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Abstract. There are many reasons why an insured person lapses (cancels) his 

policy. Lapse risk is one of the main risks, which is also defined in Directive 

Solvency II. Lapse analysis can be performed by various statistical methods. In 

this paper, we illustrate the possibility of using survival analysis to calculate the 

lapse ratio. Survival analysis does not have to be used only in medical research 

but nowadays finds application also in economics e.g., actuarial science. We 

focus on the Kaplan-Meier estimator, the most used method of modeling survival 

times. In practice, not every insurance policy has to lapse, so survival times from 

these policies should be right-censored. The Kaplan-Meier method allows to 

include these censored observations in the model. We use R programming 

language to calculate Kaplan-Meier estimation for survival times and to plot 

survival functions. Since the Kaplan-Meier model is univariate model, we focus 

on the impact of sex on insurance policy lapses. 

Keywords: Survival analysis, Kaplan-Meier estimator, R programming 

language.  

JEL classification: C14, G22 

1 Lapse analysis in Insurance industry 

Survival analysis is one of the oldest statistical methods. It was originally created in the 

medical field, where the time from the beginning of the patient's treatment to his death 

was monitored. Later, this method found application in other areas, such as economics, 

demography, or insurance. Survival analysis can be characterized as a set of statistical 

methods and procedures for examining data, where the primary random dependent 

variable is the time of occurrence of a previously known event. Therefore, in survival 
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analysis we examine the length of time that elapses from the beginning of the event to 

its occurrence. This time can be defined as days, weeks, months, or years. 

As we mentioned, one of the most frequently observed events that we can analyze is 

the death of an individual, i.e. time from birth to death. Survival analysis is the universal 

method of examining data, with which we can analyze various types of upcoming 

positive or negative events (illness, bankruptcy, liquidation of insurance claims, 

cancellation of insurance, and others).   

The beginnings of survival analysis date back to the 17th century. This method was 

first used by Jan de Witt in 1671 in insurance to calculate the value of life annuities. In 

the next two centuries, scientists tried to explain the course of life respectively 

population mortality. At the beginning of the 20th century, the actuarial method of 

survival analysis was created. Paul Eugene Böhmer contributed to its creation. His work 

represents the revolution in the concept of survival analysis. However, his estimate of 

mortality rates remained forgotten for years, and in half a century, it was revised by 

Kaplan and Meier. Kaplan and Meier's contribution is considered one of the most 

important in the whole modern period of survival analysis. [4] 

The insured person may terminate the life insurance policy for many reasons, such 

as high premiums, low financial returns, distrust of the insurance company, or he does 

not need to cover health risks anymore. If the client decides that he does not want to 

continue with the contract, this contract is canceled. The client will stop paying the 

premium, and if it has been agreed in advance in the contract conditions, the insurance 

company will pay the redemption value. A high cancellation rate, especially at the 

beginning of insurance, can affect the profitability of an insurance company. Therefore, 

a penalty charge in the life insurance sector in the first years of insurance has been 

introduced, which is gradually reduced during the insurance period (in the first years of 

insurance, for some products, this charge may be 100% of the insurance value). 

However, in some cases, it is advantageous to lapse the insurance policy. 

Lapses are part of the insurer's risks that are not fully controllable. Therefore, the 

insurer should analyze and handle this risk. In practice, we encounter the calculation of 

the percentage of cancellation (lapse ratio), especially in the forecast of cash flows and 

profitability of products. In general, an insurer should know and quantify all its business 

risks. It is good to know after which period contracts have the greatest tendency to lapse 

and to predict the number of contracts in the portfolio for future periods. The loss 

caused by the lapse ratio is difficult to quantify. However, one option is to compare the 

cash flow with a 0% lapse ratio and with the calculated lapse rate. 

Monitoring the lapse rate in the insurance company is essential in the calculation of 

the Solvency Capital Requirement according to the legislation – Directive Solvency II. 

The Solvency Capital Requirement (SCR) represents the required total value of the own 

funds of a European insurance or reinsurance company. The SCR must take into 

account all quantified risks to which these companies are exposed. It is the minimum 

amount of capital needed to cover potential losses that may occur during one year with 

a probability of 99,5%.  

The SCR is calculated according to Solvency II as the sum of the basic capital 

requirement, the capital requirement for operational risk, and the adjustment for the 

ability to absorb losses of technical provisions and deferred tax liabilities. The basic 
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SCR is usually calculated once a year and covers at least the following groups of risks: 

non-life underwriting risk, life underwriting risk, health underwriting risk, market risk, 

credit risk, and operational risk. [3] 

Article 105 of the Solvency II Directive defines the lapse risk as "the risk of loss, or 

of adverse change in the value of insurance liabilities, resulting from changes in the 

level or volatility of the rates of policy lapses, terminations, renewals, and surrenders". 

The lapse risk belongs to the sub-module of the life underwriting risk module, which is 

determined on the basis of a standard formula as [2]: 

 𝑆𝐶𝑅𝑙𝑖𝑓𝑒 = √∑ 𝐶𝑜𝑟𝑟𝑖,𝑗 × 𝑆𝐶𝑅𝑖 × 𝑆𝐶𝑅𝑗𝑖,𝑗  (1) 

The individual combinations 𝑖 and 𝑗 represent combinations of the following 

submodules [2]: 

● mortality risk, 

● longevity risk, 

● morbidity risk, 

● life-expense risk, 

● revision risk, 

● lapse risk, 

● and life-catastrophe risk. 

One of the most common problems in data processing in survival analysis is 

censoring. Not for all subjects who enter the observation the event needs to occur during 

the research period. However, it would be wrong to exclude them from the analysis, as 

we would get skewed results. Therefore, the concept of censoring has been introduced. 

Thus, in these subjects, we observe not a survival time but a censored survival time. 

The censoring time determines time from the beginning of the observations to the last 

known mention of the subject. We also observe the censoring period for subjects who 

were excluded from the research for some reason. 

It is important to distinguish truncation from censoring. When truncating data, we 

analyze only those subjects in which the monitored event occurred in the given interval 

(𝑡𝐿; 𝑡𝑅). We distinguish left-truncated data, in which we determine the time 𝑡𝐿 and the 

time 𝑡𝑅 = ∞. Right truncated data, where 𝑡𝐿 = 0 and determine the time 𝑡𝑅. Or left and 

right truncated data (we determine both time 𝑡𝐿 and time 𝑡𝑅). The person who overcame 

the event outside the time interval is removed from the research. 

We define variable 𝛿𝑖 as a censoring indicator, which takes value 0 if the event 

occurred during observation or 1 if we censor the survival time. 

We discern three types of censoring: right, left and interval censoring. 

Let 𝐶𝑖 as a random non-negative variable representing the censored time for the 

corresponding 𝑖-th observation and 𝑇𝑖  a random variable representing its survival time. 

Then we say that the time 𝑇𝑖  is right-censored if 𝐶𝑖 < 𝑇𝑖 . On the other hand, if 𝐶𝑖 > 𝑇𝑖, 
then the time 𝑇𝑖  expresses the time of occurrence of the event in the 𝑖-th subject. Then 

the survival time of the 𝑖-th subject is defined by the variable 𝑈𝑖 = 𝑚𝑖𝑛⁡(𝑇𝑖 , 𝐶𝑖) and the 

censoring indicator 𝛿𝑖 (𝛿𝑖 = 1 ↔ 𝑈𝑖 = 𝑇𝑖 ∨ 𝛿𝑖 = 0 ↔ 𝑈𝑖 = 𝐶𝑖). 
The reasons for using right censoring are: 

● no event occurred during the observation before the end of the observed 

period, 
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● the observed subject voluntarily withdraws from the research or is excluded 

from it, 

● during the observation other event than the one monitored occurs and the 

subject can no longer be monitored (e.g. death if we examine the 

effectiveness of the treatment) – this reason for censoring is also related to 

competing risks. 

Let 𝐶𝑖 as a random non-negative variable representing the censored time for the 

corresponding 𝑖-th observation and 𝑇𝑖  a random variable representing its survival time. 

Then we say that the time 𝑇𝑖  is left-censored if 𝐶𝑖 > 𝑇𝑖 . On the other hand, if 𝐶𝑖 < 𝑇𝑖, 
then the time 𝑇𝑖  expresses the time of occurrence of the event in the 𝑖-th subject. Then 

the survival time of the 𝑖-th subject is defined by the variable 𝑈𝑖 = 𝑚𝑎𝑥⁡(𝑇𝑖 , 𝐶𝑖) and the 

censoring indicator 𝛿𝑖 (𝛿𝑖 = 1 ↔ 𝑈𝑖 = 𝑇𝑖 ∨ 𝛿𝑖 = 0 ↔ 𝑈𝑖 = 𝐶𝑖). 
Left censoring is used, for example in research where the recruitment of subjects 

takes a longer time, during which subjects are not monitored, and monitoring does not 

begin after the recruitment period has elapsed. 

Let 𝐶𝑖 as a random non-negative variable representing the censored time for the 

corresponding 𝑖-th observation in which the event did not occur and 𝐷𝑖  is a discrete 

random variable representing the time when the investigated event first occurred. Then, 

if we denote 𝑇𝑖  as the interval-censored survival time, 𝑇𝑖  is in the interval 𝐶𝑖 ⁡< ⁡𝑇𝑖 ⁡≤
𝐷𝑖 . An example of interval censoring is the analysis of virus infectivity within 

a population. A person who was negative at time C, tested positive at time D. Thus, the 

actual time of virus infection is in the range of the interval (𝐶, 𝐷]. 
It is important that the censored times 𝐶𝑖 are independent of the survival times 𝑇𝑖 . 

2 Nonparametric methods for estimating the survival function 

Survival analysis is used, among other things, especially in the field of medicine and 

epidemiology, where our point of interest is human life or health. This fact is difficult 

to describe by any given probability distribution. For this reason, there is a need to 

invent methods for calculating the survival probability that does not require any 

assumptions about the distribution of the random variable survival time 𝑇 – 

nonparametric models.  

In this chapter, we will define two methods for calculating nonparametric estimates 

of the survival function. First, we define the empirical survival function and then the 

best-known nonparametric method – the Kaplan-Meier estimate. In addition to the 

mentioned methods, there are other models for calculating the survival probability, such 

as the Nelson-Aalen estimate, the Breslow estimate or the Ephron estimate [7]. 

2.1 Empirical survival function 

We define the basic survival function as the probability that a person of age 𝑥 will live 

to age 𝑥 + 𝑡⁡ (survive another 𝑡 years) [8]: 

 𝑆𝑥(𝑡) = 𝑃(𝑇𝑥 ≥ 𝑡) = 1 − 𝐹𝑥(𝑡) = 1 − 𝑃(𝑇𝑥 < 𝑡) (2) 
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We assume a set of 𝑛 observations, with no observation of survival time censored. 

Then the survival function (equation (2)) can be estimated using the empirical survival 

function �̂�(𝑡). Equivalently, we can estimate the empirical function of the survival 

distribution �̂�(𝑡). 
Based on the equation (2), we express the empirical survival function as a 

complement to the empiric survival distribution function. Thus, as the probability that 

the observed subject will live to time 𝑡 (its survival time will be greater than or equal 

to 𝑡) [1]: 

 �̂�(𝑡) = 1 − �̂�(𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠⁡𝑤𝑖𝑡ℎ⁡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙⁡𝑡𝑖𝑚𝑒⁡𝑇≥𝑡

𝑛
 (3) 

Estimation of the survival function by the empirical function is the simplest estimate, 

but it cannot be used if some data from the analysis are censored. For this reason, we 

do not encounter this estimate in practice. It serves only to simplify the calculations or 

to illustrate the basic knowledge of the issue of survival probability. 

In the empirical survival function, we assume that its value is constant between two 

occurrences of the investigated events. Based on these facts, we say that the survival 

function is a step-by-step non-increasing survival time function 𝑇. 

2.2 Kaplan-Meier estimate 

The Kaplan-Meier estimate is the most widely used nonparametric estimate of the 

survival function. The authors presented this estimate in 1958 in their article 

“Nonparametric Estimation from Incomplete Observations”. As the name implies, this 

method can be applied to a data set, which also contains censored observations. The 

Kaplan-Meier estimate is a limited case of the mortality table method. [5] 

We will create time intervals for the calculation while each interval will include only 

one time of occurrence of the event – death and death will always occur at the beginning 

of the interval. Furthermore, several persons may be subject to the event under 

investigation at the same time, and thus created intervals may not include only one 

death. 

 Suppose the survival times at which death occurred, i.e. 𝑡1, 𝑡2, . . . , 𝑡𝑘. Subsequently, 

we arrange these times from the shortest to the longest, so 𝑡1 < 𝑡2 <⁡. . . < ⁡ 𝑡𝑘. Each of 

these times represents the beginning of a time interval. However, our dataset may also 

include censored survival times 𝑡𝑐1, 𝑡𝑐2, . . . , 𝑡𝑐𝑚. We have two options, either we will 

not consider censored times as the beginning of a new interval and will be part of the 

interval between two deaths, or we will create additional intervals at the beginning of 

which the survival time will be censored. 

Let 𝑡0 as the beginning of the research and 𝑡1 as the time of the first death, then the 

first interval will be in the range [𝑡0; 𝑡1). The next interval will be from the first time of 

the death to the second, i.e. [𝑡1; 𝑡2), etc. Suppose that just before a certain time 𝑡𝑗 are 

alive 𝑛𝑗 persons, where 𝑗⁡ = ⁡1,2, . . . 𝑘. We further define 𝑑𝑗 as the number of deaths at 

the time 𝑡𝑗. Then the probability of death in the short time interval [𝑡𝑗−𝛿; 𝑡𝑗], where 𝛿 
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represents a short time unit, can be estimated as 𝑑𝑗/𝑛𝑗. And the corresponding 

probability of survival at time 𝑡𝑗: 

 𝑝�̂� = 1 −
𝑑𝑗

𝑛𝑗
=

𝑛𝑗−𝑑𝑗

𝑛𝑗
 (4) 

where 

 𝑛𝑗 = 𝑛𝑗−1 − 𝑑𝑗−1 − 𝑐𝑗−1 (5) 

𝑐𝑗 – number of censored observations. 

The Kaplan-Meier estimate of the survival function is based on the product of the 

conditioned probabilities that a person will survive time 𝑡𝑗 (𝑡𝑗 ≤ 𝑡) provided that he has 

lived to that time [6]: 

 �̂�(𝑡) = ∏
𝑛𝑗−𝑑𝑗

𝑛𝑗
𝑗:𝑡𝑗≤𝑡

 (6) 

In the next chapter of the article, we apply theoretical knowledge to real data 

concerning the lapse of insurance contracts in an unnamed universal insurance 

company. In practice, we distinguish between two types of lapses, lapse without 

payment of redemption value and with payment of redemption value (full encashment). 

For the purposes of this article, we will not distinguish between these two types, but we 

will present overall lapses of life insurance contracts. It should be noted that the lapse 

analysis is not only applicable to insurance but also in the bank sector – the time during 

which the client remains in the institution. 

3 Lapse analysis using Kaplan-Meier estimator 

For lapse analysis, we use Kaplan-Meier nonparametric estimator described in chapter 

below. Our dataset consists of 2 451 life insurance policies, where the main insured risk 

is death. These policies were sold between 2000 – 2015. We observed 2 345 lapses and 

the remaining observations were right-censored. Our analysis was performed in R 

programming language with package “survival” [10]. 

Firstly, we split survival times into intervals with the same survival time for one or 

more observations. Then, we estimated survival probabilities with the Kaplan-Meier 

method. Table 1 shows survival probability for each year of policy duration. We also 

add 95% confidential intervals for survival probabilities. We focus on the first 10 years 

of policy durations. 

Table 1. Kaplan-Meier estimator of survival probability 

Year 
Number of 

policies at risk 

Number 

of lapses 

Survival 

probability 

Lower 95% 

CI 

Upper 95% 

CI 

1 1230 1221 50,18% 0,4824 0,522 
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2 789 441 32,19% 0,3039 0,3409 

3 670 119 27,34% 0,2563 0,2916 

4 570 130 22,03% 0,2045 0,2374 

5 368 172 15,01% 0,1366 0,165 

6 303 65 12,36% 0,1113 0,1374 

7 264 39 10,77% 0,0961 0,1207 

8 238 33 9,87% 0,0876 0,1113 

9 190 15 8,75% 0,077 0,0995 

10 135 36 5,18% 0,0434 0,062 

Source: own processing 

There is a significant probability (49,82 %) that the policy of this death insurance 

will lapse in the first year of its duration. This could be caused by the benefit of this 

insurance product – policyholders may lapse their policy in the first year without giving 

a reason. After 10 years, there are only 5,18 % of living policies. 

On figure 1, we can see that the median survival time is 365 days (intersect of purple 

and pink lines). The survival function is a step function with step size 
𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑙𝑎𝑝𝑠𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠⁡𝑖𝑛⁡𝑟𝑖𝑠𝑘
 at a given time 𝑡, when a lapse occurs. At the beginning (𝑡 = 0) 

probability of survival is equal to 1 (100 %), then survival probability decreases over 

time and at the end of the research survival probability is zero. The survival function is 

rapidly decreasing in the first year and after that the decrease is more linear. Dashed 

line on the figure represents confidential intervals (same as in table 1). We can also see 

some ticks on the survival function curve, this is caused by the censoring of 

observations. 

 
Fig. 2. Kaplan-Meier survival function. Source: own processing 
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The distribution function of time to lapse describes the cumulative probability of 

lapse for a policy. It is a complementary to the survival function (see formula 2). Since 

survival function is decreasing, the distribution function is increasing (figure 2). 

 
Fig. 2. Cumulative distribution function of time to lapse. Source: own processing 

The lapse ratio (yearly lapse ratio) used in cash-flow analysis of an insurance 

company to calculate technical reserve is illustrated in table 2 for each year of policy 

duration. It means that every year number of policies decreases by lapse ratio. Reserve 

is recalculated every year with a corresponding number of policies.  

Table 2. Yearly lapse ratio 

Year Distribution function Lapse ratio Number of policies 

0   100 000 

1 49,82% 49,82% 50 180 

2 67,81% 17,99% 32 190 

3 72,66% 4,85% 27 340 

4 77,97% 5,31% 22 030 

5 84,99% 7,02% 15 010 

6 87,64% 2,65% 12 360 

7 89,23% 1,59% 10 770 

8 90,13% 0,90% 9 870 

9 91,25% 1,12% 8 750 

10 94,82% 3,57% 5 180 

Source: own processing 
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Suppose that our new portfolio of same death insurance coverage has at the 

beginning 100 000 policies and no other insurance policies are sold (hypothetical 

portfolio), in the table 2 we can see decreasing evolution of number of policies for each 

year (with assumption that no policies are mature, and no insured persons die in a period 

of 10 years). 

Lapse analysis is very important because insurance company does not have to hold 

the reserve for all policies at time 𝑡 = 0, but only for an appropriate number of policies. 

It is also important for calculation of SCR described in chapter 1.  

In the next steps of our analysis, we focused on the influence of sex on insurance 

lapses. We can see in table 3 (columns 2 and 4) that men are more likely to lapse their 

death insurance policies than women (lower survival probability). The main difference 

is in years 2 – 10.  

The cumulative hazard function represents the overall risk of event occurrence from 

the beginning to the given time 𝑡. [1] The hazard function could be in some cases greater 

than 1, this depends on the selected time unit. [6] A higher hazard function means a 

lower probability of survival. 

Cumulative hazard function is calculated as [1]: 

 𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
 (7) 

where ℎ(𝑢) represents hazard function or as: 

 𝐻(𝑡) = −log⁡(𝑆(𝑡)) (8) 

Table 3. Kaplan-Meier estimator of survival probability for each sex 

Year 
Men - Survival 

probability 

Men - 

cumulative 

hazard 

Women - Survival 

probability 

Women - 

cumulative 

hazard 

1 50,00% 0,6183 50,45% 0,6201 

2 31,77% 1,0446 32,80% 1,0224 

3 26,13% 1,2383 29,09% 1,142 

4 21,11% 1,4478 23,37% 1,3574 

5 13,34% 1,856 17,45% 1,6318 

6 10,52% 2,0851 15,05% 1,7777 

7 8,94% 2,2464 13,44% 1,8894 

8 8,04% 2,3514 11,42% 2,0493 

9 7,53% 2,4164 10,52% 2,1304 

10 5,60% 2,6808 8,95% 2,2855 

Source: own processing 
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On the top of Figure 3 we can see the survival function for men (green curve) and 

survival function for women (pink curve). On the bottom, we can see the number of 

policies at risk for each sex. Survival functions for each sex are almost the same in the 

first year but slightly different from the beginning of the second year to the end of the 

research (see also table 2).  

 

 
Fig. 3. Kaplan-Meier survival function for each sex. Source: own processing 

For comparison of two or more Kaplan-Meier survival functions we used Log-rank 

test statistics which was compared with Chi-square test with one degree of freedom 

(number of compered survival functions – 1) [7]:  

 𝐿𝑜𝑔 − 𝑟𝑎𝑛𝑘⁡𝑡𝑒𝑠𝑡⁡𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
(𝑂𝑀−𝐸𝑀)2

𝐸𝑀
+

(𝑂𝑊−𝐸𝑊)2

𝐸𝑊
 (9) 

where 𝑂𝑀/𝑊 means observed survival time and 𝐸𝑀/𝑊 means expected survival time. 

We defined two statistical hypotheses: 

 𝐻0:⁡𝑆𝑀(𝑡) = 𝑆𝑊(𝑡) (10) 

 𝐻1:⁡𝑆𝑀(𝑡) ≠ 𝑆𝑊(𝑡) (11) 

Based on test statistics and p – value, we reject zero hypothesis, so the survival 

function for men is significantly different from the survival function for women. 
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Conclusion 

Kaplan-Meier estimator is a useful statistical method to analyze survival times not only 

in medical research but also in the finance sector, especially in actuarial science. 

Kaplan-Meier method allows to work with censored observations and use the 

information about censored times. This is an advantage in contrast with other 

nonparametric methods. Since this model has easily interpretable results, this method 

can be simply explained to the public who does not have such knowledge in actuarial 

science.  

In this article, we illustrate the use of survival analysis in the life insurance industry 

specifically in lapse analysis. We modeled the lifetime of insurance policies using the 

Kaplan-Meier estimator on a real dataset of death insurance policy from a universal 

insurance company. The main finding in model output is that 50 % of policies lapsed 

during the first year caused by policy benefit, which is the possibility of terminating the 

contract in the first year of insurance coverage without any reason. In our research, we 

found out that sex has a significant impact on policy lapses after the first year of 

insurance policy duration (men have a higher lapse ratio than women). This analysis 

could be extended by other survival analysis methods e.g., Cox semi-parametric 

regression model. 
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