎, 

represented as ∥ 𝝎 ∥2= 𝝎′𝝎.  

The optimal regression function in SVM is identified by minimizing the functional 

Φ(𝝎, 𝝃) =
1

2
∥ 𝝎 ∥2+ 𝐶 ∑  𝑛

𝑡=1 (𝜉𝑡 + 𝜉𝑡
∗),   (24) 

where 𝐶 is a predetermined positive constant and 𝜉𝑡 and 𝜉𝑡
∗ are nonnegative slack variables. 

These variables represent the upper and lower bounds on the deviations from the predicted 

outputs relative to the actual outputs expressed as 

𝑦𝑡 − 𝑓(𝐱𝑡) ≤ 𝜀 + 𝜉𝑡
∗

𝑓(𝐱𝑡) − 𝑦𝑡 ≤ 𝜀 + 𝜉𝑡
,     (25) 

for all 𝑡 = 1,2, … , 𝑇. The parameter 𝐶 serves to control the penalty applied to observations that 

fall outside the 𝜀-margin, which helps in mitigating the risk of overfitting. The values for both 

𝜀 and 𝐶 are set by the user, influencing the model's complexity and its sensitivity to deviations 

beyond the 𝜀-threshold.  

The optimization problem in SVM can be converted into a dual problem, where the 

solution is characterized by 

𝑓(𝐱) = ∑  
𝑇𝑠𝑉
𝑡=1

(𝛼𝑡 − 𝛼𝑡
∗)𝐾(𝐱𝑡 , 𝐱)  s.t. 0 ≤ 𝛼𝑡 ≤ 𝐶, 0 ≤ 𝛼𝑡

∗ ≤ 𝐶. (26) 

Here, 𝛼𝑡 and 𝛼𝑡
∗ are Lagrange multipliers, 𝑇𝑆𝑉 denotes the number of support vectors, and 𝐾 is 

the kernel function, which is defined as 

𝐾(𝐱𝑡 , 𝐱) = ∑  𝑑
𝑖=1 𝜑𝑖(𝐱)𝜑𝑖(𝐱𝑡).   (27) 

The kernel function 𝐾 enables the computation of the inner product in the feature space 

without directly calculating the potentially complex and high-dimensional transformations 𝜑𝑖. 

This approach simplifies the mathematical operations by replacing the explicit computation of 

the feature vectors 𝜑(𝐱) = (𝜑1(𝐱), 𝜑2(𝐱), … , 𝜑𝑑(𝐱))′ with the kernel function 𝐾, which 

efficiently captures the necessary dimensional interactions. This transformation into the dual 

problem and the use of a kernel function significantly reduce the computational complexity 

compared to solving the primal problem directly, especially in scenarios involving high-

dimensional data spaces. 
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The most popular kernel functions are: 

 Linear (dot product): 𝐾(𝐱𝑡, 𝐱) = 𝐱𝑡
′ 𝐱, 

 Gaussian / Radial: 𝐾(𝐱𝑡, 𝐱) = exp (−∥∥𝐱𝑡 − 𝐱∥∥2), 

 Polynomial: 𝐾(𝐱𝑡, 𝐱) = (1 + 𝐱𝑡
𝑇𝐱)𝑝; 𝑝 = 2,3, … 

out of which the latter two allows for nonlinear SVM computation. In this thesis we use the 

Gaussian kernel.  

 Figure 9 illustrates the setup of an SVM (Support Vector Machine) in R using the e1071 

package. In this setup, we partially define the parameter grid, conduct cross-validation, 

optimize the hyperparameters, and estimate the forecasting model using these optimal 

hyperparameter values.  

Figure 9: R code of the SVM method  

 

Source: based on the e1071 R package 

 

3.8 Forecasting setup 

3.8.1 General setup 

This subchapter outlines our forecasting setup. We forecast two key economic indicators: 

industrial production (IP), measured by the Index of Industrial Production, and inflation (Inf), 

measured by the harmonized index of consumer prices. We project these measures for 5 

different periods: 1, 3, 6, 9, and 12 months ahead. The Index of Industrial Production is 

commonly used as a proxy for GDP, as discussed and applied by Coulombe et al. (2022) and 

Maehashi and Shintani (2020).  

Our dataset starts during the Great Recession, a period marked by significant economic 

uncertainty and volatility. The early observations from this period could potentially skew the 

overall dataset. To mitigate this issue, we utilize a rolling window scheme for forecasting, 
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which allows the parameter estimates to adjust over time. This approach is also adopted by 

Pratap and Sengupta (2019), Mahajan and Srinivasan (2019), and Maehashi and Shintani (2020) 

for similar reasons. Recently, McCracken (2020) demonstrate that using a fixed estimation 

window can cause the Diebold and Mariano (1995) statistic to potentially diverge under the 

null hypothesis. This finding also underscores the importance of employing a rolling window 

scheme for forecasting.  

Specifically, we maintain a constant window size, always using 6 years of observations 

for each estimation point during the period of 2008M01–2019M12 and 10 years during the 

period of 2008M01–2023M12, adjusting the initial point of estimation as needed. Any 

adjustments to the window size of our estimations lead to consistent conclusions as those 

presented in Chapters 4 and 5. 

To provide an actual example, take the case when the period is 𝑡 = 𝑅. For this, we build 

the forecast 𝑦ˆ𝑅+ℎ for the target variable 𝑦𝑅+ℎ utilizing solely the information available up to 

𝑡 = 𝑅. We subsequently assess the forecast error 𝑦𝑅+ℎ − �̂�𝑅 +ℎ . In the succeeding period 𝑡 = 

𝑅 + 1, the model is reestimated with the data available up to 𝑡 = 𝑅 + 1 and a new value 𝑦ˆ𝑅+ℎ+1 

is forecasted, while we drop the initial observation from the original sample. Hence, the 

complete sequence of hyperparameters, lag lengths and common factors is recomputed when 

new forecasts are formulated, even if there is no alteration in the model specification. 

Additionally, considering that each machine learning model requires specific parameter 

selection, we follow the guidance of Coulombe et al. (2022) to counter the overfitting issue that 

often arises when dealing with large datasets and complex models. To do this, we employ 𝐵-

fold cross-validation – explained in the Lasso subchapter for RLS methods – a method whose 

statistical validity is affirmed by Bergmeir (2018). In our implementation, 𝐵 is set to 5. This 

means that the in-sample dataset is randomly divided into five distinct subsets, each accounting 

for approximately 20% of the in-sample observations. 

For each of these five subsets, and for every set of hyperparameters under consideration, 

four subsets are used for model training, while the fifth subset is reserved as a test subset to 

evaluate forecast accuracy. The mean squared error (MSE) is utilized as the evaluation metric. 

This approach not only helps in fine-tuning the models but also ensures that the training process 

is robust against overfitting. 
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In summary, we use a rolling window scheme to continuously adapt our forecasts to new 

data, while 𝐵-fold cross-validation assists in the careful selection and validation of model 

hyperparameters, ensuring that our forecasting models are both accurate and generalizable.  

 

3.8.2 Common factors 

Moreover, we utilize Principal Component Analysis (PCA), as proposed by Stock and 

Watson (2002), to extract common factors from our dataset. The purpose of using these 

common factors is to capture the latent forces that drive the data-generating processes across a 

large number of variables, and then use a more condensed set of factors as predictors for our 

forecasting efforts. In this framework, a potential predictor 𝑥𝑖𝑡 is generated by the equation 

𝑥𝑖𝑡 = 𝜆𝑖
′𝐹𝑡

𝑘 + 𝑒𝑖𝑡 ,      (28) 

where 𝐹𝑘 = (𝑓1𝑡, 𝑓2𝑡, … , 𝑓𝑘𝑡)′ is a 𝑘 × 1 vector representing unobserved common factors, 𝜆𝑖 

denotes the factor loadings, and 𝑒𝑖𝑡 is the idiosyncratic error for each observation 𝑖 = 1, … , 𝑁 

and 𝑡 = 1, … , 𝑇. 

The forecasting process using these common factors involves two main steps. First, we 

minimize the sum of squared differences ∑𝑖=1
𝑁  ∑𝑡=1

𝑇  (𝑥𝑖𝑡 − 𝜆𝑖
′𝐹𝑡

𝑘)
2
 to compute 𝐹𝑡

𝑘 as the 

principal components of the predictors {𝑥𝑖𝑡}𝑖=1
𝑁 . These principal components have unit variance 

and are orthogonal to each other. We set the maximum number of principal components to 20. 

To determine the optimal number of factors to use for each forecast, we apply the Bai and Ng 

(2002) information criterion: 

𝐼𝐶(𝑘) = ln 𝑉(𝑘) + 𝑘 (
𝑁+𝑇

𝑁𝑇
) ln 𝐶𝑁𝑇

2 ,    (29) 

where 𝑉(𝑘) = min{𝜆𝑖,𝐹𝑡
𝑘}  (𝑁𝑇)−1∑𝑖=1

𝑁  ∑𝑡=1
𝑇  (𝑥𝑖𝑡 − 𝜆𝑖

′𝐹𝑡
𝑘)

2
 and 𝐶𝑁𝑇 = min{√𝑁, √𝑇}.  

Secondly, once the factors are derived, we use them to construct forecasts h-periods ahead 

utilizing machine learning models. In summary, the PCA-derived common factors serve as 

critical input variables for the machine learning models, enhancing the robustness and accuracy 

of our forecasting approach. 
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3.8.3 Composite forecasts 

To complete our discussion on our forecasting setup, we delve into the methods used for 

combining forecasts. Bates and Granger (1969) highlight that combining individual forecasts 

can enhance forecast accuracy and potentially yield better outcomes than any single model 

alone. Clements and Hendry (2011) affirm the benefits of combining forecasts from different 

models to improve accuracy, though they recognize that in some cases, individual models might 

outperform combined forecasts. Bürgi (2015) contends that achieving more accurate forecasts 

through any method other than combining individual models using equal weights is 

challenging; therefore, he recommends the arithmetic mean for combining forecasts. 

Adding a contemporary perspective, Araujo and Gaglianone (2023) explore the use of 

machine learning techniques for forecast combination. They employ methods like adaLasso and 

Random Forest, which uniquely use individual forecasts as inputs, rather than traditional 

predictors. Their findings suggest that in their specific context, using machine learning for 

combining forecasts results in improvements over the simpler methods of averaging, such as 

the arithmetic mean or median. 

Motivated by these findings, our study also utilizes machine learning methods as forecast 

combination tools to evaluate whether they can produce more accurate forecast combinations 

than individual model forecasts. In summary, our approach involves combining individual 

forecasts using various weighting procedures, including more complex machine learning-

driven combinations, to identify the most effective method in enhancing forecast accuracy. 

 

3.9 Performance evaluation 

We evaluate the forecasting performance of our models using literature standard 

measures, namely the Mean Squared Error (MSE), Mean Absolute Error (MAE), and 

Directional Accuracy (DA). To facilitate model comparisons, we relativize these metrics by 

dividing the metric of the evaluated model by that of the benchmark model, normalizing the 

benchmark to 1, which simplifies comparisons. 

The Mean Absolute Error is defined as 

 MAE =
∑  𝑛

𝑖=1  |𝑦𝑖−𝑥𝑖|

𝑛
=

∑  𝑛
𝑖=1  |𝑒𝑖|

𝑛
.   (30) 
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This formula calculates the average of the absolute differences between the forecasted values 

and the observed values, providing a measure of prediction accuracy that is not sensitive to 

extreme values. 

The Mean Squared Error is expressed as 

𝑀𝑆𝐸 =
∑  𝑁

𝑖=1  (𝑥𝑖−�̂�𝑖)2

𝑁
.      (31) 

This metric computes the quadratic mean of the forecast errors. Using both MSE and MAE is 

crucial. MSE is a common standard in machine learning as most models are trained to minimize 

this or the Root Mean Squared Error (RMSE), and MAE provides a robustness check. 

Consistent results across these metrics confirm that the model’s accuracy is not solely 

influenced by a few large errors, ensuring the reliability of the model's predictive performance. 

In addition to the classical measures of forecasting performance such as Mean Squared 

Error (MSE) and Mean Absolute Error (MAE), we also incorporate Directional Accuracy (DA), 

a metric ignored so far in the machine learning forecasting literature. We argue that this 

omission is problematic because accurately predicting the direction of change in a variable is 

as critical as the magnitude of errors. A model that fails to capture the correct trend direction 

essentially provides incorrect forecasts, regardless of how small the error might be. Constantini 

et al. (2016) write Directional Accuracy as follows 

𝐷𝐴𝑡ℎ = 𝐼(𝑠𝑔𝑛 (𝑦𝑡 − 𝑦𝑡−ℎ) = 𝑠𝑔𝑛 (�̂�𝑡 − 𝑦𝑡−ℎ)),   (32) 

where 𝐼(.) is the indicator function that equals 1 if the signs of the actual change (𝑦𝑡 − 𝑦𝑡−ℎ) 

and the forecasted change (�̂�𝑡 − 𝑦𝑡−ℎ) are the same, and 0 otherwise. This metric assesses 

whether the forecasted values are moving in the same direction as the actual values, thereby 

evaluating the model's ability to capture trends in the data effectively. Using DA along with 

MSE and MAE provides a comprehensive view of a method’s performance, assessing its 

accuracy in both magnitude and direction of predicted changes. This multi-faceted evaluation 

helps in ensuring that the forecasts are not only close in value to the actuals but also aligned in 

their directional movement. 

To conclude our evaluation, we compare the Mean Squared Error (MSE) of each model 

against our benchmark model. A model is considered to outperform the benchmark if it has a 

lower MSE. To determine whether this improvement is statistically significant, we employ the 
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Diebold-Mariano (DM) test statistic, formulated by Diebold and Mariano (2002), which is 

designed to compare forecasting accuracies. The DM-statistic is calculated as  

𝐷𝑀 =
𝑑‾

√�̂�𝛼
2

𝑇

     (33) 

Here, 𝑑‾ represents the sample mean of the loss differentials between the two forecasts 

over 𝑇 periods. The term �̂�𝑑
2 is an estimate of the variance of these loss differentials, which is 

often calculated using Newey-West standard errors to adjust for autocorrelation and 

heteroskedasticity. In this thesis we present the p-values of this test to determine the statistical 

significance of our results. We test whether our forecasts are better against the null hypothesis 

that the two forecasts from two different models have the same accuracy.  If p ≤ 0.05, we reject 

the null.   

The DM test is flexible in that it can be applied regardless of the specific loss function 

used to measure forecast errors, and it adjusts for potential issues like autocorrelation in the 

forecast error series. 

By applying the DM test, we ensure that observed improvements in MSE are not due to 

random fluctuations in the data but are statistically significant, reflecting true advancements in 

forecasting capability. 

 

3.10 Data 

3.10.1 Data preparation and preprocessing 

In this subchapter we describe the Augmented Dickey-Fuller test for stationarity and the 

data standardization procedure. We begin with the former. 

If a time series is nonstationary, meaning its mean and variance change over time, 

traditional methods of hypothesis testing, constructing confidence intervals, and making 

forecasts can be highly inaccurate. One reason for nonstationarity might be a trend in how the 

data is generated. As highlighted in Subchapter 3.3, Masini et al. (2021) outline that machine 

learning methods are built on the assumption that inputs are stationary, leading us to formally 

examine – and adjust if needed – the input time series.  

Dickey and Fuller (1979) introduce a specific test for checking if a series is stationary, 
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known as the Dickey-Fuller test. This test's null hypothesis assumes that the time series is 

nonstationary, possessing a unit root. The alternative hypothesis, on the other hand, suggests 

that the time series is stationary. We are particularly interested in the enhanced version of this 

test, called the Augmented Dickey-Fuller (ADF) test. 

Consider the linear regression model 

Δ𝑌𝑡 = 𝛽0 + 𝛿𝑌𝑡−1 + 𝛾1Δ𝑌𝑡−1 + 𝛾2Δ𝑌𝑡−2 + ⋯ + 𝛾𝑝Δ𝑌𝑡−𝑝 + 𝑢𝑡.    (34) 

The Augmented Dickey-Fu ller  (ADF) test for a unit root examines the hypothesis 𝐻0: 

𝛿 = 0 (trend) against the alternative 𝐻1: 𝛿 < 0 (stationarity) using the ordinary least squares 

estimate of the t-statistic. The number of lags in the test is determined by selecting the lag 

length that minimizes the Akaike Information Criterion (AIC), written as 

𝐴𝐼𝐶 = 2𝑘 − 2ln (�̂�), (35) 

where 𝑘 represents the number of estimated parameters in the model, and �̂� is the maximum 

likelihood estimate for the model.  

If a series is nonstationary, there are several methods to transform it into a stationary 

series. These methods include converting the data into logarithms to stabilize the variance, 

differencing the data, or combining these techniques. We employ the adequate methods for our 

input data.   

What is more, Zhang and Qi (2005) assert that machine learning methods perform 

optimally when the input data exhibit a Gaussian distribution. Consequently, we standardize 

the time series data to have zero mean and unit variance prior to modeling to adhere to this 

requirement. We standardize the predictors by transforming them to a variable with a zero mean 

and unit standard deviation. This is done as 

 Standardized value =
 Actual value of the predictor - Mean of the time series 

 Standard deviation of the time series 
.  (36) 

In summary, in the previous paragraphs we present the methods by which we preprocess 

the data. The next subchapters contain the data description.  
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3.10.2 Macroeconomic database of the National Bank of Slovakia 

In this chapter, we detail the data utilized in our forecasting experiments. Firstly, we 

introduce the database, which is a primary factor in our decision to focus on Slovakia. The 

National Bank of Slovakia (NBS) has compiled and maintains an innovative, accessible, and 

exemplary public macroeconomic database.6 To our knowledge, a public macroeconomic 

database of this scope is currently unmatched among the V4 countries.  

The data is presented in a clean, consistent, and concise format, encompassing multiple 

periods, formats, and categories. This comprehensive availability and quality of data 

significantly enhance the reliability and breadth of our analyses. In addition to observed 

macroeconomic variables, the database includes "soft" indicators. These are referred to as soft 

because they predominantly consist of survey-based data that gauge the expectations of 

economic participants, rather than measuring actual economic activity. Coulombe et al. (2022) 

recommend using these indicators as input data for forecasting with machine learning methods. 

Unlike observed macroeconomic variables, these indicators are available with minimal time 

lag, enabling policymakers to initiate discussions without waiting for hard macroeconomic 

data7 to become available. Although forecasting methods based on soft indicators are not 

expected to achieve lower forecast errors than those based on hard data, their primary function 

is to indicate the potential direction of the economy at a given time. Therefore, we can utilize 

measures of directional accuracy to assess whether these methods are meeting their intended 

purpose. To sum up, our forecasting approach includes not only real macroeconomic variables 

but also leading indicators. For soft indicators, our primary focus is on the directional accuracy 

of the forecasts, which is crucial for understanding the potential future trends rather than precise 

values. 

A limitation of the database is that it only contains actual data after revisions; hence, older 

data vintages before revisions are not available. This constraint makes it challenging to compare 

the forecast performance of machine learning methods with historical forecasts made by entities 

like central banks, which had access to different data at the time of their forecasts. Furthermore, 

to our knowledge, no country or organization maintains a publicly available revisions database 

that includes sufficient data to reliably train machine learning methods. Therefore, data-driven 

                                                
6 https://nbs.sk/statisticke-udaje/vybrane-makroekonomicke-ukazovatele/makroekonomicka-databaza/ 
7 By hard macroeconomic data we mean actually observed macroeconomic data of the time series in Tables 

A1.1-A1.8 in Appendix 1. 
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models such as ARIMA and Random Walk remain the literature standard for benchmarking, as 

discussed in Chapter 1.  

In summary, the database is well-suited for our purposes as it contains ample data to 

reliably train machine learning methods. We employ data-driven models, specifically Random 

Walk or ARIMA, as benchmarks for the reasons previously mentioned. This setup ensures a 

robust framework for evaluating the effectiveness of machine learning in macroeconomic 

forecasting. 

 

3.10.3 Our dataset 

Given the breadth of the database, we divide our dataset into two segments to use machine 

learning for forecasting our chosen variables: industrial production, measured by the Index of 

Industrial Production (IP), and inflation, measured by the Harmonized Index of Consumer 

Prices (Inf). We select these target variables because they are frequently used in machine 

learning forecasting literature, as noted in studies made by Chakraborty and Joseph (2017), 

Jung et al. (2018), Medeiros et al. (2019), Maehashi and Shintani (2020), and Coulombe et al. 

(2022). 

We document the observation period as utilizing the time series from the database, 

captured monthly and adjusted for seasonality when applicable, spanning from January 2008 

(2008M01) to December 2019 (2019M12). This period encapsulates the economic fluctuations 

of the 2008–2009 Great Recession and a subsequent extended phase of economic stability. Later 

we extend the observation period to include data up to September 2023 (2023M09) to also cover 

the economic impacts of the COVID-19 pandemic. We use variables from the following 

categories: industrial production, prices, revenue, wages, employment, foreign trade, current 

account, exchange rates and indicators. 8   

Regrettably, splitting the data into distinct segments to compare model performance 

across different economic conditions is impractical. Specifically, the dataset from the crisis 

period alone would be insufficiently large for effective training of machine learning or other 

statistical models, rendering any derived conclusions unreliable. Consequently, we choose to 

utilize the entire dataset without segmenting it into multiple periods. To address potential 

                                                
8 The full list of variables and their specific categories is presented in Appendix 1 
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temporal variations in the regression parameters, we apply a rolling-window approach, which 

is detailed in Subchapter 3.8.1. 

To continue with, we detail the data preprocessing steps, focusing on stationarization and 

standardization, along with the extraction of common factors. As emphasized in Subchapter 

3.2.1, ensuring the stationarity of time series is crucial before they are used in forecasting 

models. To achieve stationarity, macroeconomists typically eliminate the seasonal and trend 

components of the data. Fortunately, our macroeconomic database offers both seasonally 

adjusted and unadjusted series, allowing us to directly utilize the seasonally adjusted data, 

thereby bypassing the need for manual seasonal adjustments. A few series are not available in 

the seasonally adjusted form, so we stationarize them accordingly.  

         Figure 10: Seasonally adjusted and non-adjusted series of IP 

 
Source: NBS macroeconomic database 

For illustration, Figure 10 showcases the effect of seasonal adjustments on industrial 

production series, highlighting the smoother nature of the seasonally adjusted series, which is 

more suitable for forecasting purposes. Figure 10 also indicates that the data exhibits an upward 

trend over time. Thus, to prepare the series for modeling, we remove this trend component. 

Trend removal involves taking the first differences of the variables in percentages like the 

unemployment rate, thereby following the standard approach in literature; and of soft 

indicators, which range between -100 and 100 and cannot be logarithm-transformed due to the 

presence of non-positive values. These series achieve stationarity post-differencing. For other 

variables, we apply logarithmic transformation to stabilize variance and then apply 
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differencing. Upon completion of these adjustments, each time series is confirmed to be 

stationary, as verified by the Augmented Dickey-Fuller (ADF) test. 

Figure 11 displays the industrial production series post-trend removal, demonstrating a 

series that oscillates around a constant mean with stable variance. Despite this, a few influential 

observations may exist that could potentially increase forecasting errors, suggesting that the use 

of Mean Absolute Error (MAE) might be appropriate for assessing the robustness of our 

forecasting results.  

Lastly, we conclude our preprocessing by mean-variance standardizing the regressors. 

This normalization process is essential for aligning the scales of the variables, facilitating more 

effective analysis and comparisons across the data set, as detailed in Subchapter 3.10.1. 

          Figure 11: Stationary series of IP 

 
Source: NBS macroeconomic database  

Last but not least, we extract common factors from the data, aligning with one of our 

objectives outlined in Chapter 2. Our goal is to evaluate whether data that has been 

dimensionally reduced through factor analysis can yield forecast errors and accuracy 

comparable to those obtained using the original time series from which the factors were 

extracted. We employ Principal Component Analysis (PCA), as detailed in Subchapter 3.8.2, 

utilizing a rolling window scheme to systematically apply common factors at each step in the 

forecasting process. Once extracted, these factors are then used as regressors in various machine 

learning methods. This approach, while established, has been infrequently tested in practical 

scenarios. We aim to explore whether machine learning methods can effectively forecast our 
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selected variables using both the original, complete time series and the dimensionally reduced 

information set derived through PCA. 

To summarize, this chapter introduces the data preprocessing steps, the NBS 

macroeconomic database and outlines the specific data we utilize for forecasting. We detail the 

preprocessing steps, including stationarization, standardization, and factor extraction. 

Following these, the data is fed into the methods, and the results are subsequently discussed in 

the following chapter. This methodology ensures that we comprehensively prepare the data to 

accurately evaluate the effectiveness of machine learning methods in economic forecasting. 

  



 

53 

 

4 Results 

4.1 Pre-COVID 

4.1.1 Forecasting industrial production using hard macroeconomic data 

This subchapter presents the results of industrial production (IP) forecasts based on hard 

macroeconomic data. Table 3 displays the relative MSE values for the RLS machine learning 

methods, with the MSE value of the benchmark model set as 1 for comparison. It is evident that 

each machine learning method surpasses the performance of the benchmark model. 

Table 3: Relative MSE and MAE of RLS models - IP 

Relative MSE h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Lasso 0.25376 0.25854 0.25077 0.25699 0.26991 

Ridge 0.57640 0.58032 0.59155 0.58178 0.57804 

Elastic Net 0.25925 0.25221 0.26200 0.27318 0.25893 

Relative MAE      

Benchmark 1 1 1 1 1 

Lasso 0.45058 0.44097 0.45073 0.44895 0.45683 

Ridge 0.80952 0.80917 0.82727 0.82146 0.81080 

Elastic Net 0.45879 0.44100 0.46591 0.46079 0.44607 
Source: authors’ calculations 

In analyzing MSE, we find that all RLS models perform better than the benchmark. 

Specifically, both Lasso and Elastic Net models exhibit a relative MSE of around 0.25. This 

suggests that in the Elastic Net model, the Lasso component carries more weight compared to 

the Ridge component. Referring to Subchapter 3.4, we observe that in this scenario, selecting 

variables plays a more crucial role than shrinking coefficients. The Ridge model also surpasses 

the benchmark, showing a relative MSE between 0.57 and 0.59 for every forecast horizon. 

Consequently, all RLS models outshine the benchmark model.  

Furthermore, the relative MAE results reinforce our earlier conclusion, being smaller than 

those of the benchmark. This reassures us that the RLS models' superior performance isn't 

simply due to a few large forecast errors.  

To summarize, the RLS models consistently outperform the benchmark across every 

horizon. This robust performance is expected due to the presence of numerous correlated 

variables in the dataset, which tend to convey similar information. Additionally, the shorter time 

series used in our study compared to other machine learning research might prompt Lasso and 

Elastic Net methods to disregard less critical variables due to the limited number of 
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observations available. Moreover, the magnitude of the outperformance remains consistent 

across all models and forecast horizons, as depicted in Figure 12. 

Figure 12: Relative MSE of RLS models over time - IP 

 
Source: authors’ calculations 

The machine learning methods demonstrate robust superiority as evidenced by their 

outperformance in both MSE and MAE metrics. This consistent outperformance across metrics 

allows us to evaluate the statistical significance of the results using the DM test, as detailed in 

Subchapter 3.9. The DM test focuses on analyzing the original forecast errors rather than the 

derived MSE or MAE values. Table 4 displays the outcomes of this test represented in terms of 

p-values. Notably, numbers marked with two asterisks (**) indicate horizons where the 

forecasts of machine learning methods statistically significantly outperform the forecasts of the 

benchmark model at the 5% significance level. The forecasts generated by most RLS models 

exhibit significant improvement at the 5% level of confidence. Only the forecasts for the 9 and 

12-month horizons of the Ridge model show significance at the 10% level. 

Table 4: DM test p-values of RLS methods - IP 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso 0.00639** 0.01358** 0.01289** 0.04393** 0.00794** 

Ridge 0.00575** 0.03273** 0.04754** 0.06779* 0.05317* 

Elastic Net 0.00664** 0.01321** 0.01174** 0.04661** 0.00935** 
Source: authors’ calculations 

Since the outperformance is statistically significant, we can express the magnitude of 

outperformance in percentage terms. Table 5 indicates that the Lasso model's outperformance 

ranges between 73.01% and 74.92%. Ridge consistently outperforms the benchmark by 40.84% 
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to 42.20%, while Elastic Net closely mirrors Lasso, ranging between 73.80% at h = 6 and 

74.78% at h = 3. The results suggest that by fine-tuning hyperparameters at each step, the 

methods effectively select the most relevant variables for the forecasts to surpass the benchmark 

model. Shrinkage also seems to work, but to a lesser extent.  

Table 5: % improvement of RLS forecasts over the benchmark - IP 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso 74.62% 74.15% 74.92% 74.30% 73.01% 

Ridge 42.36% 41.97% 40.84% 41.82% 42.20% 

Elastic Net 74.07% 74.78% 73.80% 72.68% 74.11% 
Source: authors’ calculations 

Continuing from the previous points, it is crucial to establish that machine learning 

methods not only yield lower forecast errors but also accurately capture the direction of change 

in the forecast variable. This aspect is often as important as the magnitude of the errors because 

a method that predicts the correct trend but is off in magnitude can still be very useful, especially 

in macroeconomic planning and policy making. To assess this capability, we compute the 

directional accuracy of each machine learning method and compare it to that of the benchmark 

model. Directional accuracy specifically measures the percentage of times the predicted change 

in direction (increase or decrease) of the forecast variable aligns with the actual observed 

change. The comparative results of this analysis are presented in Table 6. 

Table 6: Directional accuracy of RLS models - IP 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 41.43% 31.37% 26.67% 21.51% 22.18% 

Lasso 90.00% 88.24% 86.92% 86.74% 85.59% 

Ridge 72.86% 74.02% 74.10% 73.66% 74.01% 

Elastic Net 90.00% 86.76% 87.44% 85.48% 85.45% 
Source: authors’ calculations 

Each RLS model is more likely to correctly predict the direction of change in the target 

variable compared to the benchmark model, as demonstrated in Table 6. The DA of both Lasso 

and Elastic Net ranges between 85.45% and 90.00%, while the DA of Ridge falls between 

72.86% and 74.10%. In contrast, the benchmark model exhibits a DA ranging from 21.51% to 

41.43%, depending on the forecast horizon.  

Furthermore, this enhancement remains consistent over time, as illustrated in Figure 13. 

Another noteworthy observation emerges: as the forecast horizon extends, the DA of the 

benchmark model decreases significantly, contrasting with the marginal decreases observed in 

Lasso and Elastic Net models. This discrepancy arises because our benchmark model inherently 
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integrates only short-term information. The DA of the Ridge model maintains consistency, 

albeit at a lower level compared to Lasso or Elastic Net, yet still notably surpassing that of the 

benchmark. 

Figure 13: Directional Accuracy of RLS models over time - IP 

 
Source: authors’ calculations 

We proceed by presenting the results of the EML models in Table 7.  

Table 7: Relative MSE and MAE of EML models - IP 

Relative MSE h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Bagging 0.47081 0.46523 0.48503 0.49009 0.48902 

Boosting 0.51369 0.46769 0.48275 0.53275 0.47255 

Random Forest 0.53703 0.54068 0.54897 0.54848 0.54870 

Relative MAE      

Benchmark 1 1 1 1 1 

Bagging 0.60385 0.59082 0.61838 0.61948 0.60656 

Boosting 0.62291 0.60607 0.63971 0.67181 0.60336 

Random Forest 0.67807 0.67354 0.68552 0.66990 0.66560 
Source: authors’ calculations 

Firstly, in terms of MSE, every EML model outperforms the benchmark. Bagging exhibits 

a MSE ranging between 0.47 and 0.49, Boosting between 0.46 and 0.54, and Random Forest 

between 0.53 and 0.55. This indicates that Bagging performs best for every horizon, except for 

h = 12, where Boosting holds a slight advantage. Secondly, the relative MAE results corroborate 

our earlier conclusion, as they are also smaller than those of the benchmark. This assures us 

that the outperformance of the EML models is not attributed to a few large forecast errors. One 

notable observation from the analysis is that, in terms of MAE, the nonlinear methods show a 
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smaller increase compared to the relative MSE than the RLS methods. This suggests that 

nonlinear methods might be less susceptible to the impact of large forecast errors. Additionally, 

the magnitude of the outperformance remains consistent for every model and across every 

horizon, as illustrated in Figure 14. 

Figure 14: Relative MSE of EML models over time - IP 

 
Source: authors’ calculations 

Table 8 presents the p-values from the DM test. The forecasts from Bagging are 

significantly better at the 5% level for every horizon. For the Boosting model, the forecast at h 

= 1 is significant at the 10% level, while the forecasts for the remaining horizons are significant 

at the 5% level. Similarly, the forecasts from the Random Forest model show significant 

outperformance at the 5% level for all horizons except for h = 1. 

Table 8: DM test p-values of EML methods - IP 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Bagging 0.03742** 0.00904** 0.01138** 0.04915** 0.02405** 

Boosting 0.05308* 0.02725** 0.01276** 0.02942** 0.02178** 

Random Forest 0.06095* 0.04542** 0.02695** 0.02935** 0.03348** 
Source: authors’ calculations 

Since the outperformance is statistically significant, we can quantify the magnitude of 

outperformance in percentage terms. Table 9 presents the results. The table reveals that the 

outperformance of Bagging ranges between 50.99% and 53.48%, which is impressive, although 

slightly less than the best RLS models. Boosting demonstrates outperformance ranging from 

46.72% to 53.23%, while Random Forest shows outperformance between 45.10% and 46.30%. 

Generally, Bagging emerges as the best-performing model, except for h = 12, where Boosting 
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holds a slight advantage. Among the EML models, Random Forest exhibits the highest 

consistency.  

Table 9: % improvement of EML forecasts over the benchmark - IP 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Bagging 52.92% 53.48% 51.50% 50.99% 51.10% 

Boosting 48.63% 53.23% 51.72% 46.72% 52.74% 

Random Forest 46.30% 45.93% 45.10% 45.15% 45.13% 
Source: authors’ calculations 

Figure 15: Directional accuracy of EML models over time - IP 

 
Source: authors’ calculations 

Moving on to directional accuracy, every EML model is more likely to correctly predict 

the direction of change in the target variable compared to the benchmark model. The results are 

presented in Table 10. The DA of Bagging ranges between 86.15% and 87.43%, Boosting 

between 79.39% and 82.77%, and Random Forest between 82.56% and 85.51%. In comparison, 

the benchmark model exhibits a DA ranging from 21.51% to 41.43%, depending on the forecast 

horizon. What is more, this improvement is consistent over time, as shown in Figure 15. 

Table 10: Directional accuracy of EML models - IP 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 41.43% 31.37% 26.67% 21.51% 22.18% 

Bagging 87.14% 86.76% 86.15% 86.74% 87.43% 

Boosting 81.43% 80.88% 81.28% 79.39% 82.77% 

Random Forest 85.51% 82.84% 82.56% 83.69% 84.46% 
Source: authors’ calculations 

In Table 11, we present the results of the remaining models, namely the Support Vector 

Machine (SVM), the Feedforward Neural Network (FFNN), and the Long-Short Term Memory 
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Neural Network (LSTM). Due to their less compelling performance, we summarize their results 

in one table. 

Table 11: Forecasts with SMV, FFNN and LSTM - IP 

Relative MSE h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Support Vector 

Machine 

0.77375 0.85289 0.75612 0.74687 0.75215 

Feedforward 

NN 

7.42215 7.02437 6.87417 6.60251 6.42844 

LSTM NN 128.124 18.7122 7.54591 4.03824 3.68138 

Relative MAE      

Benchmark 1 1 1 1 1 

Support Vector 

Machine 

0.92173 0.9459 0.90444 0.89306 0.90576 

Feedforward 

NN 

3.71541 3.56651 3.56545 3.48494 3.40986 

LSTM NN 13.2955 4.81009 3.17909 2.20504 2.24366 

DM test      

Support Vector 

Machine 

0.20681 0.05121 0.03532 0.13286 0.00035 

Feedforward 

NN 

1 1 1 1 1 

LSTM NN 1 1 0.99996 0.99192 0.99998 

DA      

Benchmark 41.43% 31.37% 26.67% 21.51% 22.18% 

Support Vector 

Machine 

65.71% 67.65% 69.23% 71.33% 71.89% 

Feedforward 

NN 

54.29% 55.39% 56.15% 57.17% 57.77% 

LSTM NN 45.71% 48.04% 48.97% 53.41% 54.38% 
Source: authors’ calculations 

Starting with the relative MSE, these models either show results closer to that of the 

benchmark, as observed in the SVM model, or higher, particularly in the case of the NN models. 

Notably, both NN models exhibit substantial underperformance. However, this can be 

attributed to the inability to optimize hyperparameter search using R, unlike the other models. 

This limitation is evident in the overall results. 

Furthermore, the relative MAE further confirms the underperformance of the FFNN and 

LSTM models, as neither of them produces statistically significantly better forecasts compared 

to the benchmark model. Although their DA values are slightly higher than those of the 

benchmark, given the magnitude of errors and the superior performance of other models, we 

advise against drawing meaningful conclusions from these models for now. Once we have 

access to appropriate computational capacity, we plan to delve deeper into exploring their 
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performance. Until then, we do not give them further attention in this study. 

Moving on to the SVM model, as previously mentioned, it manages to outperform the 

benchmark, albeit to a lesser extent compared to other models. This outperformance is 

statistically significant at the 5% level for h = 6 and h = 12, and at the 10% level for h = 3, but 

it is insignificant for h = 1 and h = 9. The DA values of the SVM model range between 65.71% 

and 71.89%, which are lower than those of the other models, despite showing an increase in 

accuracy with the forecast horizon. 

To summarize, in this subchapter we forecast industrial production using hard 

macroeconomic data. Most of the machine learning models exhibit significant outperformance 

compared to the benchmark model, with the exception of the neural network models due to 

computational limitations. The models, sorted from best to worst in terms of % improvement 

over the benchmark, are presented in Table 12. There are some models that are really close to 

each other in terms of performance, and one model might be the best on one horizon, while 

another on a different horizon (e.g. Lasso is better than Elastic Net at h = 9, while the latter 

slightly outperforms the former at h = 12).   

Table 12: Forecasting models from best to worst - IP 

 h = 1 h = 3 h = 6 h = 9 h = 12 

1. Lasso Elastic Net Lasso Lasso Elastic Net 

2. Elastic Net Lasso Elastic Net Elastic Net Lasso 

3. Bagging Bagging Boosting Bagging Boosting 

4. Boosting Boosting Bagging Boosting Bagging 

5. RF RF RF RF RF 

6. Ridge Ridge Ridge Ridge Ridge 

7. SVM SVM SVM SVM SVM 

8. FFNN FFNN FFNN LSTM LSTM 

9. LSTM LSTM LSTM FFNN FFNN 
Source: authors’ calculations 

Firstly, the top-performing models are Lasso and Elastic Net, which demonstrate 

statistically significant outperformance of the benchmark model at every forecasting horizon at 

the 5% level. Additionally, Lasso and Elastic Net models boast the highest directional accuracy 

values among all models, with consistent results over time. Although the Ridge model's 

performance is slightly weaker, it still significantly outperforms the benchmark, albeit not as 

effectively as Lasso and Elastic Net. 

Secondly, EML models display slightly higher errors and lower directional accuracy 

compared to Lasso and Elastic Net. However, they are still capable of statistically significant 

outperformance of the benchmark model, especially Bagging, which emerges as the top 
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performer among the EML models. 

Thirdly, the Support Vector Machine (SVM) model yields mixed results, leading us to 

recommend prioritizing models from the previous two categories, particularly Lasso and Elastic 

Net for regularization, and Bagging for capturing nonlinear relationships in the data. 

Moving forward, we delve into exploring the forecasting performance of machine 

learning models based on common factors in the next subchapter. 

 

4.1.2 Forecasting industrial production using common factors 

In this subchapter, we explore the application of machine learning methods to forecasting 

based on common factors extracted from the available dataset, drawing inspiration from the 

works of Shintani (2005) and Maehashi and Shintani (2020). Our aim is to ascertain whether 

this approach outperforms the benchmark model and, if so, how it compares to forecasting 

performance based on hard macroeconomic data without dimensional reduction. 

Table 13: Relative MSE of forecasts based on common factors - IP 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Lasso 0.701524 0.700192 0.681737 0.852603 0.698305 

Ridge 0.689632 0.705956 0.641994 0.640785 0.687538 

Elastic Net 0.715571 0.832926 0.705255 0.667444 0.670397 

Bagging 0.873563 0.831503 0.840161 0.812082 0.813511 

Boosting 0.729903 0.681461 0.676986 0.663042 0.688355 

Random Forest 0.837169 0.873106 0.832147 0.831806 0.825432 

SVM 0.739667 0.714448 0.720253 0.712005 0.710229 
Source: authors’ calculations 

To commence, Table 13 presents the relative MSE values of the forecasts based on 

common factors. The results indicate that forecasts based on common factors continue to 

outperform the benchmark model, with no relative MSE exceeding one. Starting with RLS 

methods, both Lasso and Elastic Net yield similar results, as does the Ridge model, despite 

being the least effective in forecasting using hard macroeconomic data. The cause of this might 

be the reduced dimension of the dataset, as if there is not too many observables, coefficient 

shrinkages is more pronounced while Lasso loses its edge.  In terms of EML methods, Boosting 

outperforms both Bagging and Random Forest, which exhibit comparable results. Additionally, 

the performance of the Support Vector Machine (SVM) model remains consistent with the 

findings in the previous subchapter, meaning it is still the weakest performing model. 
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Table 14: % difference between forecasts based on factors and hard data - IP 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso 176.45% 170.83% 171.85% 231.76% 158.72% 

Ridge 19.64% 21.65% 8.53% 10.14% 18.94% 

Elastic Net 176.01% 230.24% 169.18% 144.32% 158.91% 

Bagging 85.55% 78.73% 73.22% 65.70% 66.35% 

Boosting 42.09% 45.71% 40.23% 24.46% 45.67% 

Random Forest 55.89% 61.48% 51.58% 51.66% 50.44% 

SVM -4.40% -16.23% -4.74% -4.67% -5.57% 
Source: authors’ calculations 

Continuing, we present the percentage difference between the relative MSE values of 

forecasts based on hard macroeconomic data and common factors in Table 14. Positive values 

indicate that the model based on hard data is more accurate, while negative values suggest the 

opposite. 

To add, Table 14 reveals that in most cases, models based on hard data exhibit greater 

accuracy. Moreover, their forecasts demonstrate higher consistency across multiple horizons. 

For instance, while Table 3 highlights the consistency of Lasso forecasts, Table 14 demonstrates 

that the magnitude of underperformance for forecasts based on common factors fluctuates 

significantly, ranging between 158% and 232% for the Lasso model. This indicates that 

forecasts based on hard macroeconomic data are more consistent over multiple horizons 

compared to those based on common factors. Similar observations can be made for the Ridge 

model. On the other hand, the SVM model displays lower errors when forecasting based on 

common factors. However, the differences are relatively small, ranging between 4.40% and 

5.57%, except for h = 3, which shows a larger difference at 16.23%. 

Table 15: Directional accuracy of forecasts based on common factors - IP 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 41.43% 31.37% 26.67% 21.51% 22.18% 

Lasso 65.71% 68.63% 67.95% 68.64% 67.66% 

Ridge 65.71% 66.67% 68.21% 68.82% 69.07% 

Elastic Net 64.29% 67.65% 68.46% 68.10% 68.64% 

Bagging 68.57% 68.14% 69.74% 71.51% 72.74% 

Boosting 62.86% 69.12% 66.67% 67.03% 67.66% 

Random Forest 67.14% 64.22% 67.95% 69.71% 69.77% 

SVM 67.14% 65.69% 67.18% 68.46% 70.06% 
Source: authors’ calculations 

To conclude, we present the directional accuracy of forecasts based on common factors 

in Table 15. This table reinforces our previous findings. Directional accuracy values based on 

common factors are significantly higher than those of the benchmark model. However, they are 
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lower compared to the results based on hard macroeconomic data, as shown in Tables 6 and 10. 

Nonetheless, their values remain relatively stable across multiple horizons. 

In conclusion, forecasts based on common factors outperform the benchmark model but 

underperform forecasting based on hard macroeconomic data. The exception is the SVM 

model, which, despite displaying lower errors with common factors, is generally the worst-

performing model.  

 

4.1.3 Forecasting industrial production using soft indicators 

In Subchapter 3.10, we establish that soft indicators are unlikely to yield forecasts with 

lower errors compared to those based on hard data. However, their primary purpose is not to 

precisely capture the magnitude of change in macroeconomic variables. Instead, they serve to 

reflect the sentiments of economic participants regarding the general direction of the economy 

and its components. Consequently, they offer an approximate overview of where the economy 

is headed. The key advantage of soft indicators lies in their availability, as there is no substantial 

lag in obtaining data, unlike macroeconomic variables where decision-makers often face delays 

of weeks or even months. In summary, due to their design and availability, soft indicators can 

serve as a valuable tool for forecasting the direction of the economy, as acknowledged by 

Coulombe et al. (2022). 

Table 16: Relative MSE of forecasts based on indicators - IP 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Lasso 1.32312 1.34674 1.39162 1.51222 1.48444 

Ridge 1.12521 1.14370 1.22579 1.35124 1.37424 

Elastic Net 1.29585 1.16898 1.24093 1.58505 1.50255 

Bagging 1.31483 1.38907 1.46642 1.61058 1.63486 

Boosting 1.28823 1.24934 1.38982 1.48275 1.52916 

Random Forest 1.27363 1.29351 1.36195 1.52735 1.51519 

SVM 1.21398 1.22918 1.31444 1.42896 1.43386 
Source: authors’ calculations 

Given this premise, we are interested in exploring the potential of combining input data 

from soft indicators (listed in Table A1.9) and utilizing machine learning methods for 

forecasting. Our objective is to demonstrate that by combining indicators in this manner, we 

can increase the likelihood of forecasting the direction of change in our target variable, which 
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in this case is industrial production. We conduct the forecasting exercise and report the relative 

MSE values in Table 16. 

As anticipated, Table 16 confirms that indicators are not the most suitable source of 

information when we seek the most precise forecasts in terms of magnitude. Generally, the 

benchmark model outperforms machine learning models based on indicators in forecasting 

industrial production, as indicated by their relative MSE values consistently exceeding 1. Our 

results thus underscore the superiority of using hard data to minimize relative MSE in forecasts. 

Alternatively, if access to a large dataset is limited, relying on the benchmark data-driven model 

proves to be more reliable than using indicators, if we are interested in the magnitude of errors. 

Table 17: Directional accuracy of forecasts based on indicators - IP 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 41.43% 31.37% 26.67% 21.51% 22.18% 

Lasso 61.43% 61.27% 58.46% 56.27% 56.50% 

Ridge 55.71% 57.84% 57.18% 57.53% 57.77% 

Elastic Net 58.57% 59.80% 62.31% 58.42% 59.18% 

Bagging 57.14% 55.39% 56.67% 56.63% 56.92% 

Boosting 58.57% 61.27% 55.13% 58.24% 59.46% 

Random Forest 58.57% 61.27% 60.26% 58.96% 60.59% 

SVM 61.43% 60.29% 59.49% 59.32% 59.04% 
Source: authors’ calculations 

Continuing, we analyze directional accuracy, our primary metric of interest in the case of 

indicator data. The DA values are presented in Table 17, revealing several noteworthy 

observations. Firstly, every machine learning model significantly outperforms the benchmark 

model across all horizons, validating our assumptions and demonstrating the effectiveness of 

utilizing indicators for forecasting. Secondly, while the outperformance is smaller compared to 

forecasts based on hard macroeconomic data, this outcome is anticipated. Forecasts based on 

indicator data inherently yield lower DA values than those based on hard macroeconomic data 

due to the nature of indicators measuring sentiments and their availability. Thirdly, this 

outperformance remains consistent across horizons, as depicted in Figure 16. Fourthly, there 

are minimal differences between models, indicating that we can select the model with the least 

computational requirements (such as Lasso in our case) and utilize it for computing directional 

accuracy. 

In conclusion, indicators serve their intended purpose effectively. By leveraging an 

extensive dataset of soft indicators and employing machine learning models, we can predict the 
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direction of change in industrial production with a higher likelihood than if we solely relied on 

the benchmark model. 

Figure 16: Directional accuracy of forecasts based on indicators - IP 

 
Source: authors’ calculations 

 

4.1.4 Forecasting inflation using hard macroeconomic data 

Continuing our analysis, we present the relative MSE and MAE results of the forecasts 

of inflation in Table 18.  

Table 18: Relative MSE and MAE of RLS models - Inf 

Relative MSE h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Lasso 0.85183 0.84309 0.84579 0.82543 0.82269 

Ridge 0.65684 0.66673 0.65922 0.65645 0.63384 

Elastic Net 0.57095 0.62576 0.62040 0.54723 0.59771 

Relative MAE      

Benchmark 1 1 1 1 1 

Lasso 0.87313 0.86684 0.86351 0.86148 0.86148 

Ridge 0.79810 0.81195 0.80224 0.79797 0.79797 

Elastic Net 0.74610 0.75678 0.76212 0.71168 0.71168 
Source: authors’ calculations 

Firstly, when we look at MSE, we find that all RLS models perform better than the 

benchmark. The Lasso model has a relative MSE ranging from 0.82 to 0.86. Similarly, the Ridge 

model shows a relative MSE of around 0.63 to 0.65 for each forecast period, consistently 

outperforming the benchmark. The most effective among these is the Elastic Net model, with a 
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relative MSE between 0.57 and 0.63. Notably, since the Ridge model exhibits a lower relative 

MSE compared to Lasso, the Elastic Net model incorporates more information from Ridge, 

indicating that in this scenario, shrinkage is favored over variable selection. This is in contrast 

to Table 3, when variable selection was preferred. Overall, all RLS models surpass the 

benchmark model in terms of performance. 

Secondly, the relative MAE results further support our earlier conclusion, as they are also 

lower than those of the benchmark. In opposition to Table 3, the differences between relative 

MSE and MAE values are relatively miniscule in Table 18. This suggests that RLS models are 

more robust to large outlier forecast errors in this case. Furthermore, the extent of 

outperformance remains consistent across all models and forecast horizons, as demonstrated in 

Figure 17. 

Figure 17: Relative MSE of RLS models over time - Inf 

 
Source: authors’ calculations 

To ascertain the statistical significance of this outperformance, we present the DM test 

values in Table 19. It is evident that each forecast generated by the RLS models exhibits 

statistically significant improvement at the 5% significance level. 

Table 19: DM test p-values of RLS methods - Inf 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso 0,00622** 0,00121** 0,00415** 0,00525** 0,00168** 

Ridge 0,01335** 0,01527** 0,01263** 0,01498** 0,03328** 

Elastic Net 0,00197** 0,00430** 0,00565** 0,00775** 0,02192** 
Source: authors’ calculations 
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Table 20: % improvement of RLS forecasts over the benchmark - Inf 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso 14.82% 15.69% 15.42% 17.46% 17.73% 

Ridge 34.32% 33.33% 34.08% 34.35% 36.62% 

Elastic Net 42.91% 37.42% 37.96% 45.28% 40.23% 
Source: authors’ calculations 

Given the statistical significance of the outperformance, we can express the extent of 

improvement in percentage figures. Table 20 presents the results. The Lasso model's 

outperformance ranges between 14.82% and 17.73%, with an increase as the forecast horizon 

increases. The Ridge model consistently outperforms the benchmark by 33.33% to 36.63%, 

while the Elastic Net model yields the highest improvement, ranging from 37.42% at h = 3 to 

45.28% at h = 9.  

Table 21: Directional accuracy of RLS models - Inf 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 60,00% 61,27% 59,74% 57,89% 56,07% 

Lasso 65,71% 68,63% 70,77% 71,33% 71,89% 

Ridge 72,86% 70,59% 70,26% 70,97% 72,46% 

Elastic Net 71,43% 73,04% 75,90% 77,60% 76,98% 
Source: authors’ calculations 

Figure 18: Directional Accuracy of RLS models over time - IP 

 
Source: authors’ calculations 

Transitioning to DA, each RLS model demonstrates a greater likelihood of correctly 

capturing the direction of change in the target variable compared to the benchmark model. The 

findings are summarized in Table 21. The directional accuracy of the Lasso model falls within 

the range of 65.71% to 71.89%, while that of Ridge ranges from 70.26% to 72.86%. The Elastic 
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Net performs best in terms of DA as well. In contrast, the benchmark model's directional 

accuracy varies from 56.07% to 61.27%, contingent upon the forecast horizon.  

Furthermore, this enhancement maintains consistency over time, as depicted in Figure 18. 

The DA values of Lasso and Elastic Net exhibit a slight growth as h increases. However, the 

DA values of the Ridge model do not display a discernible pattern of growth. Another 

noteworthy observation is that, with an increase in the forecast horizon, the DA of the 

benchmark model experiences only a marginal decrease.  

We proceed by presenting the results of the EML models in Table 22. 

Table 22: Relative MSE and MAE of EML models - Inf 

Relative MSE h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Bagging 0.67586 0.69034 0.67162 0.67980 0.65210 

Boosting 0.66167 0.73106 0.73522 0.82561 0.81767 

Random Forest 0.76327 0.76775 0.74941 0.74185 0.73045 

Relative MAE      

Benchmark 1 1 1 1 1 

Bagging 0.80201 0.80335 0.79988 0.81326 0.81326 

Boosting 0.7671 0.83876 0.82218 0.87872 0.82839 

Random Forest 0.8565 0.83859 0.82778 0.82819 0.80148 
Source: authors’ calculations 

Figure 19: Relative MSE of EML models over time - IP 

 
Source: authors’ calculations 

To start, when evaluating MSE, each EML model demonstrates superior performance 

compared to the benchmark. Bagging exhibits an MSE ranging from 0.67 to 0.70, Boosting 
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ranges from 0.66 to 0.83, and Random Forest ranges from 0.73 to 0.77. Notably, Bagging 

emerges as the top-performing model, except for h = 1, where Boosting marginally outperforms 

it. 

Secondly, the relative MAE results reinforce our earlier findings, as they also indicate 

lower errors compared to the benchmark. Moreover, the magnitude of outperformance remains 

consistent for Bagging, as depicted in Figure 19. Figure 19 also illustrates an increase in forecast 

errors for Boosting and a slight decrease for Random Forest as the forecast horizon increases.  

Table 23 presents the p-values from the DM test. It's noteworthy that every individual 

EML model exhibits statistically significant outperformance compared to the benchmark at the 

5% significance level across all forecast horizons.  

Table 23: DM test p-values of EML methods - Inf 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Bagging 0.00318** 0.00246** 0.00215** 0.00228** 0.00701** 

Boosting 0.00155** 0.01021** 0.01181** 0.04125** 0.01602** 

Random Forest 0.01956** 0.02505** 0.01219** 0.02601** 0.04646** 
Source: authors’ calculations 

Table 24 highlights the outperformance of Bagging, ranging between 30.02% and 

34.79%. This achievement is particularly noteworthy as it surpasses the performance of Lasso 

and closely rivals that of Ridge, falling just short of the Elastic Net model's superiority. Among 

the other EML models, Boosting demonstrates an outperformance ranging from 17.44% to 

33.83%, while Random Forest shows a narrower range of improvement, between 23.22% and 

26.96%. Interestingly, Boosting's strongest outperformance occurs at h = 1 but diminishes as h 

increases, whereas Random Forest exhibits a slight increase in outperformance over the forecast 

horizons. 

Table 24: % improvement of EML forecasts over the benchmark - Inf 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Bagging 32.41% 30.97% 32.84% 32.02% 34.79% 

Boosting 33.83% 26.89% 26.48% 17.44% 18.23% 

Random Forest 23.67% 23.22% 25.06% 25.81% 26.96% 
Source: authors’ calculations 

Progressing to DA, each EML model demonstrates a greater likelihood of correctly 

capturing the direction of change in the target variable compared to the benchmark model. The 

findings are presented in Table 25. The directional accuracy of Bagging ranges from 70.48% 

to 73.04%, while that of Boosting ranges from 65.71% to 70.42%, and Random Forest ranges 

from 68.57% to 70.00%. In contrast, the benchmark model's directional accuracy varies from 
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56.07% to 61.27%, depending on the forecast horizon. Moreover, this outperformance is 

consistent over time, as depicted in Figure 20.  

Table 25: Directional accuracy of EML models - Inf 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 60.00% 61.27% 59.74% 57.89% 56.07% 

Bagging 71.43% 73.04% 72.31% 71.15% 70.48% 

Boosting 65.71% 69.12% 69.49% 67.38% 70.42% 

Random Forest 68.57% 68.63% 70.00% 69.71% 68.64% 
Source: authors’ calculations 

Figure 20: Directional accuracy of EML models over time - Inf 

 
Source: authors’ calculations 

In Table 26, we present the results of the SVM, FFNN and LSTM models. Firstly, we 

acknowledge that computational resource constraints rendered the Neural Network models 

impractical for our analysis, as elaborated in Subchapter 5.1.1, thus we won't delve into further 

details here. Moving forward, we direct our attention to the SVM model, which exhibits notably 

stronger performance in forecasting inflation compared to industrial production. While its 

relative MSE is higher compared to previously described models in this subchapter, the near-

identical values of relative MSE and MAE indicate that the model adeptly captures significant 

data patterns and can accommodate potentially large forecast errors without substantial impact. 

Additionally, these results hold high statistical significance at the 5% level across all horizons. 

Regarding DA, the SVM model achieves values ranging from 68.77% to 74.15%, 

indicating its outperformance compared to the benchmark model. Its performance generally 

aligns with that of the Ridge and Bagging models, slightly trailing behind the Elastic Net model 



 

71 

 

while surpassing Lasso, Boosting, and Random Forest. 

Table 26: Forecasts with SMV, FFNN and LSTM - Inf 

Relative MSE h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Support Vector 

Machine 

0.83966 0.85146 0.85869 0.85031 0.82470 

Feedforward 

NN 

458.15 451.18 438.00 420.98 418.35 

LSTM NN 5716.14 1617.63 1219.65 477.68 637.59 

Relative MAE      

Benchmark 1 1 1 1 1 

Support Vector 

Machine 

0.86623 0.87089 0.87021 0.86015 0.86015 

Feedforward 

NN 

27.9724 27.7361 27.2919 26.7198 26.7198 

LSTM NN 76.7502 42.9465 35.6332 21.4885 21.4885 

DM test      

Support Vector 

Machine 

0.00709 0.01365 0.01686 0.01555 0.00413 

Feedforward 

NN 

1 1 1 1 1 

LSTM NN 1 1 0.99997 0.99998 0.99905 

DA      

Benchmark 60.00% 61.27% 59.74% 57.89% 56.07% 

Support Vector 

Machine 

68.57% 70.59% 73.08% 73.48% 74.15% 

Feedforward 

NN 

44.29% 45.10% 45.90% 46.42% 46.75% 

LSTM NN 48.57% 37.75% 54.62% 57.89% 53.25% 
Source: authors’ calculations 

To summarize, in this subchapter we forecast inflation using hard macroeconomic data. 

Most of the machine learning models exhibit significant outperformance compared to the 

benchmark model, with the exception of the neural network models due to computational 

limitations. The outperformance is lesser in magnitude compared to industrial production, but 

it is highly statistically significant at each horizon. The models, sorted from best to worst in 

terms of % improvement over the benchmark, are presented in Table 27.  

Firstly, among the models evaluated, Ridge and Elastic Net stand out as the top 

performers, with Elastic Net being number one on each horizon, demonstrating statistically 

significant outperformance of the benchmark model at every forecasting horizon at the 5% 

significance level. Additionally, both Ridge and Elastic Net models exhibit the highest 

directional accuracy values across all models, with consistent performance over time. Notably, 

in contrast to the good performance of Lasso in the case of industrial production, its 
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performance deteriorates substantially and it remains one of the worst performing models, 

surpassing only the SVM. The outperformance of the Lasso model is also statistically 

significant on every h at the 5% level though. 

Secondly, EML models, while displaying slightly higher errors and lower directional 

accuracy compared to Ridge and Elastic Net, are still capable of achieving statistically 

significant outperformance of the benchmark model. What is more, Bagging surpasses Lasso 

in terms of DA. Bagging emerges as the overall top performer except for h = 1, showcasing 

notable effectiveness in capturing nonlinear relationships in the data. 

Thirdly, the SVM model yields far more compelling results compared to industrial 

production. It is still the weakest model, but the outperformance becomes statistically 

significant on every h. Moreover, it is the most robust model in terms of influential forecast 

errors, as it produces really similar relative MSE and MAE values.  

Table 27: Forecasting models from best to worst - Inf 

 h = 1 h = 3 h = 6 h = 9 h = 12 

1. Elastic Net Elastic Net Elastic Net Elastic Net Elastic Net 

2. Ridge Ridge Ridge Ridge Ridge 

3. Boosting Bagging Bagging Bagging Bagging 

4. Bagging Boosting Boosting RF RF 

5. RF RF RF Lasso Boosting 

6. Lasso Lasso Lasso Boosting Lasso 

7. SVM SVM SVM SVM SVM 

8. FFNN FFNN FFNN FFNN FFNN 

9. LSTM LSTM LSTM LSTM LSTM 
Source: authors’ calculations 

 

4.1.5 Forecasting inflation using common factors 

Table 28 presents the relative MSE values of the inflation forecasts derived from common 

factors. Table 28 underscores that forecasts derived from common factors continue to 

outperform the benchmark model, with no relative MSE exceeding one. Within the RLS 

methods, the performance of the Lasso model experiences a decline compared to industrial 

production forecasting, while Elastic Net maintains satisfactory results. Notably, the Ridge 

model demonstrates a significant improvement and emerges as the top-performing RLS 

specification. This is likely the result of the reduced information set, where shrinkage becomes 

more pronounced in contrast to variable selection.  
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Table 28: Relative MSE of forecasts based on common factors - Inf 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Lasso 0.91935 0.92376 0.93345 0.93323 0.91158 

Ridge 0.52143 0.51825 0.52280 0.51764 0.50053 

Elastic Net 0.60710 0.61172 0.60056 0.59217 0.56605 

Bagging 0.82478 0.83360 0.85232 0.84480 0.80954 

Boosting 0.93111 0.93141 0.87634 0.86724 0.94901 

Random Forest 0.82074 0.84776 0.81986 0.76227 0.71753 

SVM 0.70042 0.71128 0.71516 0.70507 0.69529 
Source: authors’ calculations 

Turning to EML methods, Bagging and Random Forest exhibit nearly identical 

performances, with the exception of h = 12, where the latter marginally outperforms the former 

by almost 0.08. Boosting, however, fares less favorably compared to these two. Furthermore, 

the Support Vector Machine (SVM) model's results demonstrate a notable improvement, 

compared to its performance on hard data. 

Table 29: % difference between forecasts based on factors and hard data - Inf 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso 7.93% 9.57% 10.37% 13.06% 10.81% 

Ridge -20.62% -22.27% -20.69% -21.15% -21.03% 

Elastic Net 6.33% -2.24% -3.20% 8.21% -5.30% 

Bagging 22.03% 20.75% 26.90% 21.03% 22.67% 

Boosting 40.72% 27.41% 19.19% 5.04% 16.06% 

Random Forest 7.53% 10.42% 9.40% 2.75% -1.77% 

SVM -16.58% -16.46% -16.72% -17.08% -15.69% 
Source: authors’ calculations 

Table 29 presents the percentage difference between the relative MSE values of forecasts 

based on hard macroeconomic data and those based on common factors. Primarily, the table 

reveals that in most instances, models based on hard data exhibit greater accuracy. Nonetheless, 

there are a few exceptions. Firstly, the Ridge model based on common factors surpasses its 

counterpart based on hard macroeconomic data. Additionally, Elastic Net demonstrates superior 

performance at certain horizons compared to forecasts based on hard data, albeit with small 

percentage differences ranging between 2.24% and 5.30%. Furthermore, the Support Vector 

Machine (SVM) model consistently yields lower errors compared to the model forecast based 

on hard data, indicating its robust performance. This result is in line with the SVM result of 

Table 14.  

In Table 30, we present the directional accuracy of forecasts based on common factors. 

This table further reinforces our conclusion that hard macroeconomic data should be prioritized 



 

74 

 

for forecasting purposes. While directional accuracy values based on common factors generally 

exceed the benchmark, they typically fall short compared to results derived from hard 

macroeconomic data. Notably, there are instances, such as from h = 1 to h = 9, where the 

benchmark outperforms Boosting in terms of directional accuracy, a scenario not observed 

when using real data. 

Table 30: Directional accuracy of forecasts based on common factors - Inf 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 60.00% 61.27% 59.74% 57.89% 56.07% 

Lasso 64.29% 65.69% 66.15% 66.13% 66.10% 

Ridge 67.14% 67.16% 67.44% 67.56% 67.09% 

Elastic Net 68.57% 67.16% 68.72% 68.64% 68.50% 

Bagging 68.57% 71.57% 70.77% 69.53% 69.49% 

Boosting 58.57% 60.29% 59.74% 57.53% 62.29% 

Random Forest 64.29% 64.22% 62.56% 62.19% 65.11% 

SVM 60.00% 61.27% 59.74% 57.89% 56.07% 
Source: authors’ calculations 

 

4.1.6 Forecasting inflation using soft indicators 

The results of machine learning and benchmark model forecasts based on these indicators 

are presented in Table 31. As anticipated, the table reveals that indicators are not the most 

suitable source of information when aiming to capture the magnitude of changes in 

macroeconomic variables. This is primarily because they yield forecasts similar to the 

benchmark model, which necessitates significantly less data and computational resources. It's 

worth noting that the SVM and Elastic Net models have no relative MSE over 1. However, all 

values are so close to 1 that they are practically indistinguishable. 

Table 31: Relative MSE of forecasts based on indicators - Inf 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Lasso 0.99920 1.00930 1.02142 1.01731 0.97916 

Ridge 1.00141 1.00944 1.02160 1.01633 0.97927 

Elastic Net 0.94591 0.95314 0.96228 0.95526 0.91147 

Bagging 1.16871 1.20947 1.18994 1.18321 1.14751 

Boosting 1.16607 1.11865 1.06712 1.09477 1.07865 

Random Forest 1.00079 0.99324 1.00011 1.00889 0.99492 

SVM 0.94591 0.95053 0.96228 0.95526 0.91147 
Source: authors’ calculations 
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Table 32: Directional accuracy of forecasts based on indicators - Inf 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 60.00% 61.27% 59.74% 57.89% 56.07% 

Lasso 64.29% 65.69% 66.15% 66.13% 66.10% 

Ridge 64.29% 65.69% 66.15% 66.13% 66.10% 

Elastic Net 64.29% 65.69% 66.15% 66.13% 66.10% 

Bagging 62.86% 64.22% 64.62% 64.52% 64.41% 

Boosting 54.29% 54.90% 55.90% 56.09% 59.60% 

Random Forest 64.29% 65.20% 65.13% 65.41% 65.68% 

SVM 64.29% 65.69% 66.15% 66.13% 66.10% 
Source: authors’ calculations 

Figure 21: Directional accuracy of forecasts based on indicators - Inf 

 
Source: authors’ calculations 

Continuing our analysis, we delve into directional accuracy, our primary measure of 

interest when utilizing indicator data. The directional accuracy values are presented in Table 

32. Several notable observations emerge. Firstly, every machine learning model consistently 

outperforms the benchmark model across all forecast horizons, except for Boosting. Within the 

RLS models, there is no discernible difference in directional accuracy values, rendering the 

choice between them irrelevant. Similarly, EML models generally outperform the benchmark, 

except for Boosting, which exhibits lower directional accuracy values. While one model 

underperforms, the others align with expectations. Secondly, the level of outperformance is 

smaller compared to when using hard macroeconomic data. This outcome was expected, as 

forecasts based on indicator data typically yield lower directional accuracy values. However, 

it's crucial to acknowledge that indicators offer the advantage of earlier availability and 

capturing sentiments. Thirdly, the consistent outperformance is evident, as depicted in Figure 
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21, albeit to a lesser extent than in Subchapter 4.1.3. Fourthly, there are no substantial 

differences between models, suggesting that selecting the model with the least computational 

capacity (in this case, Lasso) suffices for computing directional accuracy. 

In conclusion, indicators effectively serve their purpose. Through leveraging an extensive 

dataset of soft indicators and employing machine learning models, we can predict the direction 

of change in inflation with a higher likelihood than if we relied solely on the benchmark model. 

 

4.2 Post-COVID 

4.2.1 Forecasting industrial production using hard macroeconomic data – post-

COVID 

In this subchapter, we utilize our revised dataset, which now encompasses data from the 

COVID era, hence referred to as the post-COVID dataset. We commence our analysis by 

delineating the relative MSE and MAE outcomes of the forecasts pertaining to industrial 

production, derived from hard macroeconomic data. Table 33 presents the results of the RLS 

models. Firstly, in terms of MSE, all RLS models demonstrate superior performance compared 

to the benchmark. Both Lasso and Elastic Net models exhibit a relative MSE of approximately 

0.02, indicating that the Lasso component within the Elastic Net model carries a higher weight 

in comparison to the Ridge component. On the other hand, the Ridge model also surpasses the 

benchmark by maintaining a relative MSE ranging between 0.15 to 0.16 for every forecast 

horizon. This indicates that variable selection emerges as a crucial factor, surpassing coefficient 

shrinkage in significance. To highlight the differences between shrinkage and selection, we 

present the selected variables from Tables A1.1 – A1.8. on Figures 22-24.  

Table 33: Relative MSE and MAE of RLS models - IP 

Relative MSE h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Lasso 0.01708 0.01690 0.01651 0.01485 0.01421 

Ridge 0.16493 0.15828 0.15719 0.15798 0.15508 

Elastic Net 0.02293 0.02321 0.02341 0.02309 0.02210 

Relative MAE      

Benchmark 1 1 1 1 1 

Lasso 0.19054 0.19100 0.18811 0.17607 0.17197 

Ridge 0.53807 0.53016 0.53287 0.52925 0.51732 

Elastic Net 0.21986 0.22374 0.22300 0.22138 0.21563 
Source: authors’ calculations 
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Variable importance is calculated according to Kock et al. (2020). As there are a high 

number of predictors, we group them. For each forecasting horizon, the Figures 22-24 display 

the average estimated coefficient across the rolling windows for each group. Before averaging, 

the coefficients are adjusted by multiplying them by the standard deviation of the variables to 

ensure comparability. The resulting importance measures are then rescaled to sum up to one. 

Since the number of variables in each group varies significantly, the importance measures are 

further divided by the number of variables in the respective group for normalization. The best 

models show remarkable simplicity, as expected. Both Lasso and Elastic Net place the highest 

weight on the 32 variables from the category of industrial production, presented in Table A1.1. 

This pattern is remarkably consistent over the different horizons, keeping the relative 

importance of other variable groups at a low level. In contrast, Ridge places the highest weight 

on the revenue category, which slightly increases with h. It also places some weight on wages 

and the current account, with the latter showing a decreasing tendency. While the other models 

also incorporate variables from the revenue category, they do it to a much lesser extent.  

Secondly, the relative MAE outcomes reinforce our prior deduction, showcasing smaller 

errors compared to the benchmark model. This also signifies the higher performance of the 

variable selection models, for in absolute terms, Ridge exhibits the largest difference between 

relative MSE and MAE values, indicating its sensitivity to larger forecast errors. This signifies 

that all RLS models outshine the benchmark, with errors notably smaller than those observed 

in the pre-COVID dataset, presented in Table 3.   

Figure 22: Variable importance of the Ridge model – IP – post-COVID  

 
Source: authors’ calculations 
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Figure 23: Variable importance of the Elastic Net model – IP – post-COVID  

 
Source: authors’ calculations 

 

Figure 24: Variable importance of the Lasso model – IP – post-COVID  

 
Source: authors’ calculations 

The magnitude of outperformance, presented on Figure 25, shows remarkable 

consistency similar to of Figure 12.  

To shed further light on the precision of these methods, we compare the out-of-sample 

actual and forecasted values on Figure 26 for h = 1 and Figure 27 for h = 12. Regardless of time 

horizon, both the Lasso and Elastic Net models demonstrate a remarkable match in terms of 

both general direction and magnitude. This includes accurately capturing large spikes in the 
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data. While the Ridge model correctly predicts the direction, it tends to underperform in terms 

of magnitude, particularly evident in slightly overestimating the impact of large spikes.  

Figure 25: Relative MSE of RLS models over time – IP – post-COVID 

 
Source: authors’ calculations 

Figure 26: Actual and forecasted values of RLS models on h = 1 – IP – post-COVID 

 
Source: authors’ calculations 
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Figure 27: Actual and forecasted values of RLS models on h = 12 – IP – post-COVID 

 
Source: authors’ calculations 

To add, Table 34 presents the DM statistic p-values, showcasing that all RLS models 

significantly outperform the benchmark at the 5% level. 

Table 34: DM test p-values of RLS methods – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso 0.01547** 0.01637** 0.0167** 0.01672** 0.01698** 

Ridge 0.02481** 0.02529** 0.02625** 0.02648** 0.02591** 

Elastic Net 0.00664** 0.01321** 0.01174** 0.04661** 0.00935** 
Source: authors’ calculations 

Since the outperformance is statistically significant, we can express the magnitude of 

outperformance in percentage terms. Table 35 illustrates that the Lasso model consistently 

outperforms the benchmark by approximately 98.00% across all h. Similarly, the Ridge model 

generally surpasses the benchmark by 84.00%, while the Elastic Net model, not surprisingly, 

exhibits a very close performance to Lasso, with an outperformance of about 97.00% across all 

horizons. Notably, both Lasso and Elastic Net models achieve an increase in performance of 

approximately 20 percentage points compared to the pre-COVID sample. Multiple reasons can 

be given for this outperformance. Generally, the models have more data to learn with the 

prolongation of the time series by 4 years. To add, the benchmark model’s performance can 

deteriorate substantially as the simple model might not be able to capture an abrupt and 

unexpected shock such as COVID.  In conclusion, regardless of the model under consideration, 

the improvement in percentage terms is substantial, highlighting the efficacy of the chosen 

modeling approaches. 
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Table 35: % improvement of RLS forecasts over the benchmark – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso 98.29% 98.31% 98.35% 98.51% 98.58% 

Ridge 83.51% 84.17% 84.28% 84.21% 84.49% 

Elastic Net 97.71% 97.68% 97.66% 97.69% 97.79% 
Source: authors’ calculations 

To finish the analysis of the RLS model errors, DA values are presented in Table 36. Lasso 

is the best performing with DA values between 93.87% and 94.52% compared to the 

benchmark, which is accurate between 43.76% and 44.62% of the time. Elastic Net performs 

slightly worse than Lasso, but still has relative MSE values between 85.45% and 90.00%, which 

is a more than twofold increase compared to the benchmark, while Ridge is the weakest model 

with DA values between 68.49% and 71.62%.  

Table 36: Directional accuracy of RLS models – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 43.84% 46.01% 44.12% 43.76% 44.62% 

Lasso 94.52% 93.90% 93.87% 94.36% 94.09% 

Ridge 68.49% 71.36% 71.32% 71.62% 71.37% 

Elastic Net 90.00% 86.76% 87.44% 85.48% 85.45% 
Source: authors’ calculations 

Figure 28: Directional Accuracy of RLS models over time – IP – post-COVID 

 
Source: authors’ calculations 

Furthermore, the results are consistent irrespective of h, as shown in Figure 28. In contrast 

to the pre-COVID sample, this time the benchmark model is consistent as well.  

We proceed by presenting the results of the EML models in Table 37.  
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Table 37: Relative MSE and MAE of EML models – IP – post-COVID 

Relative MSE h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Bagging 0.29142 0.29817 0.29136 0.28997 0.29515 

Boosting 0.31343 0.32121 0.31778 0.31932 0.34098 

Random Forest 0.30690 0.31272 0.30703 0.59819 0.31621 

Relative MAE      

Benchmark 1 1 1 1 1 

Bagging 0.41735 0.42114 0.43231 0.41821 0.42341 

Boosting 0.46399 0.48096 0.47895 0.47221 0.48446 

Random Forest 0.48173 0.48949 0.49292 0.80020 0.49943 
Source: authors’ calculations 

Figure 29: Relative MSE of EML models over time – IP – post-COVID 

 
Source: authors’ calculations 

Firstly, in terms of MSE, every EML model outperforms the benchmark. Bagging 

demonstrates an MSE of around 0.29, with Boosting ranging between 0.31 and 0.34, and 

Random Forest between 0.30 and 0.32, except at h = 9, where it increases to 0.60. This indicates 

that Bagging performs best for every horizon, closely followed by both Random Forest and 

Boosting. Random Forest performs better than Boosting at every horizon except for h = 9. The 

relative MAE values support this conclusion and Figure 29 shows the consistency of relative 

MSE across different h. For EML methods, variable importance is computed similarly than for 

RLS methods, but it is averaged across horizons as well. Figure 30 presents the importance of 

each category for Bagging. The rest of the EML models – as expected based on Table 37 – 

assign virtually identical importances to variable categories, hence we only present Bagging.  
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Figure 30: Variable importance in Bagging – IP – post-COVID 

 
Source: authors’ calculations 

In line with RLS models (with the exception of Ridge), Bagging assigns the highest 

weight to the variables in Table A1.1. In contrast to Elastic Net and Lasso, it also weighs 

variables from other categories, with revenue being the second most important category, 

followed by employment and wages. Foreign trade and exchange rates play a bit larger, while 

current account plays a bit smaller role. The effect of prices on the outcome of forecast is 

minimal.   

Figure 31: Actual and forecasted values of EML models on h = 1 – IP – post-COVID 

 
Source: authors’ calculations 
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Figure 32: Actual and forecasted values of EML models on h = 12 – IP – post-COVID 

 
Source: authors’ calculations 

To provide additional insight into the accuracy of these methods, we compare the out-of-

sample actual and forecasted values in Figure 31 for h = 1 and Figure 32 for h = 12. Across 

both time horizons, all three models closely align with the actual values, demonstrating a good 

match in terms of both general direction and magnitude, at least when the data is smooth. The 

models correctly capture the direction of the large spikes in the real data, but they cannot exactly 

capture their magnitude.  

To continue with, Table 38 shows that every model outperforms the benchmark 

statistically significantly at the 5% level.  

Table 38: DM test p-values of EML methods – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Bagging 0,01136** 0,01248** 0,01299** 0,01333** 0,01385** 

Boosting 0,01544** 0,01726** 0,01865** 0,01690** 0,01941** 

Random Forest 0,01311** 0,01382** 0,01533** 0,04373** 0,01501** 
Source: authors’ calculations 

With the statistically significant outperformance established, we proceed to quantify the 

magnitude of outperformance in percentage terms, stating them in Table 39. Table 39 reveals 

that the outperformance of Bagging ranges between 70.18% and 71.00%, still impressive but 

slightly less than the best RLS models. Boosting's outperformance ranges between 65.90% and 

68.66%, and Random Forest's between 68.38% and 69.30%, except for h = 9. Generally, 

Bagging emerges as the best-performing model, closely followed by both Boosting and 

Random Forest. The outperformance remains consistent for every model, except for Random 
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Forest at h = 9. In conclusion, while the improvement in percentage terms is substantial 

regardless of the model considered, it is smaller when compared to the RLS methods. However, 

the performance of the models has significantly improved compared to the pre-COVID sample, 

by approximately 20 percentage points on average. 

Table 39: % improvement of EML forecasts over the benchmark – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Bagging 70.86% 70.18% 70.86% 71.00% 70.48% 

Boosting 68.66% 67.88% 68.22% 68.07% 65.90% 

Random Forest 69.31% 68.73% 69.30% 40.18% 68.38% 
Source: authors’ calculations 

Table 40: Directional accuracy of EML models – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 43.84% 46.01% 44.12% 43.76% 44.62% 

Bagging 93.15% 89.67% 88.24% 89.23% 89.25% 

Boosting 86.30% 85.92% 84.56% 86.67% 84.95% 

Random Forest 86.30% 87.79% 87.99% 88.03% 87.50% 
Source: authors’ calculations 

Moving forward to DA, every EML model demonstrates a higher likelihood of capturing 

the correct direction of change in the target variable compared to the benchmark model. The 

results are presented in Table 40. Bagging achieves DA percentages between 88.24% and 

93.15%, Boosting ranges from 84.56% to 86.67%, and Random Forest ranges from 86.30% to 

88.03%. In contrast, the benchmark model exhibits a DA between 43.76% and 46.01%, 

depending on the forecast horizon. Figure 33 outlines the consistency of DA at different h.  

Figure 33: Directional accuracy of EML models over time – IP – post-COVID 

 
Source: authors’ calculations 
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In Table 41, we exclusively present the results of the Support Vector Machine (SVM) 

model. The Feedforward Neural Network and the Long-Short Term Memory Neural Network 

are omitted due to their poor performance in the previous sample, which has not significantly 

improved with the introduction of new data. SVM remains superior even in this new sample 

post-COVID, with smaller errors compared to the pre-COVID sample. This observation is 

corroborated by the relative MAE values. However, the DA values of the SVM model range 

between 53% and 55%, lower than those of the other models. 

Table 41: Forecasts with SMV, FFNN and LSTM – IP – post-COVID 

Relative MSE h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Support Vector 

Machine 

0.60012 0.600908 0.59867 0.31037 0.59862 

Relative MAE      

Benchmark 1 1 1 1 1 

Support Vector 

Machine 

0.80242 0.80509 0.80283 0.49318 0.80266 

DA      

Benchmark 43.84% 46.01% 44.12% 43.76% 44.62% 

Support Vector 

Machine 

54.79% 54.46% 54.17% 53.85% 53.36% 

Source: authors’ calculations 

Table 42: Combined RLS and EML methods – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso + 

Bagging 

60.68% 59.74% 61.27% 63.24% 62.53% 

Lasso + 

Boosting 

53.20% 55.63% 52.93% 51.00% 51.57% 

Lasso + 

Random Forest 

65.38% 64.50% 64.52% 66.76% 66.40% 

EN + Bagging 59.54% 70.98% 63.46% 63.73% 60.12% 

EN + Boosting 51.10% 67.91% 51.34% 52.85% 52.39% 

EN + Random 

Forest 

68.17% 71.63% 65.20% 65.37% 63.06% 

Ridge + 

Bagging 

70.94% 59.77% 71.72% 72.00% 72.14% 

Ridge + 

Boosting 

64.83% 52.44% 68.18% 65.90% 64.12% 

Ridge + 

Random Forest 

70.91% 66.64% 71.48% 70.67% 70.52% 

Source: authors’ calculations 

In addition to the previous analysis, we also explore the performance of combining 

regularization and nonlinear methods, as summarized in Table 42. Similarly to the case of 

inflation, where such combinations often lead to performance improvements, we observe that 
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in the context of industrial production forecasting, combining regularization and nonlinear 

methods improves the performance of nonlinear models. This might be due to the fact that k > 

T, although EML methods should not be affected by this too much, as stated in Chapter 3.  

To summarize, in this subchapter we forecast industrial production using hard 

macroeconomic data. The machine learning models exhibit significant outperformance. The 

models, sorted from best to worst in terms of % improvement over the benchmark, are presented 

in Table 43.  

Table 43: Forecasting models from best to worst – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

1. Lasso Lasso Lasso Lasso Lasso 

2. Elastic Net Elastic Net Elastic Net Elastic Net Elastic Net 

3. Ridge Ridge Ridge Ridge Ridge 

4. Ridge + 

Bagging 

EN + RF Ridge + 

Bagging 

Ridge + 

Bagging 

Ridge + 

Bagging 

5. Ridge + RF EN + 

Boosting 

Ridge + RF Bagging Ridge + RF 

6. Bagging Bagging Bagging Ridge + RF Bagging 

7. RF RF RF Boosting RF 

8. Boosting Boosting Boosting Lasso + RF Lasso + RF 

9. EN + RF EN + 

Boosting 

Ridge + 

Boosting 

Ridge + 

Boosting 

Boosting 

10. Lasso + RF Ridge + RF EN + RF EN + RF Ridge + 

Boosting 

11. Ridge + 

Boosting 

Lasso + RF Lasso + RF EN + 

Bagging 

EN + RF 

12. Lasso + 

Bagging 

Ridge + 

Bagging 

EN + 

Bagging 

Lasso + 

Bagging 

Lasso + 

Bagging 

13. SVM Lasso + 

Bagging 

Lasso + 

Bagging 

SVM EN + 

Bagging 

14. EN + 

Bagging 

Lasso + 

Boosting 

SVM EN + 

Boosting 

SVM 

15. Lasso + 

Boosting 

SVM Lasso + 

Boosting 

Lasso + 

Boosting 

EN + 

Boosting 

16. EN + 

Boosting 

Ridge + 

Boosting 

EN + 

Boosting 

RF Lasso + 

Boosting 

17. FFNN FFNN FFNN LSTM LSTM 

18. LSTM LSTM LSTM FFNN FFNN 
Source: authors’ calculations 

To start, the standout performers are the Lasso and Elastic Net models, showcasing 

statistically significant outperformance of the benchmark model across all forecasting horizons 

at a 5% significance level. Notably, both Lasso and Elastic Net models exhibit the highest 

directional accuracy values among all models, maintaining consistent performance over time. 
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Although the Ridge model's performance is slightly weaker, it consistently ranks as the third-

best model across all horizons. In contrast, the performance of EML models presents a less 

clear picture. Neither of them outperforms their combination with either Ridge or Elastic Net, 

positioning these latter models at the 4th and 5th places, respectively. This underscores the 

effectiveness of our hybrid approach in substantially improving the forecasting performance of 

nonlinear models by selecting appropriate variables or parameter values for training. 

Looking ahead, we delve into exploring the forecasting performance of machine learning 

models based on common factors in the next subchapter. 

 

4.2.2 Forecasting industrial production using common factors – post-COVID 

 To commence, Table 44 presents the relative MSE values of the forecasts based on 

common factors. This table reaffirms that forecasts derived from common factors continue to 

outperform the benchmark model, with no relative MSE exceeding one. Firstly, focusing on 

RLS methods, both Lasso and Elastic Net yield comparable results to each other. Additionally, 

the performance of the Ridge model notably improves compared to the forecasts based on hard 

data, emerging as the best-performing model among the three. Regarding EML methods, 

Bagging demonstrates superior performance compared to both Boosting and Random Forest, 

with the latter two yielding fairly similar results. The results of the SVM model remain largely 

consistent with those in the previous subchapter, with a slight deterioration observed at h = 9. 

Overall, these findings underscore the continued effectiveness of forecasts based on common 

factors. 

Table 44: Relative MSE of forecasts based on common factors – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Lasso 0.094219 0.091859 0.091085 0.088662 0.081859 

Ridge 0.086534 0.080003 0.079782 0.08465 0.070691 

Elastic Net 0.089579 0.086746 0.085341 0.080882 0.085165 

Bagging 0.374125 0.374765 0.371353 0.374969 0.368122 

Boosting 0.47972 0.472179 0.458188 0.443167 0.45353 

Random Forest 0.399788 0.367635 0.428995 0.416814 0.379344 

SVM 0.599592 0.600849 0.598138 0.597554 0.597642 
Source: authors’ calculations 

Continuing, we present the percentage difference between the relative MSE values of the 

forecasts based on hard macroeconomic data and common factors in Table 45. Positive values 

indicate that the model based on hard data is more accurate than the model based on common 
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factors, while negative values signify the opposite. Table 45 reveals that in most cases, the 

models based on hard data exhibit greater accuracy. The only exceptions are the SVM model, 

where the forecasts are nearly identical, and the Ridge model, which notably performs better 

based on common factors.  

Table 45: % difference between forecasts based on factors and hard data – IP – post-

COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso 81.86% 81.59% 81.87% 83.24% 82.64% 

Ridge -90.60% -97.85% -97.04% -86.58% -119.39% 

Elastic Net 74.40% 73.24% 72.57% 71.45% 74.05% 

Bagging 22.10% 20.44% 21.54% 22.67% 19.82% 

Boosting 34.66% 31.97% 30.64% 27.94% 24.82% 

Random Forest 23.23% 14.94% 28.43% -43.52% 16.64% 

SVM -0.09% -0.01% -0.09% 48.06% -0.16% 
Source: authors’ calculations 

To conclude, we present the directional accuracy of forecasts based on common factors 

in Table 46. This table further corroborates our findings. Directional accuracy values derived 

from common factors significantly surpass the benchmark, albeit they are lower compared to 

the results based on hard macroeconomic data. Nevertheless, these values remain relatively 

stable across multiple horizons. 

Table 46: Directional accuracy of forecasts based on common factors – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 43.84% 46.01% 44.12% 43.76% 44.62% 

Lasso 79.45% 79.81% 81.62% 80.34% 79.17% 

Ridge 79.45% 81.22% 82.84% 81.20% 81.59% 

Elastic Net 78.08% 78.40% 77.70% 77.61% 77.15% 

Bagging 60.27% 60.56% 62.01% 61.71% 61.02% 

Boosting 58.90% 65.26% 64.46% 62.74% 64.52% 

Random Forest 64.38% 60.56% 61.52% 62.05% 59.81% 

SVM 54.79% 54.46% 54.17% 53.85% 53.36% 
Source: authors’ calculations 

 

4.2.3 Forecasting industrial production using soft indicators – post-COVID 

In this subchapter, we explore the potential of combining input data from the soft indicator 

database of NBS and employing machine learning models for forecasting.  

Table 47 presents the relative MSE values. Contrary to our initial expectations and the 

results observed in our pre-COVID sample, we find that the relative MSE of indicator data is 
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lower than that of the benchmark model. This unexpected outcome could potentially be 

attributed to the larger sample size, as we have more data available to train the models. While 

the results are compelling, they do not match the accuracy achieved by forecasts based on hard 

macroeconomic data. However, it's important to note that indicators are more readily accessible 

and do not entail a time lag, making them a valuable tool for providing a broad overview of the 

direction of the economy. If these indicators can not only sketch the direction but also provide 

insight into the magnitudes of change to some extent, then they offer even greater utility.  

Table 47: Relative MSE of forecasts based on indicators – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Lasso 0.52173 0.48680 0.49512 0.51500 0.48728 

Ridge 0.52504 0.52168 0.54900 0.55666 0.53364 

Elastic Net 0.50156 0.48783 0.53762 0.53910 0.47824 

Bagging 0.61925 0.61314 0.61790 0.61249 0.61285 

Boosting 0.59182 0.59197 0.59054 0.58101 0.59214 

Random Forest 0.57262 0.60631 0.58691 0.60898 0.56609 

SVM 0.59995 0.60063 0.59872 0.59778 0.59849 
Source: authors’ calculations 

Continuing our analysis, we turn our attention to DA. Table 48 reveals some notable 

observations.  Firstly, every machine learning model outperforms the benchmark model at every 

horizon, with the exception of Ridge and Random Forest at h = 9, although the extent of 

outperformance is smaller than in the pre-COVID sample. Nonetheless, this reaffirms our initial 

assumptions. Secondly, while the outperformance is smaller compared to using hard 

macroeconomic data, this outcome is anticipated. Forecasts based on indicator data typically 

exhibit lower DA values than those based on hard macroeconomic data, but this compromise is 

justified by the advantage of speed. Thirdly, this outperformance remains consistent across 

every forecasting horizon.  

Table 48: Directional accuracy of forecasts based on indicators – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 43.84% 46.01% 44.12% 43.76% 44.62% 

Lasso 54.79% 48.83% 50.49% 49.06% 48.66% 

Ridge 43.84% 45.54% 44.85% 45.47% 43.41% 

Elastic Net 45.21% 46.48% 44.85% 43.42% 43.68% 

Bagging 53.42% 48.83% 50.00% 52.14% 51.08% 

Boosting 56.16% 51.17% 50.98% 48.03% 50.54% 

Random Forest 58.90% 48.83% 50.49% 5.81% 49.46% 

SVM 54.79% 54.46% 54.17% 53.85% 53.36% 
Source: authors’ calculations 
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4.2.4 Composite forecasts of industrial production – post-COVID 

In this thesis, we explore the use of ML models not only as individual forecasters but 

also as tools for combining forecasts, specifically focusing on data from Slovakia. This 

methodology is relatively novel in existing research, with only Araujo and Gaglianone (2023) 

briefly employing it. We generate composite forecasts by employing outputs from individual 

ML models as inputs (regressors) in subsequent applications of these models. 

Table 49: Composite forecasts including all models – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 43.84% 46.01% 44.12% 43.76% 44.62% 

Lasso 89,31% 90,56% 86,04% 94,09% 93,18% 

Ridge 76,23% 76,61% 71,68% 82,90% 83,30% 

Elastic Net 90,04% 90,65% 86,86% 92,91% 91,25% 

Bagging 88,94% 70,38% 35,44% 66,16% 90,19% 

Boosting 51,74% 47,45% 13,73% 45,56% 50,98% 

SVM 28,00% 27,63% 11,10% 34,86% 30,32% 
Source: authors’ calculations 

We conduct composite forecasts across two different categories. For the first composite 

forecast, we incorporate all model types: individual and combined models utilizing hard data, 

models based on soft indicators, and models derived from common factors. Additionally, a final 

composite includes all combined model forecasts from each category as regressors. In this 

chapter, to conserve space, we present only the percentage improvement of the composite 

forecasts compared to a benchmark model. 

To start, we discuss the results of the composite forecasts for industrial production using 

all available models, as shown in Table 49. This table presents intriguing findings. On one hand, 

the performance of individual models such as Lasso and Elastic Net decreases. On the other 

hand, the performance of Ridge increases slightly. More notably, Bagging exhibits a significant 

improvement in forecast accuracy, achieving an outperformance of over 90.00% at h = 12.  

Table 50: Composite forecasts including combined models – IP – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 43.84% 46.01% 44.12% 43.76% 44.62% 

Lasso 76,18% 91,01% 87,08% 93,68% 92,11% 

Ridge 72,39% 92,21% 80,62% 92,82% 93,55% 

Elastic Net 79,06% 90,99% 87,08% 94,03% 93,20% 

Bagging 63,58% 50,10% 13,22% 29,14% 90,97% 

Boosting 25,60% 43,40% -27,27% 64,24% 73,82% 

SVM 27,62% 35,10% 11,77% 34,34% 35,49% 
Source: authors’ calculations 
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The composite forecasts that rely solely on the combined models are detailed in Table 50. 

From Table 50, it is evident that only the results from the Ridge model show improvement 

through the second composite forecast setup compared to the previous one.  

 

4.2.5 Forecasting inflation using hard macroeconomic data – post-COVID 

Table 51 presents the relative MSE and MAE values of inflation forecasts of the RLS 

models.  

Table 51: Relative MSE and MAE of RLS models - inf 

Relative MSE h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Lasso 0.545497 0.545653 0.663038 0.669495 0.740914 

Ridge 0.727910 0.710609 0.879189 0.868040 0.972999 

Elastic Net 0.126798 0.123258 0.152947 0.148391 0.175345 

Relative MAE      

Benchmark 1 1 1 1 1 

Lasso 0.766725 0.768022 0.851964 0.853420 0.898265 

Ridge 0.912467 0.887733 0.993053 0.975330 1.002049 

Elastic Net 0.389653 0.379065 0.423948 0.411235 0.438947 
Source: authors’ calculations 

Firstly, concerning relative MSE, every RLS model surpasses the benchmark. The Lasso 

and Elastic Net models show slight and substantial improvements, respectively. Contrary to the 

results in Table 18, the relative MSE for Lasso ranges from 0.54 to 0.74, while for Elastic Net 

it is between 0.12 and 0.18—indicating a significant enhancement when compared to the 

previous dataset. However, the performance of the Ridge model deteriorates. Although it still 

outperforms the benchmark, it does so marginally, and the relative MAE values indicate that 

the results lack robustness, leading us to deem the Ridge model's superiority as unreliable. 

Ridge has a similarly high difference between MAE and MSE values when forecasting 

industrial production, but the problem is greatly magnified here. The Elastic Net model, which 

effectively incorporates aspects of both Lasso and Ridge, emerges as the most reliable, 

confirming that in this scenario, a strategy combining variable selection (zero coefficients) and 

coefficient shrinkage is more effective than focusing solely on shrinkage as in the Ridge model. 

Considering the relative MAE values, the superior performance of the Lasso and Elastic Net 

models is consistent and not skewed by a few large forecast errors. While the magnitude of 

Lasso's outperformance diminishes over h, the Elastic Net's remains relatively steady across all 

forecast horizons. We present this on Figure 34. 
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Figure 34: Relative MSE of RLS models over time – Inf– Post-COVID 

 
Source: authors’ calculations 

The results indicate that variable selection plays a pivotal role, proving more crucial than 

coefficient shrinkage. To illustrate the differences between shrinkage and selection more 

clearly, we present the variables selected by each model in Figures 35 to 37, which are based 

on the data from Tables A1.1 to A1.8. Variable importance is calculated according to Kock et 

al. (2020), expanded on in Subchapter 4.2.1. These figures highlight the specific variable 

categories that each model prioritizes, helping to understand their impact on the forecast 

accuracy and the effectiveness of each approach.  

Figure 35: Variable importance of the Ridge model – Inf – post-COVID  

 
Source: authors’ calculations 
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Figure 36: Variable importance of the Elastic Net model – Inf – post-COVID  

 
Source: authors’ calculations 

Figure 37: Variable importance of the Lasso model – Inf – post-COVID  

 
Source: authors’ calculations 

In this analysis, both Ridge and Elastic Net models emphasize the significance of inflation 

and open economy variables in forecasting inflation. Ridge, unable to perform variable 

selection and only capable of shrinking coefficients, places greater emphasis on variables like 

the current account and the exchange rate. Conversely, Elastic Net tends to prioritize various 

price indexes while assigning a limited effect to exchange rates on inflation. Lasso takes the 

most selective approach, effectively reducing every coefficient to zero except those within the 

price category.  
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Given that Elastic Net yields the best performance, we infer that its strategy—

incorporating a broad array of variables like Ridge, while focusing tightly on the price category 

like Lasso—represents the most effective general approach for inflation forecasting. Thus, we 

conclude that both domestic price factors and open economy variables are critical in accurately 

forecasting inflation. Elastic Net’s balanced methodology particularly demonstrates the 

importance of integrating comprehensive variable inclusion with focused selection. 

To shed further light on the precision of these methods, we compare the out-of-sample 

actual and forecasted values on Figure 38 for h = 1 and Figure 39 for h = 12. Figures 38 and 39 

provide crucial insights into the performance of our models over different forecast horizons. 

Initially, at h = 1, the models closely match the actual inflation values until the onset of COVID. 

Although the models continue to capture the general pattern of inflation post-COVID, they 

underpredict the volatility and the magnitudes of change. The notable exception is the Elastic 

Net model, which not only accurately predicts the direction of changes but also the magnitudes, 

fitting almost perfectly with the actual data. This high level of accuracy leads us to conclude 

that in our case the Elastic Net model is the most precise predictor of inflation, even in highly 

volatile environments. 

Figure 38: Actual and forecasted values of RLS models on h = 1 – Inf – post-COVID 

 
Source: authors’ calculations 

While the model's performance in capturing the magnitudes of change slightly 

deteriorates at h = 12, the ability to forecast inflation with such precision for one and three 

months ahead remains an exceptional achievement. Given that the values in Table 51 for h = 1 



 

96 

 

and h = 3 are nearly identical, the results displayed in Figures 38 and 39 would effectively be 

the same for these two horizons, illustrating the robustness and reliability of the Elastic Net 

model across short-term forecasts. 

 

Figure 39: Actual and forecasted values of RLS models on h = 12 – Inf – post-COVID 

 
Source: authors’ calculations 

To add, Table 52 presents the DM statistic p-values. It reveals some variations in the 

results when comparing the current dataset, which includes COVID, to the previous sample that 

excluded it. Firstly, the Elastic Net model demonstrates robust performance, being highly 

statistically significant at every forecast horizon and maintaining significance at the 5% level 

throughout. This indicates strong and consistent predictive power across various forecasting 

periods. On the other hand, the Lasso model starts strong, showing statistical significance for 

the initial four horizons, but its significance wanes by h = 12. This suggests that while the Lasso 

model can effectively predict inflation in the short to medium term, its reliability decreases as 

the forecast horizon extends to a year. 

Table 52: DM test p-values of RLS methods – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso 0,01657** 0,01664** 0,04022** 0,04660** 0,122705 

Ridge 0,13071 0,11557 0,303495 0,292095 0,456085 

Elastic Net 0,0029** 0,00281** 0,00675** 0,00822** 0,02141** 
Source: authors’ calculations 

Table 53 provides a detailed comparison of model performances, highlighting the 

differences brought about by including COVID data in the dataset. For the Lasso model, there 

is a notable improvement in its outperformance, ranging from 25.91% to 45.45% over the 
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benchmark, which represents an almost two-fold increase from previous data, particularly at 

shorter horizons. However, this outperformance diminishes as h extends. The Ridge model 

consistently outperforms the benchmark across various horizons, although never reaching 

statistical significance. Its performance, similar to that of the Lasso model, tends to deteriorate 

as h increases, suggesting a weakening in predictive power over longer durations. The Elastic 

Net model stands out with the highest degree of outperformance, ranging from 82.47% to 

87.32%. This is a significant enhancement, nearly doubling its relative performance compared 

to the previous sample without COVID data. This consistent outperformance across horizons 

underscores the robustness of the Elastic Net model, especially in handling the complexities 

introduced by the volatile economic environment during the COVID era. 

Table 53: % improvement of RLS forecasts over the benchmark – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso 45.45% 45.43% 33.70% 33.05% 25.91% 

Ridge 27.21% 28.94% 12.08% 13.20%   2.70% 

Elastic Net 87.32% 87.67% 84.71% 85.16% 82.47% 
Source: authors’ calculations 

Figure 40: Directional Accuracy of RLS models over time – Inf – post-COVID 

 
Source: authors’ calculations 

Table 54 focuses on the DA of RLS models. The results show that all RLS models 

consistently predict the direction of change more accurately than the benchmark. Specifically, 

the DA of the Lasso model ranges from 92.89% to 93.41%, indicating a high level of 

consistency in predicting the correct direction. The Elastic Net model performs even better, 

with DA ranging from 93.85% to 94.52%. In contrast, the benchmark model's DA ranges from 
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86.84% to 87.67% across different horizons, significantly lower than both the Lasso and Elastic 

Net models. This superior performance in directional accuracy is not only an improvement over 

the benchmark but also represents an enhancement compared to the previous data, as shown in 

Table 21. Figure 40 shows that the results are consistent irrespective of h. In contrast to the pre-

COVID sample, this time the benchmark model is consistent as well.  

Table 54: Directional accuracy of RLS models – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 87,67% 87,32% 87,01% 86,84% 86,96% 

Lasso 93,15% 92,96% 92,89% 92,99% 93,41% 

Ridge 89,04% 88,73% 88,48% 87,86% 88,17% 

Elastic Net 94,52% 94,37% 94,12% 93,85% 94,09% 
Source: authors’ calculations 

We proceed by presenting the results of the EML models in Table 55. In this analysis, 

every EML model surpasses the benchmark when assessed using relative MSE. Specifically, 

Bagging achieves a relative MSE between 0.57 and 0.73, Boosting ranges from 0.54 to 0.75, 

and Random Forest varies between 0.66 and 0.92. The most effective model is Boosting from 

h = 1 to h = 9, and Bagging takes the lead at h = 12, although the performance differences 

between these two are minimal. Their results are notably consistent with their performances in 

the pre-COVID sample. In contrast, the performance of the Random Forest model shows a 

decline compared to the previous sample but still manages to outperform the benchmark. 

Secondly, the relative MAE results corroborate our earlier observations, as they too are smaller 

than the benchmark, not to mention that the relative MSE and MAE values are relatively similar, 

showcasing a greater robustness that those of the RLS models. Bagging and Boosting maintain 

stable performances over time, similar to those observed in previous samples, while the 

performance of Random Forest declines slightly as h increases.  

Table 55: Relative MSE and MAE of EML models – Inf – post-COVID 

Relative MSE h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Bagging 0.57115 0.57272 0.68839 0.70001 0.72526 

Boosting 0.54712 0.53020 0.66037 0.67262 0.74603 

Random Forest 0.66392 0.67879 0.82230 0.83953 0.91612 

Relative MAE      

Benchmark 1 1 1 1 1 

Bagging 0.655411 0.648945 0.698539 0.704609 0.697229 

Boosting 0.679309 0.667017 0.766165 0.753878 0.786163 

Random Forest 0.76334 0.76933 0.838285 0.837562 0.87526 
Source: authors’ calculations 
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Figure 41: Relative MSE of EML models over time – Inf – post-COVID 

 
Source: authors’ calculations 

Figure 42: Variable importance in Bagging – Inf – post-COVID 

 
Source: authors’ calculations 

Like RLS models, Bagging places significant emphasis on the variables listed in Table 

A1.2. Unlike the Lasso model, which primarily focuses on a specific category of variables, 

Bagging also considers variables from other categories. It assigns substantial weight to open 

economy variables including exchange rates, indicating their perceived importance in the 

forecasting model. Additionally, industrial production and employment variables are notably 

represented, suggesting their relevance in the model's predictive accuracy. However, variables 

such as wages, revenue, and foreign trade are given lesser weight in the Bagging model's 
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forecast preparations. This distribution of weights suggests that while these factors are 

considered, they are deemed less critical to the forecast outcome compared to the primary 

variables like prices. This strategic allocation of variable importance helps tailor the Bagging 

model's predictions to the most influential economic indicators. 

To further evaluate the accuracy of these forecasting methods, we examine the out-of-

sample actual versus forecasted values presented in Figure 43 for h = 1 and Figure 44 for h = 

12. At h = 1, while the models successfully predict the direction of change, they fail to 

accurately capture the magnitudes of these changes. This indicates a limitation in their short-

term predictive precision regarding the scale of economic shifts. For longer-term forecasts at h 

= 12, the models tend to predict a smoother inflation trajectory than what is observed in reality. 

This smoother prediction suggests that the models may be underestimating the volatility or the 

extremes of inflation changes over longer periods. In conclusion, when compared to the 

performance of RLS models, particularly the Elastic Net model, these methods exhibit weaker 

performance. The Elastic Net model, with its ability to accurately capture both the direction and 

magnitude of changes, outperforms these other methods, especially in terms of capturing more 

complex economic dynamics over varying time horizons. 

Figure 43: Actual and forecasted values of EML models on h = 1 – Inf – post-COVID 

 
Source: authors’ calculations 
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Figure 44: Actual and forecasted values of EML models on h = 12 – Inf – post-

COVID 

 
Source: authors’ calculations 

To continue with, Table 55 shows that Both Bagging and Boosting demonstrate 

statistically significant outperformance over the benchmark at the 5% level across all forecast 

horizons, indicating strong and consistent effectiveness in their predictions. On the other hand, 

the performance of the Random Forest model shows a slight deterioration but remains 

statistically significant at shorter horizons h = 1 and h = 3.  

Table 56: DM test p-values of EML methods – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Bagging 0,00767** 0,00812** 0,00668** 0,00563** 0,03183** 

Boosting 0,00537** 0,00584** 0,00352** 0,00564** 0,01953** 

Random Forest 0,03415** 0,04004** 0,10103 0,13071 0,29610 
Source: authors’ calculations 

With the statistically significant outperformance established, we proceed to quantify the 

magnitude of outperformance in percentage terms, stating them in Table 57. The Bagging model 

shows an outperformance ranging from 27.34% to 42.88% and the Boosting model ranges from 

25.40% to 45.29%. These models not only perform similarly to the Lasso model in terms of 

percentage improvement but also maintain statistical significance at the 5% level across all 

horizons. Notably, only the Elastic Net model surpasses these two in terms of percentage 

improvement over the benchmark. The performance of the Random Forest model is 

comparatively weaker, with outperformance declining from 33% to 8% as the forecast horizon 

increases. This trend indicates a clear drop in effectiveness over longer horizons.  
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Table 57: % improvement of EML forecasts over the benchmark – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Bagging 42.88% 42.73% 31.16% 30.00% 27.47% 

Boosting 45.29% 46.98% 33.96% 32.74% 25.40% 

Random Forest 33.61% 32.12% 17.77% 16.05% 8.39% 
Source: authors’ calculations 

Table 58: Directional accuracy of EML models – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 87.67% 87.32% 87.01% 86.84% 86.96% 

Bagging 94.52% 94.37% 93.63% 93.33% 93.55% 

Boosting 90.41% 92.02% 90.93% 89.57% 90.73% 

Random Forest 89.04% 89.20% 89.22% 90.09% 90.32% 
Source: authors’ calculations 

Moving on to DA, every EML model more accurately predicts the direction of change in 

the target variable compared to the benchmark model. The details are presented in Table 58. 

When compared to the pre-COVID sample, the DA for each model has significantly increased. 

These models perform on par with RLS models, including the Elastic Net model. The DA for 

the Bagging model ranges between 93.33% and 94.52%. For the Boosting model, it ranges from 

87.57% to 92.02%, while for the Random Forest model, it is between 89.04% and 90.32%. This 

is in contrast to the benchmark model, which shows a DA between 86.96% and 87.67%, 

depending on the forecast horizon. In conclusion, the EML models enhance DA, with a 

particular focus on the Bagging model, which achieves the highest DA, surpassing even the 

Boosting model. Figure 45 shows that this improvement is consistent over time.  

Figure 45: Directional accuracy of EML models over time – Inf – post-COVID 

 
Source: authors’ calculations 
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In Table 59, we present the results for the SVM model. We observe a significant 

deterioration in its performance in the new sample post-COVID compared to the pre-COVID 

sample. The model reports higher relative MSE values than the benchmark across all forecast 

horizons. The relative MAE values support this finding, and the DM test results confirm the 

benchmark model's superiority. DA values for the SVM model are the lowest among all models 

and worsen with increasing h. 

Table 59: Forecasts with SMV, FFNN and LSTM – IP – post-COVID 

Relative MSE h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Support Vector 

Machine 

1.81410 1.81913 2.19781 2.14399 2.22832 

Relative MAE      

Benchmark 1 1 1 1 1 

Support Vector 

Machine 

1.39671 1.38662 1.54470 1.49922 1.53964 

DA      

Benchmark 43.84% 46.01% 44.12% 43.76% 44.62% 

Support Vector 

Machine 

87.67% 29.11% 14.46% 9.57% 7.39% 

Source: authors’ calculations 

As with industrial production, we are also interested in exploring how the combination of 

regularization and nonlinear methods performs. Given that the Elastic Net is the clear 

frontrunner among the three regularization methods, we use it for variable selection and apply 

nonlinear methods to these selected variables at each stage of the process. We aim to determine 

if the performance of nonlinear methods improves when applied to a more parsimonious 

sample. To the best of the authors' knowledge, no published study has combined these two 

approaches before. This absence may be due to other studies, which work with much larger 

datasets and longer time series from the world's largest economies, not needing to address the 

issue of limited degrees of freedom. Although nonlinear methods can effectively handle models 

with even negative degrees of freedom, their performance might be enhanced by a more 

parsimonious approach. Several notable results are highlighted in Table 59 below.  

Table 59: Combined RLS and EML methods – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

EN + Bagging 39.83% 45.08% 24.19% 26.01% 17.63% 

EN + Boosting 49.82% 47.72% 38.38% 39.58% 27.47% 

EN + Random 

Forest 

46.31% 48.94% 36.62% 34.77% 30.23% 

Source: authors’ calculations 

We leave out the Lasso and Ridge combinations from Table 59 intentionally, as they 



 

104 

 

produce either equal or inferior results to the Elastic Net combinations. To start, combining 

Elastic Net with Bagging does not lead to any improvement. In fact, the performance of 

Bagging slightly worsens when compared to its performance using the entire sample. Thus, this 

change is not statistically significant. However, when Boosting is combined with EN, there is 

a modest improvement—about 7% in some instances. The most notable improvement occurs 

with the Random Forest model, which, when combined with the Elastic Net, significantly 

exceeds its performance without variable selection.  

To summarize, in this subchapter we forecast inflation using hard macroeconomic data. 

The machine learning models exhibit significant outperformance in most cases. The models, 

sorted from best to worst in terms of % improvement over the benchmark, are presented in 

Table 60.  

To begin, the Elastic Net model stands out as the top performer. Lasso ranks in the middle, 

while Ridge is fourth to last, only outperforming the SVM and neural networks. The 

performance of EML models is more ambiguous. None of them surpass their combination with 

the Elastic Net model, but these combined models do outperform both the standalone nonlinear 

and linear methods, except for the Elastic Net itself. These hybrid models hold the 2nd and 3rd 

positions, respectively. This highlights the effectiveness of our hybrid approach in significantly 

enhancing the forecasting performance of nonlinear models by selecting the most suitable 

variables or parameter values for training. 

Table 60: Forecasting models from best to worst – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

1. Elastic Net Elastic Net Elastic Net Elastic Net Elastic Net 

2. EN + 

Boosting 

EN + RF EN + 

Boosting 

EN + 

Boosting 

EN + RF 

3. EN + RF EN + 

Boosting 

EN + RF EN + RF EN + 

Boosting 

4. Lasso Boosting Boosting Lasso Bagging 

5. Boosting Lasso Lasso Boosting Boosting 

6. Bagging EN + 

Bagging 

Bagging Bagging Lasso 

7. RF Bagging EN + 

Bagging 

EN + 

Bagging 

EN + 

Bagging 

8. EN + 

Bagging 

RF RF RF RF 

9. Ridge Ridge Ridge Ridge Ridge 

16. SVM SVM SVM SVM SVM 

17. FFNN FFNN FFNN LSTM LSTM 

18. LSTM LSTM LSTM FFNN FFNN 
Source: authors’ calculations 
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4.2.6 Forecasting inflation using common factors – post-COVID 

Table 61 indicates that forecasts based on common factors perform worse in the post-

COVID sample compared to the pre-COVID period. Most models no longer outperform the 

benchmark. The performance of the Ridge and SVM models improve, and the Elastic Net 

model also remains a notable exception; it still significantly outperforms the benchmark by a 

large margin. In contrast, other RLS and EML methods show poor performance relative to the 

benchmark. 

Continuing, we analyze the percentage difference between the relative MSE values of 

forecasts based on hard macroeconomic data and those based on common factors, as shown in 

Table 62. In most cases, models relying on hard data are more accurate. The performance of the 

Ridge model is almost identical to its counterpart, while the Support Vector Machine (SVM) 

model outperforms the version based on hard macroeconomic data, though it is generally the 

least effective model overall. 

 

Table 61: Relative MSE of forecasts based on common factors – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Lasso 1.623955 1.622663 2.018820 2.003048 1.987983 

Ridge 0.726089 0.712190 0.869869 0.887938 0.894660 

Elastic Net 0.685868 0.678498 0.833812 0.828000 0.884142 

Bagging 1.091421 1.104612 1.357364 1.352660 1.430018 

Boosting 1.069080 1.128786 1.400039 1.345368 1.386928 

Random Forest 1.623955 1.622663 2.018820 2.003048 1.987983 

SVM 0.726089 0.712190 0.869869 0.887938 0.894660 
Source: authors’ calculations 

Table 62: % difference between forecasts based on factors and hard data – Inf – post-

COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso 66.41% 66.37% 67.16% 66.58% 62.73% 

Ridge -0.25% 0.22% -1.07% 2.24% -8.76% 

Elastic Net 81.51% 81.83% 81.66% 82.08% 80.17% 

Bagging 47.67% 48.15% 49.28% 48.25% 49.28% 

Boosting 48.82% 53.03% 52.83% 50.00% 46.21% 

Random Forest 41.15% 37.67% 42.24% 39.04% 37.90% 

SVM -3.68% -4.18% -2.49% -2.91% -4.54% 
Source: authors’ calculations 

To conclude, we examine the DA of forecasts based on common factors as presented in 

Table 63. This table corroborates our previous findings that hard macroeconomic data should 
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be preferred. The directional accuracy values for models based on common factors are, in some 

cases, effectively identical to those of the benchmark, with none of the models managing to 

confidently outperform the benchmark. This evidence further supports our conclusion that in 

situations characterized by uncertainty and volatility, forecasts based on hard macroeconomic 

data are more reliable and should be utilized. 

Table 63: Directional accuracy of forecasts based on common factors – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 87.67% 87.32% 87.01% 86.84% 86.96% 

Lasso 87.67% 87.32% 87.01% 86.84% 86.96% 

Ridge 86.30% 87.32% 87.01% 86.84% 86.96% 

Elastic Net 87.67% 87.32% 87.01% 86.84% 86.96% 

Bagging 87.67% 84.04% 83.82% 83.42% 83.47% 

Boosting 86.30% 86.38% 86.27% 85.47% 86.96% 

Random Forest 89.04% 87.32% 87.01% 86.84% 86.96% 

SVM 87.67% 87.32% 87.01% 86.84% 86.96% 
Source: authors’ calculations 

 

4.2.7 Forecasting inflation using soft indicators – post-COVID 

The outcomes of machine learning and benchmark model forecasts based on soft 

indicators are displayed in Table 64. As anticipated, Table 64 indicates that soft indicators are 

not the most suitable source of information when the focus is on the magnitude of changes in 

macroeconomic variables, particularly in the case of inflation.  

Table 64: Relative MSE of forecasts based on indicators – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 1 1 1 1 1 

Lasso 1.76030 1.75710 2.15862 2.08513 2.11772 

Ridge 1.76850 1.76980 2.17129 2.09983 2.16164 

Elastic Net 1.70017 1.69383 2.09359 2.00069 1.99589 

Bagging 1.71610 1.71215 2.10642 2.01600 2.00236 

Boosting 1.72136 1.71904 2.14139 1.99844 1.98146 

Random Forest 1.73032 1.66970 2.08791 1.96987 1.99995 

SVM 1.81310 1.79238 2.21362 2.14523 2.18999 
Source: authors’ calculations 

Continuing our analysis, we focus DA, which is our main measure of interest when 

evaluating indicator data. The DA values are presented in Table 65. Unlike the pre-COVID 

sample, the DA values for models based on indicators, similar to those using common factors, 

align closely with those of the benchmark model in the current sample. 
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This similarity suggests that while indicator-based models do not necessarily improve 

accuracy in terms of the magnitude of changes, they can still match the benchmark model's 

ability to predict the direction of changes in macroeconomic variables, even slightly 

outperforming it, under the conditions examined.  

Table 65: Directional accuracy of forecasts based on indicators – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 87.67% 87.32% 87.01% 86.84% 86.96% 

Lasso 87.67% 85.92% 86.03% 85.47% 85.89% 

Ridge 87.67% 85.45% 86.76% 87.18% 88.44% 

Elastic Net 87.67% 87.32% 87.50% 88.72% 88.58% 

Bagging 83.56% 87.32% 87.50% 87.18% 87.10% 

Boosting 86.30% 84.98% 83.82% 85.30% 85.89% 

Random Forest 87.67% 87.79% 86.76% 87.18% 86.96% 

SVM 87.67% 87.32% 87.01% 86.84% 86.96% 
Source: authors’ calculations 

 

4.2.8 Composite forecasts of inflation – post-COVID 

In this subchapter, we explore the composite forecast methods that have been previously 

introduced. We begin by presenting the results of composite forecasts for inflation, utilizing all 

available models, as detailed in Table 66. Table 66 present the outperformance, in percentage 

terms, as measured by the relative MSE values. Initially, there is a significant improvement in 

the performance of the Lasso model in terms of error reduction and consistency. The composite 

Lasso model is approximately twice as accurate as the individual model in the short term, and 

this advantage becomes even more pronounced as the forecast horizon h increases. Similarly, 

the composite Ridge model shows substantial improvement over its individual counterpart, 

although its performance drops dramatically at h = 12. The performance of the Bagging model 

also sees considerable enhancement, with the exception of h = 12. This pattern indicates that 

while composite methods generally enhance forecasting accuracy, their efficacy can vary 

significantly across different time horizons. 

Table 66: Composite forecasts including all models – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Lasso 83.20% 82.49% 77.70% 62.16% 70.66% 

Ridge 74.11% 80.44% 59.57% 73.38% 24.39% 

Elastic Net 78.98% 82.82% 78.66% 65.19% 70.76% 

Bagging 62.17% 62.71% 53.89% 62.67% 25.00% 

Boosting 34.63% 51.36% 7.56% 24.31% 36.40% 

SVM -51.97% -52.07% -83.48% -149.77% -107.42% 
Source: authors’ calculations 
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Continuing our discussion, we present the results of the composite forecasts of inflation 

based on individual models using hard macroeconomic data, as detailed in Table 67. Comparing 

these results to those previously discussed, we find that the Lasso composite model produces 

forecasts that are almost identical to those in the prior case, suggesting consistent performance 

across different data scenarios. Interestingly, the Ridge model shows improvement at the longer 

forecast horizon of h = 12, contrasting with its earlier performance drop at the same horizon. 

This suggests that the Ridge model may be more effective when utilizing hard macroeconomic 

data for longer-term forecasts. The performance of the Bagging model remains similar to its 

previous version, indicating a stable forecasting ability regardless of the specific data set used. 

These findings underscore the nuanced effects that different types of macroeconomic data can 

have on the performance of composite forecasting models. 

Table 67: Composite forecasts of individual models based on hard macroeconomic data – 

Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 83.13% 82.35% 77.43% 62.42% 70.66% 

Lasso 80.79% 85.36% 78.34% 58.49% 73.36% 

Ridge 83.32% 85.39% 80.18% 62.69% 72.53% 

Elastic Net 63.99% 61.92% 51.46% 63.75% 18.79% 

Bagging 34.86% 52.15% 7.61% 28.72% 44.45% 

Boosting -46.59% -44.32% -72.86% -138.23% -98.03% 

SVM 83.13% 82.35% 77.43% 62.42% 70.66% 
Source: authors’ calculations 

To conclude, the results from the composite forecasts based on combined models 

generally mirror the performance of the individual models themselves; therefore, we do not 

include them here. Additionally, the performance of composites based on indicators is weak, 

reflecting the limited effectiveness of individual models that use these indicators. 

Table 68: Composite forecasts of individual models based on factors – Inf – post-COVID 

 h = 1 h = 3 h = 6 h = 9 h = 12 

Benchmark 49.68% 50.89% 35.80% 29.24% -27.78% 

Lasso 44.67% 50.96% 45.88% 26.91% 6.88% 

Ridge 46.10% 58.76% 55.55% 30.09% -12.06% 

Elastic Net 30.50% 46.31% 23.89% 0.27% -26.68% 

Bagging 34.97% 58.28% 24.27% 31.44% 30.73% 

Boosting -60.31% -59.21% -83.25% -170.52% -119.89% 

SVM 49.68% 50.89% 35.80% 29.24% -27.78% 
Source: authors’ calculations 

However, what is more striking is the performance of composites based on common 

factors, as shown in Table 68. It is clear from this table that common factor-based composites 
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outperform the benchmark model in most cases, with the exceptions of the SVM model and at 

the forecast horizon of h = 12. This outcome suggests that although individual models based on 

common factors may perform poorly, leveraging the aggregated information from each of these 

models through machine learning techniques can lead to more accurate forecasts.  
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5 Discussion 

This chapter summarizes the main findings of our study. Our principal aim is to rigorously 

evaluate the forecasting performance of various selected machine learning models and compare 

these results against an econometric benchmark model. We forecast industrial production and 

inflation for both pre-COVID and post-COVID periods. Our contributions to the literature are 

both methodological and empirical. 

To begin with, we outline our methodological contributions, which introduce three 

approaches not widely discussed in current literature, or where evidence remains limited. First, 

we evaluate the effectiveness of dimensionality reduction techniques, drawing parallels to the 

work by Maehashi and Shintani (2020). PCA is considered one of the best ways for reducing 

the dimension of a dataset. Our findings suggest that, in general, regularization techniques are 

preferable to PCA reduction in Slovakia. The observed underperformance of forecasts based on 

common factors compared to those based on hard data suggests a potential avenue for 

exploration in the empirical transition from factor-based dimensionality reduction techniques 

to regularization methods using hard data in Slovakia. Both strategies are designed to distill 

essential information while minimizing the number of predictors; however, regularization using 

hard data shows greater accuracy in our sample. 

Secondly, we explore the combination of regularization and nonlinear methods, inspired 

by Medeiros et al. (2019). However, our approach differs as we use alternative methods and 

conduct a more thorough performance evaluation. Medeiros et al. (2019) find that combination 

is not particularly beneficial. In contrast, our analysis reveals that in Slovakia, hybrid models 

are more accurate than simple nonlinear models, as shown in Tables 43 and 60. We enhance the 

performance of nonlinear methods by first applying regularization to streamline the information 

set, followed by the nonlinear estimation and prediction. This efficiency likely stems from the 

reduction in the number of variables, which allows for achieving comprehensive coverage of 

critical nonlinearities and variable interactions with fewer trees. Furthermore, as noted by 

Medeiros et al. (2019), when the Random Forest model is applied to a set of regularized 

variables, its capacity to discern important variable interactions is notably amplified, but it 

becomes harder to capture nonlinear relationships. In such case, if the goal is to explore the 

effects of nonlinearities further, one might consider other nonlinear methods like Boosting, 

which are specifically designed to handle such complexities effectively. 
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Thirdly, forecast combination is a critical topic in forecasting literature. Machine learning 

methods are inherently suitable for combining forecasts, yet there is a notable absence of studies 

testing this approach, aside from Araujo and Gaglianone (2023). We address this gap by 

demonstrating that using individual ML models as tools for combining forecasts can 

significantly enhance the performance of certain models. We find that some composite models, 

which integrate outputs from multiple individual models, can be twice as accurate as their 

counterparts that solely rely on hard macroeconomic data. This improvement is particularly 

evident in forecasting inflation and, to a lesser extent, in forecasting industrial production.  

We now proceed to discuss our empirical contributions, beginning with the industrial 

production and inflation forecasts using the pre-COVID sample.  

Firstly, every RLS model consistently outperforms the benchmark, with statistical 

significance at the 5% level. Only in two instances, relating to industrial production, is the 

outperformance significant at the 10% level. In the case of inflation, every outperformance is 

significant at the 5% level. Moreover, every RLS forecast model achieves a substantially higher 

DA than the benchmark for industrial production. Although the DA for machine learning 

models is somewhat lower for inflation, they still outperform the benchmark. These results 

identify the Elastic Net model as the most effective in this category. Furthermore, for industrial 

production, variable selection by Lasso plays a more crucial role than the coefficient shrinkage 

by Ridge. This situation is reversed for inflation forecasts. To summarize, the RLS models 

consistently outperform the benchmark across every horizon. This robust performance is 

expected due to the presence of numerous correlated variables in the dataset, which tend to 

convey similar information. Additionally, the shorter time series used in our study compared to 

other machine learning research might prompt Lasso and Elastic Net methods to disregard less 

critical variables due to the limited number of observations available. 

Secondly, regarding the accuracy of the EML models, each model significantly surpasses 

the benchmark for predicting both industrial production and inflation at a 5% significance level, 

except for the Boosting and Random Forest models for industrial production at h = 1, which 

achieve significance only at the 10% level. Furthermore, all EML forecast models display 

higher DA values than the benchmark model. Except for Boosting, these DA values remain 

stable over time. Bagging emerges as the most effective overall. Given its significant 

performance for both targets across all horizons at the 5% level and generally the lowest 

forecast errors, it is the optimal choice for capturing nonlinearities in Slovakia's data. This 
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finding is particularly relevant as there are no other published studies addressing potential 

nonlinearities in Slovakia’s data in their data driven forecasting models. 

Thirdly, we examine three additional model types outside the main categories. The 

Support Vector Machine (SVM) model surpasses the benchmark at every forecast horizon for 

both variables, showing compelling DA values. However, its performance for industrial 

production is inconsistent, generally ranking it among the weaker models in our suite, not 

counting neural networks. Concerning neural network models, our computational resources 

were limited, preventing us from fine-tuning these models effectively. As a result, the outcomes 

from the neural networks are not reliable for our analysis. 

Continuing our analysis, we evaluate the forecasting ability of the models using common 

factors for both industrial production and inflation. Each model surpasses its benchmark; 

however, they demonstrate significantly better performance in terms of relative MSE and DA 

values when forecasts are grounded in hard macroeconomic data.  

Moreover, we assess the performance of machine learning models trained on soft 

indicator data. We anticipate that forecasts based on soft indicators would not yield lower errors 

than those based on hard macroeconomic data. However, we expect them to surpass the 

benchmark in predicting the direction of change in the target variable, and our assumption is 

confirmed. In our conclusion, indicators serve their intended purpose effectively. By leveraging 

an extensive dataset of soft indicators and employing machine learning models, we can predict 

the direction of change with a higher likelihood than if we solely relied on the benchmark 

model. 

We continue with by summarizing the results involving the post-COVID sample. In our 

exploration of post-COVID results, we find patterns somewhat similar to earlier findings. In 

addition, the introduction of COVID-19 data into the sample enhances the performance of 

machine learning models. Notably, in the case of industrial production, both Lasso and Elastic 

Net models achieve an increase in performance of approximately 20 percentage points 

compared to the pre-COVID sample. In the case of inflation forecasting, the Elastic Net model 

stands out with the highest degree of outperformance. This is a significant enhancement, nearly 

doubling its relative performance compared to the previous sample without COVID data. 

Moreover, the performance of EML models presents a less clear picture. They perform 

better compared to the pre-COVID sample. On the other hand, neither of them outperforms 

their combination with either Ridge or Elastic Net. This underscores the effectiveness of our 
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hybrid approach in substantially improving the forecasting performance of nonlinear models 

by selecting appropriate variables or optimizing parameter values for training. 

The results of models based on common factors is similar to the pre-COVID sample. 

Additionally, soft indicators demonstrate similar or greater forecasting accuracy than the 

benchmark model during this period. In the case of industrial production, they outperform the 

benchmark even in terms of errors. 

In this sample, we also evaluate the efficacy of machine learning models as tools for 

forecast combination. We find that some composite models, which integrate outputs from 

multiple individual models, can be twice as accurate as their counterparts that solely rely on 

hard macroeconomic data. This advantage is consistent and becomes even more pronounced as 

h increases. Moreover, the performance of composite models based on common factors is 

notably impressive. These common factor-based composites generally outperform the 

benchmark model in most scenarios. This finding indicates that while individual models relying 

on common factors might underperform on their own, aggregating information from each 

through machine learning techniques can significantly enhance overall forecast accuracy. This 

approach effectively harnesses the collective strength of various models, demonstrating the 

power of composite forecasting in machine learning applications. 

In the post-COVID sample, we also present how each category from Tables A1.1-A1.8 

affects the forecasts. Additionally, we show that RLS forecasts almost perfectly match the out-

of-sample trajectory of the actual values of the forecasted series. The best performance is 

delivered by the Elastic Net model, which not only accurately predicts the direction of changes 

but also the magnitudes, fitting almost perfectly with the actual data. This high level of accuracy 

leads us to conclude that in our case the Elastic Net model is the most precise predictor of 

inflation, even in highly volatile environments. While the model's performance in capturing the 

magnitudes of change slightly deteriorates at h = 12, the ability to forecast inflation in a highly 

uncertain and volatile period with such precision for one and three months ahead remains an 

exceptional achievement. 

To conclude, most of the machine learning models outperform the benchmark model by 

a huge margin, and they perform substantially better than when using the pre-COVID sample. 

Multiple reasons can be given for this outperformance. Generally, the models have more data 

to learn with the prolongation of the time series by 4 years. To add, the benchmark model’s 
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performance can deteriorate substantially as the simple model might not be able to capture an 

abrupt and unexpected shock such as COVID. 

After summarizing our results, it is clear that none of the scientific hypotheses from 

Chapter 2 can be rejected. 

H1 
Nonlinearities play a statistically significant role in the data generating 

process of the Slovak macroeconomic time series. 

 

 

H2 
Regularization can statistically significantly improve the quality of the 

macroeconomic forecasts of our target variables. 

 

 

H3 Hybrid models can enhance the forecast accuracy of nonlinear methods. 

 

 

H4 
When using indicator data, forecasting models based on machine learning are 

more likely to forecast the correct direction of the change in the variable than 

the benchmark model. 

 

 

H5 Regularization based methods based on hard macroeconomic data deliver 

better performance than dimensional reduction based on PCA. 

 

 

 

To end this chapter with, we formulate recommendations based on our results. First of 

all, it is important to acknowledge that machine learning methods at present largely remain 

"black boxes", as highlighted by Masini et al. (2021). Masini et al. (2021) also state that 

although various interpretative techniques are available, there is no consensus within the 

academic community on their adequacy, especially when compared to more traditional models 

like VAR, which allow for straightforward interpretation through impulse responses or variance 

decompositions. Masini et al. (2021), however, highlight that this area of research is booming 

at the time of writing this thesis. It is important to note, therefore, that the main contributions 

are not in the field of inference but on the field of forecasting capacity.  

Firstly, the general high statistical significance at the 5% level across these models 

indicates that regularization significantly enhances forecast accuracy, by more than 90% in 

some cases involving Lasso and Elastic Net, despite their previous non-utilization in Slovakia. 

Regularization thus provides more accurate and robust estimates during both pre- and post-

COVID periods. As such, it seems advantageous to explore further the implementation of 

regularization techniques in macroeconomic forecasting by applied macroeconomists. This 

shift could potentially improve the precision of economic forecasts by leveraging the detailed 
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and direct measurements of economic activity provided by hard data, thus enhancing the overall 

reliability of the forecasting models in various economic conditions. 

Secondly, the robust performance of various models highlights the importance of 

nonlinear relationships, briefly discussed in Chapter 1, in the Slovakian data generating process. 

These factors should be taken into account by macroeconomists when preparing forecasts. The 

significance of nonlinearities and interactions among variables is further emphasized by the 

successful use of nonlinear machine learning methods. For instance, the relative Mean Squared 

Error (MSE) values for the Boosting model in the case of inflation are comparable to those of 

the Lasso model in the case of inflation. This similarity suggests that even in smaller datasets, 

typical of smaller economies, the lack of regularization does not hinder these methods from 

identifying crucial relationships within the data. Our findings strongly support the inclusion of 

nonlinear data-driven models in forecasting frameworks, given their demonstrated capability to 

effectively capture significant nonlinear effects. This approach could enhance the accuracy and 

relevance of economic forecasts by incorporating the complex dynamics often present in real-

world data. To further improve these nonlinear methods, one should apply regularization first 

and then use EML techniques on the regularized inputs.  

Finally, it is advisable for policymakers to have machine learning models set up in 

advance. When soft indicator data becomes available, it can be quickly fed into these models 

to more reliably predict the direction of the economy. This approach provides policymakers 

with a proactive tool to effectively gauge future economic trends. By utilizing real-time data 

inputs, these models can offer timely insights, allowing for more informed and responsive 

economic decision-making. This method underscores the importance of readiness and the 

strategic use of technology in economic forecasting. 

In summary, our principal recommendation is that macroeconomists in Slovakia should 

begin to utilize the models in the two main categories, which demonstrate strong performance 

in forecasting. These models are effective at capturing nonlinearities in the data generating 

process, and also highlight the critical role of regularization. As evidenced in our analysis, both 

elements – nonlinearities and regularization – are crucial for accurately predicting economic 

trends. This approach ensures that macroeconomic forecasts are not only robust but also 

reflective of the complex dynamics that characterize the economic landscape. 
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Conclusion 

In this thesis, we use machine learning (ML) methods to forecast industrial production 

and inflation in Slovakia. Our study is the first to apply machine learning (ML) methods for 

macroeconomic forecasting in Slovakia, and more broadly, in any small open industrialized 

economy in a monetary union. We utilize a comprehensive dataset from the National Bank of 

Slovakia, which is publicly available. This dataset is divided into pre-COVID and post-COVID 

periods and we apply a rolling window scheme, allowing us to account for time-variance in 

parameter estimates and enhance the robustness of our results. 

We focus on two categories of ML models, one to address nonlinearities in the data, and 

one to examine the impact of regularization on macroeconomic forecast outcomes. Specifically, 

we also employ Support Vector Machine models to counter the generalized critique by 

Makridakis et al. (2018), as discussed in Chapter 1, demonstrating that their criticisms do not 

hold for Slovakia.  

Our contributions to macroeconomic forecasting are both diverse and impactful. First, we 

introduce a hybrid method, inspired by Medeiros et al. (2019), which is adept at capturing 

nonlinearities and variable interactions. This approach is especially beneficial in post-socialist 

Eastern European economies where datasets tend to be limited in length. By regularizing these 

datasets prior to applying nonlinear methods, we significantly boost the performance of these 

models. Second, we assess the efficacy of regularization versus principal component analysis 

(PCA) in managing datasets with reduced dimensions. Our results show that regularization, a 

machine learning (ML) technique, provides more accurate forecasts. Third, we investigate the 

utility of ML methods in combining forecasts, finding that they improve the accuracy of 

individual predictions. Fourth, we show that regularization markedly improves forecasting 

capabilities when compared to conventional benchmarks. Fifth, we use Ensemble ML models 

to identify and model nonlinearities in the data. To our knowledge, this marks the first time 

these techniques have been applied using ML in a small, open industrialized economy within a 

monetary union, characterized by a brief dataset. Sixth, we break new ground by evaluating the 

directional accuracy of ML models, a vital aspect often overlooked in favor of focusing solely 

on the magnitude of errors. Seventh, we provide an exhaustive analysis of ML model 

performance across both pre-COVID and post-COVID periods, noting superior performance 

during times of heightened economic uncertainty and volatility. Despite a dataset spanning only 

16 years with crises at both ends, one model notably forecasts inflation one to three months 
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ahead with complete accuracy. Eighth, we illustrate how ML methods more effectively discern 

trends from soft indicators. Ninth, our findings collectively address and counter the criticisms 

posed by Makridakis et al. (2018), which we discuss in detail in Chapter 1. We show that simple 

methods, such as the SVM do not perform well, but complex methods are capable of delivering 

statistically significant outperformance.  

In conclusion, institutions responsible for official macroeconomic forecasts in Slovakia 

should start testing the practical applications of ML models to integrate new information into 

their forecasts. Additionally, researchers need to focus more on combining linear and nonlinear 

machine learning approaches, directional accuracy measures, the use of soft indicators, the 

potential of ML for creating composite forecasts, and favoring regularization over PCA. Further 

exploration into demystifying the ML black box and conducting inference should also be a 

priority for future research. 
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Resume 

Prognózovanie zohráva kľúčovú úlohu pri hodnotení ekonomického stavu a usmerňovaní 

ekonomickej politiky. Je základom pre tvorbu vládnych rozpočtov a je nevyhnutné pre tvorcov 

politiky, ako sú centrálne banky, aby mohli načasovať intervencie na základe predpovedí 

kľúčových ekonomických ukazovateľov, ako sú hrubý domáci produkt (HDP), inflácia a 

nezamestnanosť. Súčasné modely však často nedokážu zachytiť skutočnú dynamiku medzi 

ekonomickými premennými. Napríklad Medeiros et al. (2019) ukazujú, ako vlády a 

medzinárodné orgány, najmä ECB, majú tendenciu neustále nadhodnocovať projekcie inflácie. 

Takéto rozdiely môžu viesť k významným stratám v oblasti blahobytu a skresliť očakávania 

inflácie, čo podčiarkuje potrebu presnejších predikčných modelov. 

S príchodom big data, vylepšených výpočtových schopností a pokrokov v oblasti 

štatistického učenia majú ekonómovia teraz prístup k rôznym novým metódam, vrátane tých 

založených na strojovom učení. Tieto metódy sa stali v poslednom desaťročí čoraz 

populárnejšími v makroekonomických aplikáciách, najmä v posledných piatich až šiestich 

rokoch. 

V tejto práci používame metódy strojového učenia (ML) na prognózovanie priemyselnej 

výroby a inflácie na Slovensku. Naša štúdia je prvou, ktorá aplikuje metódy strojového učenia 

(ML) na makroekonomické prognózy na Slovensku a všeobecnejšie, v akejkoľvek malej 

otvorenej industrializovanej ekonomike v menovej únii. Využívame komplexnú databázu 

Národnej banky Slovenska, ktorá je verejne dostupná. Naša vzorka je rozdelená na pre-COVID 

a post-COVID obdobia, na ktoré aplikujeme schému posuvného okna, čo nám umožňuje 

zohľadniť časovú variabilitu v odhadoch parametrov a zvýšiť robustnosť našich výsledkov. 

Zameriavame sa na dve kategórie ML modelov: jednu na riešenie nelinearít v dátach a 

druhú na skúmanie vplyvu regularizácie na výsledky makroekonomických prognóz. Tiež 

používame model Support Vector Machine, aby sme vyvrátili všeobecnú kritiku Makridakisa 

et al. (2018), a ukázali, že ich kritika neplatí pre Slovensko. 

Práca je usporiadaná nasledovne. Prvá kapitola sa venuje prehľadu existujúcej literatúry 

o makroekonomickom prognózovaní pomocou metód strojového učenia. Poskytuje všeobecný 

prehľad, zdôrazňuje kľúčové zistenia v tejto oblasti a odôvodňuje použitie nášho 

východiskového modelu (benchmark). Druhá kapitola uvádza naše hlavné a čiastkové ciele 

spolu s vedeckými hypotézami. Tretia kapitola poskytuje vyčerpávajúci prehľad našej 
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metodológie, vrátane matematického formulovania modelov, kódov, ktoré používame, procesu 

hodnotenia predpovedí a krokov predspracovania údajov. Štvrtá kapitola predstavuje výsledky 

pre vzorky pred a po COVIDe. Piata kapitola sumarizuje a interpretuje výsledky a zároveň 

poskytuje odporúčania. Posledná kapitola obsahuje záver. 

Naším hlavným cieľom je komplexne zhodnotiť predikčnú výkonnosť rôznych 

vybraných modelov strojového učenia a porovnať tieto výsledky s ekonometrickým benchmark 

modelom. Prognózujeme priemyselnú produkciu a infláciu pre obdobia pred a po COVIDe. 

Naše prínosy k literatúre sú metodologické aj empirické. 

Najprv predstavíme naše metodologické prínosy, ktoré zavádzajú tri prístupy, ktoré nie 

sú v súčasnej literatúre široko diskutované, alebo kde je dôkazov obmedzené množstvo. Po 

prvé, hodnotíme účinnosť techník redukcie dimenzionality, pričom sa inšpirujeme prácou 

Maehashiho a Shintaniho (2020). Principal Component Analysis (PCA) sa považuje za jeden z 

najlepších spôsobov na redukciu dimenzie dátovej sady. Naše zistenia naznačujú, že všeobecne 

sú regularizačné techniky na Slovensku preferované pred PCA redukciou. Pozorovaná slabšia 

výkonnosť predpovedí založených na spoločných faktoroch v porovnaní s tými, ktoré sú 

založené na tvrdých dátach, naznačuje možný prechod v prognózovaní od techník redukcie 

dimenzií založených na faktoroch k regularizačným metódam využívajúcim tvrdé dáta na 

Slovensku. Obe stratégie sú navrhnuté tak, aby extrahovali esenciálne informácie pri 

minimalizovaní počtu prediktorov; avšak regularizácia používajúca tvrdé dáta ukazuje v našej 

vzorke väčšiu presnosť. 

Po druhé, skúmame kombináciu regularizácie a nelineárnych metód, inšpirovanú 

Medeirosom et al. (2019). Naša metóda sa však líši, pretože používame alternatívne metódy a 

vykonávame dôkladnejšie hodnotenie výkonnosti. Medeiros et al. (2019) zistili, že kombinácia 

nie je obzvlášť prospešná. Naopak, naša analýza odhaľuje, že na Slovensku sú hybridné modely 

presnejšie ako jednoduché nelineárne modely, čo je zobrazené v tabuľkách 43 a 60. Výkonnosť 

nelineárnych metód zlepšujeme tým, že najprv aplikujeme regularizáciu na zjednodušenie 

informačnej sady, nasledovanú nelineárnym odhadom a predikciou. Táto efektivita 

pravdepodobne vyplýva zo zníženia počtu premenných, čo umožňuje dosiahnuť komplexné 

pokrytie kľúčových nelinearít a interakcií premenných s menším počtom stromov. Navyše, ako 

poznamenávajú Medeiros et al. (2019), keď je model Random Forest aplikovaný na sadu 

regularizovaných premenných, jeho schopnosť rozpoznať dôležité interakcie premenných je 

výrazne zosilnená, ale stáva sa ťažším zachytiť nelineárne vzťahy. V takom prípade, ak je 
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cieľom skúmať vplyvy nelinearít podrobnejšie, možno zvážiť iné nelineárne metódy ako 

Boosting, ktoré sú špecificky navrhnuté na efektívne zvládnutie takýchto komplexít. 

Po tretie, kombinácia prognóz je kľúčovou témou v literatúre o prognózovaní. Metódy 

strojového učenia sú prirodzene vhodné na kombinovanie prognóz, napriek tomu je výrazný 

nedostatok štúdií testujúcich tento prístup, okrem Arauja a Gaglianone (2023). Riešime túto 

medzeru tým, že ukazujeme, že použitie individuálnych modelov strojového učenia ako 

nástrojov na kombinovanie predpovedí môže výrazne zlepšiť výkonnosť niektorých modelov. 

Zistili sme, že niektoré kombinované modely, ktoré integrujú výstupy z viacerých 

individuálnych modelov, môžu byť dvakrát presnejšie ako ich náprotivky, ktoré sa spoliehajú 

iba na tvrdé makroekonomické údaje. Toto zlepšenie je obzvlášť zrejmé pri predpovedaní 

inflácie a v menšej miere pri predpovedaní priemyselnej produkcie. 

Teraz prejdeme k diskusii o našich empirických prínosoch, počnúc prognózami 

priemyselnej produkcie a inflácie pomocou vzorky pred COVIDom. 

Po prvé, každý RLS model neustále prekonáva benchmark model, so štatistickou 

významnosťou na 5%-nej hladine významnosti. Len v dvoch prípadoch, týkajúcich sa 

priemyselnej produkcie, je tento rozdiel významný na 10%-nej hladine významnosti. V prípade 

inflácie je každý rozdiel významný na 5%-nej hladine významnosti. Navyše, každý RLS 

predikčný model dosahuje podstatne vyššie DA hodnoty ako benchmark model pre priemyselnú 

produkciu. Hoci je DA pre modely strojového učenia o niečo nižšia pre infláciu, stále 

prekonávajú benchmark. Tieto výsledky identifikujú model Elastic Net ako najefektívnejší v 

tejto kategórii. Ďalej, pre priemyselnú produkciu zohráva výber premenných pomocou Lasso 

dôležitejšiu úlohu ako zmenšovanie koeficientov pomocou Ridge. Táto situácia je obrátená pri 

predikciách inflácie. Zhrnuté, RLS modely neustále prekonávajú benchmark model v každom 

horizonte. Tento robustný výkon je očakávaný kvôli prítomnosti mnohých korelovaných 

premenných v dátovej sade, ktoré majú tendenciu poskytnúť podobné informácie pre odhad. 

Navyše, kratšie časové rady použité v našej štúdii v porovnaní s iným výskumom strojového 

učenia môžu viesť k tomu, že metódy Lasso a Elastic Net ignorujú menej dôležité premenné 

kvôli obmedzenému počtu dostupných pozorovaní. 

Po druhé, čo sa týka presnosti EML modelov, každý model výrazne prekonáva benchmark 

model pri prognózovaní priemyselnej produkcie aj inflácie na 5%-nej hladine významnosti s 

výnimkou modelov Boosting a Random Forest pre priemyselnú produkciu pri h = 1, kde 

dosahujú štatistickú významnosť len na 10%-nej hladine významnosti. Navyše, všetky EML 
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predikčné modely vykazujú vyššie hodnoty DA ako benchmark. S výnimkou Boosting, tieto 

hodnoty DA zostávajú stabilné v čase. Bagging sa ukazuje ako celkovo najúčinnejší. Vzhľadom 

na jeho významný výkon pre oba ciele naprieč všetkými horizontmi na úrovni 5 % a všeobecne 

najnižšie predikčné chyby, je to optimálna voľba pre zachytenie nelinearít v dátach Slovenska. 

Tento nález je obzvlášť relevantný, pretože neexistujú iné publikované štúdie, ktoré by riešili 

potenciálne nelinearity na slovenských dátach. 

Po tretie, skúmame tri ďalšie typy modelov mimo hlavných kategórií. Model Support 

Vector Machine (SVM), ktorý prekonáva benchmark model v každom predikčnom horizonte 

pre obe premenné, pričom vykazuje presvedčivé hodnoty DA. Jeho výkon pre priemyselnú 

produkciu je však nekonzistentný, čo ho zaraďuje medzi slabšie modely v našom súbore, 

neberúc do úvahy neurónové siete. Čo sa týka modelov neurónových sietí, naše výpočtové 

možnosti boli obmedzené, čo nám bránilo efektívne doladiť tieto modely. Výsledkom je, že 

výsledky z neurónových sietí nie sú spoľahlivé pre našu analýzu. 

Pokračujúc v našej analýze, hodnotíme predikčnú schopnosť modelov pomocou 

spoločných faktorov pre priemyselnú produkciu a infláciu. Každý model prekonáva svoj 

benchmark model; avšak modely vykazujú výrazne lepšiu výkonnosť z hľadiska relatívneho 

MSE a hodnôt DA, keď sú predikcie založené na tvrdých makroekonomických dátach. 

Ďalej posudzujeme výkonnosť modelov strojového učenia, ktoré boli trénované na 

mäkkých indikátorových dátach. Očakávame, že predikcie založené na mäkkých indikátoroch 

nebudú mať nižšie chyby ako tie, ktoré sú založené na tvrdých makroekonomických dátach. 

Avšak predpokladáme, že prekonajú benchmark model v prognózovaní smeru zmeny cieľovej 

premennej, čo sa potvrdzuje. Na záver môžeme povedať, že indikátory efektívne plnia svoj 

zamýšľaný účel. Využitím rozsiahlej dátovej sady mäkkých indikátorov a použitím modelov 

strojového učenia môžeme predpovedať smer zmeny s vyššou pravdepodobnosťou, ako keby 

sme sa spoliehali len na benchmark model. 

Pokračujeme so sumarizáciou výsledkov týkajúcich sa post-COVID obdobia. Pri 

skúmaní post-COVID výsledkov nachádzame vzory čiastočne podobné skorším zisteniam. 

Okrem toho, zahrnutie COVID-19 údajov do vzorky zlepšuje výkon modelov strojového 

učenia. Významné je, že v prípade priemyselnej výroby dosahujú modely Lasso a Elastic Net 

zvýšenie výkonu približne o 20 percentuálnych bodov v porovnaní s pre-COVID vzorkou. V 

prípade predikcie inflácie vyniká model Elastic Net s najlepšími výsledkami. Toto je významné 
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zlepšenie, ktoré takmer zdvojnásobuje jeho relatívny výkon v porovnaní s predchádzajúcou 

vzorkou bez COVID údajov. 

Navyše, výkon EML modelov predstavuje menej jasný obraz. Dosahujú lepší výkon v 

porovnaní s pre-COVID vzorkou. Na druhej strane, žiadny z nich neprekonáva svoju 

kombináciu s Ridge alebo Elastic Net. Toto podčiarkuje efektívnosť nášho hybridného prístupu 

pri podstatnom zlepšení predikčného výkonu nelineárnych modelov výberom vhodných 

premenných alebo optimalizáciou hodnôt parametrov pre tréning. 

Výsledky modelov založených na spoločných faktoroch sú podobné ako pri pre-COVID 

vzorke. Okrem toho, soft indikátory vykazujú podobnú alebo vyššiu presnosť predikcií ako 

benchmark model počas tohto obdobia. V prípade priemyselnej výroby prekonávajú benchmark 

aj z hľadiska chýb. 

V tejto vzorke tiež hodnotíme účinnosť modelov strojového učenia ako nástrojov na 

kombináciu predikcií. Zistili sme, že niektoré kompozitné modely, ktoré integrujú výstupy z 

viacerých individuálnych modelov, môžu byť dvakrát tak presné ako ich náprotivky, ktoré sa 

spoliehajú výlučne na tvrdé makroekonomické údaje. Táto výhoda je konzistentná a stáva sa 

ešte výraznejšou s rastúcim h. Navyše, výkon kompozitných modelov založených na 

spoločných faktoroch je pozoruhodne pôsobivý. Tieto modely založené na spoločných 

faktoroch vo všeobecnosti prekonávajú benchmark model vo väčšine scenárov. Toto zistenie 

naznačuje, že zatiaľ čo individuálne modely spoliehajúce sa na spoločné faktory môžu 

samostatne dosahovať horšie výsledky, agregácia informácií z každého modelu 

prostredníctvom techník strojového učenia môže výrazne zvýšiť celkovú presnosť predikcií. 

Tento prístup efektívne využíva kolektívnu silu rôznych modelov, čím demonštruje silu 

kompozitného predikovania v aplikáciách strojového učenia. 

Vo vzorke post-COVID tiež uvádzame, ako každá kategória z tabuliek A1.1-A1.8 

ovplyvňuje predikcie. Okrem toho ukazujeme, že predikcie RLS takmer dokonale zodpovedajú 

trajektórii skutočných hodnôt predikovaných radov. Najlepší výkon dosahuje model Elastic 

Net, ktorý nielen presne predpovedá smer zmien, ale aj ich rozsah, pričom takmer dokonale 

zodpovedá skutočným údajom. Táto vysoká úroveň presnosti nás vedie k záveru, že v našom 

prípade je model Elastic Net najpresnejšou metódou predikcie inflácie, dokonca aj v prostredí 

s vysokou volatilitou. Hoci výkon modelu pri zachytávaní rozsahu zmien mierne klesá pri h = 

12, schopnosť predpovedať infláciu v období vysokej neistoty a volatility s takou presnosťou 

na jeden a tri mesiace dopredu zostáva výnimočným úspechom. 
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Na záver, väčšina modelov strojového učenia prekonáva benchmark model o veľký 

rozdiel a dosahujú podstatne lepšie výsledky ako pri použití pre-COVID vzorky. Pre túto 

výkonnosť možno uviesť viacero dôvodov. Vo všeobecnosti majú modely viac údajov na učenie 

vďaka predĺženiu časovej rady o 4 roky. Navyše, výkon benchmark modelu môže výrazne 

klesnúť, pretože jednoduchý model nemusí byť schopný zachytiť náhly a neočakávaný šok, ako 

je COVID. 

Na záver formulujeme odporúčania na základe našich výsledkov. V prvom rade je 

dôležité spomenúť, že metódy strojového učenia v súčasnosti zostávajú vo veľkej miere 

„čiernymi skrinkami“, ako zdôrazňujú Masini et al. (2021). Masini et al. (2021) tiež uvádzajú, 

že hoci sú dostupné rôzne interpretačné techniky, neexistuje konsenzus v rámci akademickej 

obce o ich primeranosti, najmä v porovnaní s tradičnejšími modelmi ako VAR, ktoré umožňujú 

priamočiaru interpretáciu. Masini et al. (2021) však zdôrazňujú, že táto oblasť výskumu v čase 

písania tejto práce prudko rastie. Preto je dôležité poznamenať, že hlavné prínosy nie sú v 

oblasti identifikácie štrukturálnych súvislostí, ale v oblasti predikčnej kapacity. 

Po prvé, všeobecne vysoká štatistická významnosť na úrovni 5 % naprieč týmito modelmi 

naznačuje, že regularizácia výrazne zvyšuje presnosť predikcií, a to o viac ako 90 % v 

niektorých prípadoch zahŕňajúcich Lasso a Elastic Net, napriek ich predchádzajúcemu 

nevyužívaniu na Slovensku. Regularizácia tak poskytuje presnejšie a robustnejšie odhady počas 

pre-COVID aj post-COVID období. Preto sa zdá byť výhodné ďalej skúmať implementáciu 

regularizačných techník v makroekonomických predikciách aplikovanými makroekonómami. 

Tento posun by mohol potenciálne zlepšiť presnosť ekonomických prognóz využitím 

podrobných a priamych meraní ekonomickej aktivity poskytovaných tvrdými dátami, čím by 

sa zvýšila celková spoľahlivosť predikčných modelov v rôznych ekonomických podmienkach. 

Po druhé, robustný výkon rôznych modelov zdôrazňuje význam nelineárnych vzťahov, 

stručne diskutovaných v Kapitole 1. Tieto faktory by mali brať makroekonómovia do úvahy pri 

príprave predikcií. Význam nelinearít a interakcií medzi premennými je ďalej zdôraznený 

úspešným použitím nelineárnych metód strojového učenia. Napríklad relatívne hodnoty MSE 

pre model Boosting sú porovnateľné s hodnotami modelu Lasso v prípade inflácie. Táto 

podobnosť naznačuje, že aj pri menších dátových výberových súboroch, typických pre menšie 

ekonomiky, nedostatok regularizácie nebráni týmto metódam v identifikácii kľúčových 

vzťahov v rámci dát. Naše zistenia silne podporujú zahrnutie nelineárnych dátovo riadených 

modelov do predikčných rámcov, vzhľadom na ich preukázanú schopnosť efektívne zachytiť 

významné nelineárne efekty. Tento prístup by mohol zvýšiť presnosť a relevantnosť 
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ekonomických prognóz tým, že by do nich zahrnul komplexnú dynamiku, často prítomnú v 

reálnych dátach. Na ďalšie zlepšenie týchto nelineárnych metód by sa mala najprv aplikovať 

regularizácia a potom použiť techniky EML na regularizované vstupy. 

Nakoniec je vhodné, aby mali tvorcovia politík vopred pripravené modely strojového 

učenia. Keď sa sprístupnia údaje o mäkkých indikátoroch, môžu byť rýchlo zadané do týchto 

modelov na spoľahlivejšie predpovedanie smeru ekonomiky. Tento prístup poskytuje tvorcom 

politík proaktívny nástroj na efektívne hodnotenie budúcich ekonomických trendov. Využitím 

vstupov v reálnom čase môžu tieto modely ponúknuť včasné postrehy, čo umožňuje 

informovanejšie a pružnejšie ekonomické rozhodovanie. Tento spôsob zdôrazňuje dôležitosť 

pripravenosti a strategického využitia technológií v ekonomických predikciách. 

Zhrnutím je naše hlavné odporúčanie, aby makroekonómovia na Slovensku začali 

využívať modely v dvoch hlavných kategóriách, ktoré preukazujú silný výkon v predikciách. 

Tieto modely sú účinné pri zachytávaní nelinearít v procese generovania dát a tiež zdôrazňujú 

kľúčovú úlohu regularizácie. Ako sme ukázali v našej analýze, oba prvky – nelinearity a 

regularizácia – sú rozhodujúce pre presné predpovedanie ekonomických trendov. Tento prístup 

zaisťuje, že makroekonomické predpovede sú nielen robustné, ale aj odrážajú komplexnú 

dynamiku, ktorá charakterizuje ekonomiku krajiny. 

Aby sme to zhrnuli, naše prínosy k makroekonomickému prognózovaniu sú viaceré a sú 

zároveň dôležité. Po prvé, zavádzame hybridnú metódu inšpirovanú Medeirosom et al. (2019), 

ktorá je úspešná v zachytávaní nelinearít a interakcií premenných. Tento prístup je obzvlášť 

prospešný v postsocialistických východoeurópskych ekonomikách, kde sú dátové súbory 

obvykle krátke. Regularizáciou týchto dátových súborov pred aplikovaním nelineárnych metód 

výrazne zvyšujeme výkon týchto modelov. Po druhé, hodnotíme účinnosť regularizácie v 

porovnaní s analýzou hlavných komponentov (PCA). Naše výsledky ukazujú, že regularizácia, 

technika strojového učenia (ML), poskytuje presnejšie prognózy. Po tretie, skúmame 

užitočnosť ML metód pri kombinovaní prognóz a zistíme, že zlepšujú presnosť individuálnych 

modelov. Po štvrté, ukazujeme, že regularizácia výrazne zlepšuje predikčné schopnosti v 

porovnaní s konvenčnými benchmark modelmi. Po piate, používame Ensemble ML modely na 

identifikáciu a modelovanie nelinearít v dátach. Pokiaľ je nám známe, toto je prvýkrát, čo boli 

tieto techniky aplikované pomocou ML v malej otvorenej industrializovanej ekonomike v 

menovej únii. Po šieste, prichádzame s novým prístupom hodnotenia smerovej presnosti ML 

modelov, čo je dôležitý aspekt, ktorý sa často prehliada v prospech zamerania sa iba na veľkosť 

chýb. Po siedme, poskytujeme vyčerpávajúcu analýzu výkonu ML modelov v pre-COVID a 
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post-COVID obdobiach, pričom zaznamenávame lepší výkon počas období zvýšenej 

ekonomickej neistoty a volatility. Napriek krátkemu obdobiu, ktoré pokrýva iba 16 rokov s 

krízami na oboch koncoch, jeden model prognózuje infláciu na jeden až tri mesiace dopredu s 

úplnou presnosťou. Po ôsme, ilustrujeme, ako ML metódy efektívnejšie rozlišujú trendy z 

mäkkých indikátorov. Po deviate, naše zistenia kolektívne adresujú a vyvracajú kritiku 

Makridakisa et al. (2018), ktorú podrobne diskutujeme v Kapitole 1. Ukazujeme, že jednoduché 

metódy, ako napríklad SVM, nefungujú dobre, ale komplexné metódy sú schopné dosiahnuť 

štatisticky významnú výkonnosť. 
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Appendix 

Appendix 1: List of variables 

Table A1.1: Industrial production 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Industrial 

manufacturing 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production 

of food, beverages, and tobacco products 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production 

of textiles, clothing, leather, and leather products 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production 

of wood and paper products, printing 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production 

of coke and refined petroleum products 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production 

of chemicals and chemical products 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production 

of basic pharmaceutical products and pharmaceutical preparations 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production 

of rubber and plastic products and other non-metallic mineral products 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production 

of metals and metal structures excluding machinery and equipment 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production 

of computers, electronic, and optical products 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production 

of electrical equipment 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production 

of machinery and equipment n.e.c. 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Production 

of transport equipment 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Other 

manufacturing, repair, and installation of machinery and equipment 

Industrial production, Industrial production, NACE Rev. 2, seasonally adjusted, Supply of 

electricity, gas, steam, and air conditioning 

Industrial production, Construction production, constant prices, seasonally unadjusted, 

Construction production 

Industrial production, Construction production, constant prices, seasonally unadjusted, 

Domestic construction production 

Industrial production, Construction production, constant prices, seasonally unadjusted, New 

construction, reconstruction, and modernization 

Industrial production, Construction production, constant prices, seasonally unadjusted, 

Repairs and maintenance 

Industrial production, Construction production, constant prices, seasonally unadjusted, 

Construction production abroad 

Industrial production, Construction production, constant prices, seasonally unadjusted, New 

construction, reconstruction, and modernization - residential buildings 

Industrial production, Construction production, constant prices, seasonally unadjusted, New 

construction, reconstruction, and modernization - non-residential buildings 
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Industrial production, Construction production, constant prices, seasonally unadjusted, New 

construction, reconstruction, and modernization - civil engineering works 

Industrial production, Construction production, constant prices, seasonally unadjusted, 

Repairs and maintenance - residential buildings 

Industrial production, Construction production, constant prices, seasonally unadjusted, 

Repairs and maintenance - non-residential buildings 

Industrial production, Construction production, constant prices, seasonally unadjusted, 

Repairs and maintenance - civil engineering works 

Industrial production, Construction production, constant prices, seasonally unadjusted, Other 

works - domestic 

Industrial production, Construction production, constant prices, seasonally unadjusted, 

Domestic construction production - residential buildings 

Industrial production, Construction production, constant prices, seasonally unadjusted, 

Domestic construction production - non-residential buildings 

Industrial production, Construction production, constant prices, seasonally unadjusted, 

Domestic construction production - civil engineering works 

Industrial production, Construction production, constant prices, seasonally unadjusted, 

Domestic construction production - buildings 
Source: NBS macroeconomic database 

Table A1.2: Prices 

HICP, HICP - basic structure of NBS, seasonally adjusted, All items HICP 

HICP, HICP - basic structure of NBS, seasonally adjusted, Net inflation excluding fuels 

HICP, HICP - basic structure of NBS, seasonally adjusted, Energy 

HICP, HICP - basic structure of NBS, seasonally adjusted, Food 

HICP, HICP - basic structure of NBS, seasonally adjusted, Administered prices excluding 

energy prices 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Total industry 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Mining and quarrying 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Industrial production 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of food, beverages, and tobacco 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of textiles, clothing, leather, and leather products 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of wood and paper products, printing 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of coke and refined petroleum products 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of chemicals and chemical products 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of basic pharmaceutical products and pharmaceutical preparations 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of rubber and plastic products and other non-metallic mineral products 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of metals and metal structures excluding machinery and equipment 
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Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of computers, electronic, and optical products 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of electrical equipment 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of machinery and equipment n.e.c. 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of transport equipment 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Other manufacturing, repair, and installation of machinery and equipment 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Supply of electricity, gas, and cold air 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of electricity, transmission, and distribution 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Production of gas: distribution of gas fuels by pipeline 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Steam supply and distribution of cold air 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Water supply, cleaning, and waste water disposal, waste 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Collection, treatment, and supply of water 

Industrial producer price index (ICPV), Domestic ICPV by sections and subsections NACE 

Rev. 2, Cleaning and waste water disposal 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Total industry 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Mining and quarrying 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Industrial production 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Production of food, beverages, and tobacco 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Production of textiles, clothing, leather, and leather products 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Production of wood and paper products, printing 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Production of coke and refined petroleum products 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Production of chemicals and chemical products 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Production of basic pharmaceutical products and pharmaceutical preparations 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Production of rubber and plastic products and other non-metallic mineral products 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Production of metals and metal structures excluding machinery and equipment 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Production of computers, electronic, and optical products 
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Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Production of electrical equipment 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Production of machinery and equipment n.e.c. 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Production of transport equipment 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Other manufacturing, repair, and installation of machinery and equipment 

Industrial producer price index (ICPV), Export ICPV by sections and subsections NACE 

Rev. 2, Supply of electricity, gas, and cold air 
Source: NBS macroeconomic database 

Table A1.3: Revenue 

Revenue, Total revenue, Total, constant prices, seasonally adjusted 

Revenue, Total revenue, Total, domestic trade, constant prices, seasonally adjusted 

Revenue, Total revenue, Total, selected sectors, constant prices, seasonally adjusted 

Revenue, Domestic trade, constant prices, seasonally adjusted, Sale and repair of motor 

vehicles 

Revenue, Domestic trade, constant prices, seasonally adjusted, Wholesale excluding motor 

vehicles 

Revenue, Domestic trade, constant prices, seasonally adjusted, Retail excluding motor 

vehicles 

Revenue, Domestic trade, constant prices, seasonally adjusted, Accommodation 

Revenue, Domestic trade, constant prices, seasonally adjusted, Food and beverage service 

activities 

Revenue, Selected sectors, constant prices, seasonally adjusted, Industry 

Revenue, Selected sectors, constant prices, seasonally adjusted, Construction 

Revenue, Selected sectors, constant prices, seasonally adjusted, Selected market services 

Revenue, Selected sectors, constant prices, seasonally adjusted, Information and 

communication 

Revenue, Selected sectors, constant prices, seasonally adjusted, Transportation and storage 

Revenue, Revenue, MIG, constant prices, seasonally adjusted, Mining and quarrying 

Revenue, Revenue, MIG, constant prices, seasonally adjusted, Mining and quarrying; 

industrial production 

Revenue, Revenue, MIG, constant prices, seasonally adjusted, Industrial production 

Revenue, Revenue, MIG, constant prices, seasonally adjusted, Investment goods 

Revenue, Revenue, MIG, constant prices, seasonally adjusted, Consumer goods 

Revenue, Revenue, MIG, constant prices, seasonally adjusted, Consumer goods excluding 

food, alcohol, and tobacco products 
Source: NBS macroeconomic database 

Table A1.4: Wages 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, All 

sectors 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Industry total 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Industry total, of which: mining and quarrying 
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Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Industry total, of which: industrial production 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Industry total, of which: energy 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Industry total, of which: water and waste management 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Construction 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, Sale 

and repair of motor vehicles 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Wholesale, excluding motor vehicles 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Retail, excluding motor vehicles 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Accommodation 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Restaurants and catering 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Transportation and storage 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Transportation and storage, of which: postal services and courier services 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Information and communication 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Selected market services 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Services total 

Wages, compensations, Monthly average wages in selected sectors, seasonally adjusted, 

Trade total 
Source: NBS macroeconomic database 

Table A1.5: Employment 

Job vacancies, Monthly job vacancies, UPSVAR, seasonally adjusted, Job vacancies 

Job vacancies, Monthly job vacancies, UPSVAR, seasonally adjusted, Job vacancies - inflow 

Job vacancies, Monthly job vacancies, UPSVAR, seasonally adjusted, Job vacancies - 

outflow 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

All sectors 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Industry total, of which: mining and quarrying 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Industry total, of which: energy 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Industry total, of which: water and waste management 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Construction 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Sale and repair of motor vehicles 
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Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Wholesale, excluding motor vehicles 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Retail, excluding motor vehicles 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Accommodation 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Restaurants and catering 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Transportation and storage 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Transportation and storage, of which: postal services and courier services 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Information and communication 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Selected market services 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Services total 

Employment (hours, persons), Monthly employment in selected sectors, seasonally adjusted, 

Trade total 

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, Mining 

and quarrying 

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, 

Manufacturing of food, beverages and tobacco products 

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, 

Manufacturing of wood and paper products, printing 

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, 

Manufacturing of coke and refined petroleum products 

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, 

Manufacturing of chemicals and chemical products 

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, 

Manufacturing of basic pharmaceutical products and pharmaceutical preparations 

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, 

Manufacturing of rubber and plastic products and other non-metallic mineral products 

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, 

Manufacturing of computer, electronic and optical products 

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, 

Manufacturing of electrical equipment 

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, 

Manufacturing of machinery and equipment not elsewhere classified 

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, 

Manufacturing of transport equipment 

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, Energy 

Employment (hours, persons), Monthly employment in industry, seasonally adjusted, Water 

and waste management 

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Number of 

unemployed persons 

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Number of 

available unemployed persons 
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Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Inflow of job 

seekers 

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Inflow of job 

seekers, graduates 

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Outflow of job 

seekers 

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Outflow of job 

seekers, placed in the labor market 

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Outflow of job 

seekers, excluded due to non-cooperation 

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Outflow of job 

seekers, others 

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Non-available job 

seekers 

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Temporary 

incapacity for work and OČR 

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Unemployment 

rate as a percentage of total applicants 

Unemployment, NAIRU, Unemployment, UPSVAR, seasonally adjusted, Registered 

unemployment rate 
Source: NBS macroeconomic database 

Table A1.6: Foreign trade 

Foreign Trade, Foreign Trade-Export, Total Export, seasonally adjusted 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Countries outside the 

eurozone 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Countries in the 

eurozone 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - EU 28 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - V3 (Poland, Hungary, 

Czechia) 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Germany 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Czechia 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - France 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Poland 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Austria 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Italy 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Hungary 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Russia 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - United Kingdom of 

Great Britain and Northern Ireland 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - China 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Netherlands 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Spain 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Sweden 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Romania 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - USA 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Belgium 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Turkey 
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Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Switzerland 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Korea 

Foreign Trade, Foreign Trade-Export, Territorial structure of exports - Unspecified 

Foreign Trade, Foreign Trade-Export, Commodity structure of exports - final consumption 

Foreign Trade, Foreign Trade-Export, Commodity structure of exports - raw materials 

Foreign Trade, Foreign Trade-Export, Commodity structure of exports - intermediates 

Foreign Trade, Foreign Trade-Export, Commodity structure of exports - machinery, 

apparatus, equipment 

Foreign Trade, Foreign Trade-Import, Total Import, seasonally adjusted 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Countries outside the 

Eurozone 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Countries in the 

Eurozone 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - EU 28 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - V3 (Poland, Hungary, 

Czechia) 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Germany 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Czechia 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - France 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Poland 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Austria 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Italy 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Hungary 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Russia 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - United Kingdom of 

Great Britain and Northern Ireland 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - China 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Netherlands 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Spain 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Sweden 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Romania 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - USA 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Belgium 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Turkey 

Foreign Trade, Foreign Trade-Import, Territorial structure of imports - Switzerland 
Source: NBS macroeconomic database 

Table A1.7: Current account 

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Current account 

- assets 

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Current account 

- liabilities 

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Goods - credit 

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Goods - debit 

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Services - credit 

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Services - debit 

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Primary income 

- credit 
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Current account (BPM6), Current account (BPM6), seasonally unadjusted, Primary income 

- debit 

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Secondary 

income - credit 

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Secondary 

income - debit 

Current account (BPM6), Current account (BPM6), seasonally unadjusted, Capital account - 

debit 
Source: NBS macroeconomic database 

Table A1.8: Exchange rates 

Exchange rates, Bilateral exchange rates, Bilateral exchange rate CZK/EUR 

Exchange rates, Bilateral exchange rates, Bilateral exchange rate HUF/EUR 

Exchange rates, Bilateral exchange rates, Bilateral exchange rate PLN/EUR 

Exchange rates, Bilateral exchange rates, Bilateral exchange rate USD/EUR 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), Germany 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), Czech Republic 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), Italy 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), France 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), Austria 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), Poland 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), Hungary 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), United Kingdom 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), United States 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), Netherlands 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), Belgium 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), Spain 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), Russian Federation 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), China 

Exchange rates, Bilateral real exchange rates based on CPI (15 main trading partners of the 

Slovak Republic), Republic of Korea 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), Germany 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), Czech Republic 
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Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), Italy 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), France 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), Austria 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), Poland 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), Hungary 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), United Kingdom 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), United States 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), Netherlands 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), Belgium 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), Spain 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), Russian Federation 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), China 

Exchange rates, Bilateral real exchange rates based on PPI (15 main trading partners of the 

Slovak Republic), Republic of Korea 

Exchange rates, Effective exchange rates - monthly (15 main trading partners of the Slovak 

Republic), Nominal effective exchange rate 

Exchange rates, Effective exchange rates - monthly (15 main trading partners of the Slovak 

Republic), Real effective exchange rate based on CPI 

Exchange rates, Effective exchange rates - monthly (15 main trading partners of the Slovak 

Republic), Real effective exchange rate based on PPI 
Source: NBS macroeconomic database 

Table A1.9: Indicators 

The Economic Sentiment Indicator, The Economic Sentiment Indicator, Long-term average, 

Economic Sentiment Indicator 

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted, 

Industry 

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted, 

Industrial Production Trend (last 3 months) 

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted, Current 

Level of Overall Demand for Production 

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted, Current 

Level of Demand for Production Abroad 

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted, Current 

Stocks of Finished Products 

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted, 

Expected Industrial Production (next 3 months) 
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Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted, 

Expected Product Prices (next 3 months) 

Economic Sentiment Indicator, Industrial Confidence Indicator, Seasonally adjusted, 

Expected Number of Employees (next 3 months) 

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted, Services 

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted, Business 

Situation Trend (last 3 months) 

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted, Demand 

for Services Development (last 3 months) 

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted, 

Expected Demand for Services (next 3 months) 

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted, Number 

of Employees (last 3 months) 

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted, 

Expected Number of Employees (next 3 months) 

Economic Sentiment Indicator, Services Confidence Indicator, Seasonally adjusted, 

Expected Service Prices (next 3 months) 

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, 

Consumers 

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, 

Expected Household Financial Situation (next 12 months) 

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, Past 

Household Financial Situation (last 12 months) 

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, Past 

Economic Situation of Slovakia (last 12 months) 

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, 

Expected Economic Situation Development in Slovakia (next 12 months) 

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, Past 

Inflation (last 12 months) 

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, 

Expected Inflation (next 12 months) 

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, 

Expected Unemployment (next 12 months) 

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, 

Conditions for Major Purchases in Slovakia 

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, 

Household Plans for Major Purchases (last 12 months) 

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, Saving 

Conditions in Slovakia 

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, 

Expected Household Savings Development (next 12 months) 

Economic Sentiment Indicator, Consumer Confidence Indicator, Seasonally adjusted, 

Opinion on Household Financial Situation (last 12 months) 

Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Retail 

Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Business 

Situation Trend (last 3 months) 

Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Current 

Inventory Levels 
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Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Expected 

Supplier Requirements (next 3 months) 

Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Expected 

Business Situation (next 3 months) 

Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Expected 

Number of Employees (next 3 months) 

Economic Sentiment Indicator, Retail Confidence Indicator, Seasonally adjusted, Expected 

Product Prices (next 3 months) 

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted, 

Construction 

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted, 

Construction Activity Trend (last 3 months) 

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted, 

Factors Limiting Construction Production (%): none 

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted, 

Factors Limiting Construction Production (%): insufficient demand 

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted, 

Factors Limiting Construction Production (%): weather conditions 

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted, 

Factors Limiting Construction Production (%): lack of employees 

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted, 

Factors Limiting Construction Production (%): lack of material and/or equipment 

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted, 

Factors Limiting Construction Production (%): other 

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted, 

Factors Limiting Construction Production (%): financial constraints 

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted, 

Current Level of Demand for Construction Production 

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted, 

Expected Number of Employees (next 3 months) 

Economic Sentiment Indicator, Construction Confidence Indicator, Seasonally adjusted, 

Expected Construction Production Prices (next 3 months) 

Economic Sentiment Indicator, Expected Employment Development, Expected Employment 

Development Together 

Economic Sentiment Indicator, Industrial Confidence Indicator, Contributions, Seasonally 

adjusted, Industry 

Economic Sentiment Indicator, Industrial Confidence Indicator, Contributions, Seasonally 

adjusted, Current Level of Overall Demand for Production 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Food Production 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Beverage Production 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Textile Production 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Clothing Production 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Leather and Leather Goods Production 
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Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Wood Processing and Wood and Cork Products Manufacturing 

except Furniture 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Paper and Paper Products Manufacturing 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Printing and Reproduction of Recorded Media 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Chemicals and Chemical Products Manufacturing 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Pharmaceutical Products and Preparations Manufacturing 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Rubber and Plastic Products Manufacturing 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Other Non-metallic Mineral Products Manufacturing 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Metals Processing and Manufacturing 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Fabricated Metal Products Manufacturing except Machinery 

and Equipment 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Computer, Electronic and Optical Products Manufacturing 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Electrical Equipment Manufacturing 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Machinery and Equipment Manufacturing 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Motor Vehicles, Trailers and Semi-Trailers Manufacturing 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Other Transport Equipment Manufacturing 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Furniture Manufacturing 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Other Manufacturing 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Electricity, Gas, Steam and Air Conditioning Supply 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Water Supply, Sewerage, Waste Management and Remediation 

Activities 

Economic Sentiment Indicator, Industrial, Sectors, Industrial Production Trend (last 3 

months), Seasonally adjusted, Mining and Quarrying 
Source: NBS macroeconomic database 
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