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Abstract 
 
 We present a dynamic model for optimal investment decisions in privately 
managed defined contribution (DC) pension plans. Stock prices are assumed to 
be driven by the geometric Brownian motion. Interest rates are modelled by 
means of the Cox-Ingersoll-Ross model (CIR). The model determines an optimal 
fraction of pensioner’s savings (in time) to be invested in an equity fund, with the 
rest invested in a bond fund. Next, we present sensitivity analysis with respect to 
various relevant parameters. We also perform stress-testing of optimal invest-
ment decisions under different equity return scenarios. The entire analysis is 
carried out on the actual Slovak DC scheme and all model parameters are cali-
brated by the latest available data. 
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1.  Introduction 
 
 In recent decades numerous OECD countries introduced privately managed 
defined contribution (DC) pension plans into their pension systems to comple-
ment or replace already existing public schemes. This structural change was 
driven primarily by the issue of aging population (especially in Europe) and thus 
challenging sustainability of the public pension plans. Many of these public 
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plans work as pay-as-you-go (PAYG) systems, i.e. pensions of current pension-
ers are funded by contributions of currently active workers. On the other hand, 
privately managed DC schemes work on a basis of regular contributions of indi-
vidual workers to their own pension accounts. The wealth accumulated via these 
contributions is continually managed by pension funds, which invest in the fi-
nancial assets such as equities, bonds or cash. PAYG systems are favorable when 
compared to the private ones, in case that productivity growth of population 
exceeds return on pension fund’s investments. 
 Issues of aging population and slowing productivity growth have recently 
become even more imminent in developed countries, particularly in Europe. This 
should, according to the presented logic, favor DC schemes. Some countries 
such as Slovakia, Poland or Hungary have, however, actually cut contribution 
rates in DC schemes or in some way disadvantaged the DC plans as a response 
to the crisis of 2008. And even those DC systems, which operate uninterrupted, 
invest rather conservatively, holding majority of their assets in instruments 
with relatively low return potential such as bonds or short-term notes (see Salou 
et al., 2012). The same applies to individuals, who predominantly prefer con-
servative investments as well. One of the aims of this paper is to emphasize the 
important role of equities in pension investment portfolios by means of a quanti-
tative model. 
 The main goal of this paper is to analyze the level of pensions from the se-
cond pillar of the Slovak pension system according to the last legislative changes. 
We use the dynamic stochastic accumulation model introduced firstly in Kilianová, 
Melicherčík and Ševčovič (2006) and later generalized in Melicherčík and 
Ševčovič (2010). The model determines the optimal fraction of savings to be 
invested in the equity fund (with the rest in the bond fund), given specific time 
to retirement, level of accumulated wealth and actual short-term interest rate. 
Authors Melicherčík and Ševčovič (2010) assumed existence of 2 funds – the 
bond fund, represented by 1-year zero coupon bonds and the equity fund whose 
risk-return characteristics corresponded to the US stock index S&P 500 during 
1996 – 2002. The stock returns were assumed to be driven by the geometric Brow-
nian motion and bond returns were modelled by means of the Cox-Ingersoll-       
-Ross (CIR) model. 
 We generalize the model from Melicherčík and Ševčovič (2010) to account 
for any duration of the bond fund. Next, we conduct a sensitivity analysis of the 
model outcomes to all relevant parameters. Most importantly, we perform stress- 
-testing with respect to the most sensitive as well as the most unpredictable pa-
rameter-equity returns. To achieve this we utilize real historical stock index sce-
narios as well as artificially created ones. We present our results on the current 
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Slovak DC scheme and calibrate all of our models by latest available data. The 
achieved levels of savings are recalculated to the replacement rates using non-    
-indexed annuities. 
 The paper is organized as follows: Section 2 contains the formulation of the 
dynamic model for pension savings management. In Section 3 we present results 
using the basic settings of the model and conduct the sensitivity analysis. Stress- 
-testing is presented in Section 4. Section 5 contains recalculations of the results 
to the replacement rates. Conclusions can be found in the last section.  
 
 
2.  Model 
 
 Suppose that a future pensioner deposits once a year a τ t -part of his/her year-

ly salary tw  to a pension fund with a δ -part of assets in stocks and a (1 )δ− -part 

of assets in bonds where [0,  1]δ ∈ . Denote by ts , 1,  2, ,  t T= … , the accumulat-

ed sum at time t where T is the expected retirement time. Then the budget-
constraint equations read as follows:  
 

 1 1 1 exp( ( ,  1)) (1 ) exp( ( ,  1))δ δ τ+ + += + + − + +s b
t t t t ts s R t t s R t t w         (1) 

 
for 1,  2, ,  1t T= −… , where 1 1 1τ=s w . ( ,  1)+sR t t  and ( ,  1)+bR t t  are the annual 
returns on stocks and bonds in the time interval [ ,  1)+t t  respectively. When 

retiring, a pensioner will strive to maintain his/her living standards in the level of 
the last salary. From this point of view, the saved sum Ts  at the time of retire-

ment T is not precisely what a future pensioner cares about. For a given 
life expectancy, the ratio of the cumulative sum Ts  and the yearly salary Tw , 

i.e. /=T T Td s w  is of a practical importance to a pensioner. This quantity could 

be easily recalculated to the replacement ratio (pension payment/salary – 
see Section 5), which is the most important value for pensioners. Using the 
quantity /=t t td s w  one can reformulate the budget-constraint equation (1) as 

follows:  
 

1 1

exp( ( ,  1)) (1 )exp( ( ,  1))

1

δ δ τ
β+ +

+ + − += +
+

s b

t t t
t

R t t R t t
d d  

 
for 1,  2, ,  1t T= −… , where 1 1τ=d  and βt  denotes the yearly wage growth: 

1 (1 )β+ = +t t tw w .  
 
 The term structure development is driven by the CIR model presented in Cox, 
Ingersoll and Ross (1985):  
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 d ( )d dκ θ σ= − + b
t t t tr r t r Z  (2) 

 
where  
 ,  ,  0bκ θ σ >  

 θ   – the long term interest rate,  
 κ   – the rate of reversion, 
 σ b   – the volatility of the process, 
 tZ   – the Wiener process.  
 
 Suppose that the bond part of the portfolio has duration bT . The correspond-

ing return can be modelled using zero coupon bonds. Denote by ( ,  )bP t T  the 

price (at time t) of zero coupon bond with face value 1 and time to maturity bT . 

Then ( ,  1) log ( 1,  1) log ( ,  ).+ = + − −b
b bR t t P t T P t T   

 In CIR model (see Cox, Ingersoll and Ross, 1985) the term structure of zero 
coupon bonds can be expressed by explicit formula:  
 

( )( ,  ) ( ,  ,  ) ( ) −= = b tB T r
b t b bP t T P r t T A T e  

 
where 

2

2
( )

2

2 2

2
( )

( )( 1) 2

2( 1)
( )

( )( 1) 2

( ) 2

κθ
κ λ γ σ

γ

γ

γ

γ
κ λ γ γ

κ λ γ γ

γ κ λ σ

+ + 
 =  + + − + 
 

−=
+ + − +

= + +

b

b

b

b

T

b T

T

b T

e
A T

e

e
B T

e

 

 
 The parameter λ ∈ R  stands for the so called market price of risk. Using 
a discretization of the short rate process (2) we have (see e.g. Yu and Phillips, 
2001 or Bergstrom, 1984)  
 

 2
1 ( ,  ) ( ) (1 )

2
κ κθ θ σ

κ
− −

+

 
= Φ = + − + − Φ  

 

b t
t t t

r
r g r e r e  (3) 

 
where Φ  ~ N(0,1). 
 
 We shall assume the stock prices tS  are driven by geometric Brownian mo-

tion. The annual stock return 1( ,  1) log( / )++ =s
t tR t t S S  can be therefore ex-

pressed as: ( ,  1)µ σ+ = + Ψs s sR t t , where µ s  and σ s  are the mean value and 

volatility of annual stock returns in the time interval [ ,  1)+t t , Φ  ~ N(0,1) is 
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a normally distributed random variable. The random vector ( ,  )Φ Ψ  is assumed 
to have 2-dimensional normal distribution with correlation ( ) ( 1,  1)ρ = ΦΨ ∈ −E .  

 Suppose that each year the saver has the possibility to choose a level of 
stocks included in the portfolio ( )δ t tI , where tI  denotes the information set 

consisting of the history of bond and stock returns ( ',  ' 1)+bR t t , ( ',  ' 1)+sR t t , 

and wage growths 'βt , ' 1,  2, ,  1t t= −… . We suppose that the forecasts of 

the wage growthsβt , 1,  2, ,  1t T= −…  are deterministic,2 the stock returns 

( ,  1)+sR t t  are assumed to be random, independent for different times 

1,  2, ,  1t T= −…  and the interest rates are driven by the Markov process (2). 
Then the only relevant information are the quantities td  and the short rate tr . 

Hence ( ) ( ,  )δ δ≡t t t t tI d r . One can formulate a problem of dynamic stochastic 

programming:  
 

 max E( ( ))
δ TU d                                                 (4) 

 
subject to the following recurrent budget constraints:  
 

 1 ( ,  ,  ( ,  ),  ,  )t t t t t t td F d r d rδ+ = Φ Ψ               (5) 
 
where 1,  2, ,  1t T= −… , 1 1τ=d ,  
 

( )  log( ( ))  ( , ) ( 1)  log( ( 1))

1

(1 )
( ,  ,  ,  ,  )

1

s s
t t b b b by rB T A T g r x B T A T

t t
t

e e
F d r x y d

µ σδ δδ τ
β

+ − − − + −

+
+ −= +

+
(6) 

 
and the short rate process is driven by (2) and (3) with 1 = initr r . We assume 

the stock part of the portfolio is bounded by a given upper barrier function 
: 0  ( ,  )  t t t t td rδ∆ ≤ ≤ ∆ . The function :{1, ,  1} [0,  1]t T∆ −… ֏  is subject to 

governmental regulations. In our modeling we shall use the constant relative risk 
aversion (CRRA) utility function 1( ) −= − aU d d , 0>d  where 1>a  is the con-

stant coefficient of relative risk aversion. The reason of using CRRA function is 
to have the results scale invariant (it is meaningful to have same optimal portfo-
lio when optimizing the level of savings in monthly or yearly salaries). The 
model is generalization of the one presented in Melicherčík and Ševčovič (2012), 
where the bond part of the portfolio was represented by zero coupon bonds with 
time to maturity 1=bT . For the sake of brevity, we do not discuss a numerical 

procedure for solving the problem (4) – (6) and refer a reader to Melicherčík and 
Ševčovič (2010).  

                                                 
 2 The wage growth is in reality random since it depends on the random inflation and other 
random factors. This assumption is a simplification accepted in the study. 
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3.  Baseline Scenario 
 
3.1.  The Slovak Pension System 
 
 Pensions in Slovakia are operated by a three-pillar system:  

1. the public, compulsory, non-funded first pillar (PAYG),  
2. the private, fully funded second pillar,  
3. the private, voluntary, fully funded third pillar.  

 The contribution rate is currently set at 18% for the first pillar (in case a pen-
sioner decides to stay only in the public scheme) or 14% for the first pillar and 
4% for the second pillar (in case a pensioner decides to save in both pillars).3 In 
addition to the mandatory rates, pensioners may decide to contribute any addi-
tional amount to the second pillar or establish a savings account in the third pil-
lar. The focus of this paper is solely on the private, fully funded second pillar. 
The savings in this pillar are managed by pension asset managers. Each asset 
manager operating in the second pillar is obliged to manage two funds – a Guaran-
teed Bond Fund4 and a Non-guaranteed Equity fund plus any number of addi-
tional funds. Savers have a possibility of holding all assets in any fund of their 
choice (one fund only at the same time instant) or to split the assets into two 
funds (one of which has to be a Guaranteed fund) by any ratio they choose. This 
ratio can be changed in time and is subject to the governmental regulations dur-
ing the last years of a savings process.  
 When approaching retirement, the fraction of savings in a Guaranteed fund 
has to be gradually increased (see Table 2) and is required to reach 100% 3 years 
ahead of retirement.  
 
3.2.  Parameters and Data 
 
 Parameters of the CIR model were estimated from EURIBOR data5 using 
maximum likelihood method published in Kilianová, Melicherčík and Ševčovič 
(2006). Parameter λ (market price of risk) was taken from Melicherčík and 
Ševčovič (2010); see Table 3 for specific values. It is worth to note that estimat-
ed parameters are close to ones used in Melicherčík and Ševčovič (2010), that 
were taken from Ševčovič and Urbánová Csajková (2005).  

                                                 
 3 The contribution rate to the private pillar has been recently cut from 9% to 4% with future 
planned increase to 6%. The development of the contribution rate according to the latest legislative 
changes is presented in Table 1. 

 4 Guaranteed fund is obliged to deliver a non-negative performance, net of costs, during any 
rolling 10-year period.   
 5 Daily data from period 1999 – 2012; source: <http://www.euribor-info.com/en/eonia>. 
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Table  1  

Forecast of Interannual Gross Wage  The Estimated Amount of Contributions 
Growth in Slovakia  as a Percentage of a Gross Wage 

Year Contributions (in %)  Year Wage growth (in %) 

2013 – 2016 4.00  2013 4.37 
2017 4.25  2014 4.75 
2018 4.50  2015 5.20 
2019 4.75  2016 – 2020 6.40 
2020 5.00  2021 – 2025 5.90 
2021 5.25  2026 – 2030 5.60 
2022 5.50  2031 – 2035 5.20 
2023 5.75  2036 – 2040 4.90 
2024 – 2051 6.00  2041 – 2051 4.50 

Source: Law on Pension Savings, No. 43 (as of June 1, 2014) (left); Kvetan et al. (2007) (right).  
 
T a b l e  2  

Legislative Restrictions on the Proportion of Savings in Equity Funds 

Age of saver Year of saving Maximum % of stocks ∆t 

  <= 49   1. – 28. 100 1 
50 – 58 29. – 37. 10 x (59 – age) 0.1 x (59 – age) 
  >= 59 38. – 40. 0 0 

Source: Law on Pension Savings, No. 43 (as of June 1, 2014).  
 

 An important role plays the choice of the risk aversion coefficient a. There is 
a consensus today that the value should be between 2 and 10 (see e.g. Mehra and 
Prescott, 1985). In our opinion, the pension investment should be conservative. 
Therefore, we have used the coefficient of the relative risk aversion a = 9 (same 
as Melicherčík and Ševčovič, 2010). Our results have shown that, even with this 
conservative setting, the optimal investment is to invest 100% in stocks in the 
first 10 years of saving (see Figure 3). We have, however calculated the results 
also for a less conservative setting a = 5 (see Table 4). Nominal wage growth in 
Slovakia (Table 1) over the next 40 years was obtained from the most recent 
available forecasts. Specific values for years 2013 – 2015 are the average fore-
casts of the National Bank of Slovakia, Institute of Financial Policy and Sloven-
ská sporiteľňa. Data for years 2016 – 2051 are from the Slovak Academy of 
Sciences publication (Kvetan et al., 2007). Legislative restrictions on the propor-
tion of savings in equity funds can be found in Table 2.  
 Although it is not the aim of this work to estimate future returns of the stock 
markets, it is important to consider the model parameters that are not too far 
from reality. The basic value of the drift µ s  was estimated from historical annu-

alized monthly returns of the U.S. stock market index S&P 500, including rein-
vested dividends (total return).6  
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6 Figure 1 shows that the annual return of the index at different 40-year periods 
ranged from 5% to 12% p.a. In our calculations we have used value 8.44%µ =s  

p.a. (estimate from the whole period 1871 – 2012).  
 
F i g u r e  1  

Annual Returns of the Stock Index S&P 500 

 
Left axis: Historical development of the stock index S&P 500 with reinvested dividends. Logarithmic scale, 
S0 = 1. Right axis: Rolling (by month) annual return of the index calculated retrospectively from the period 
of 40 years and the annual return of the index during the entire displayed period. 

Source: S&P 500, daily data, <http://finance.yahoo.com>. 
 

 The value σ s  (volatility of the stock part of the portfolio) was estimated from 
the same data. During 40-year periods, its value was stable. It was affected by 
the Great Depression (in the periods out of 1929 – 1930 the value about 12% p.a. 
and in the periods involving crisis the value about 19% p.a.). During the 10-year 
periods (out of the crisis) the value varied in the range from 10% to 14% p.a. In 
the crisis it has reached up to 31% p.a. We will use the estimate of the standard 
deviation from the whole period, 14.17%σ =s  p.a.  
 The correlation of the stock and bond parts of the portfolio was estimated 
using historical data.7 Daily development of the correlation coefficient during 
1962 – 2012 is in Figure 2. 

                                                 
 6 Monthly data; source: <http://www.econ.yale.edu/~shiller/data.htm>.  
 7 The correlation coefficient can not be simply calculated as a correlation of stock and bond 
returns. The random variable Φ  should be expressed from (8). Subsequently, the correlation with 
the random variable Ψ  corresponding to the stock returns can be calculated. 
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F i g u r e  2 

Correlation of Stock and Bond Returns 

 
Left axis: Historical development of the stock index S&P 500 with reinvested dividends. Logarithmic scale, 
S0 = 1. Right axis: Rolling (by day) correlation coefficient of random variables Φ and Ψ calculated retrospec-
tively from the period of 40 years (resp. 10 years) and the value of the correlation coefficient estimated from 
the whole period. 

Source: S&P 500, daily data, <http://finance.yahoo.com>; US short rate (Effective Federal Funds Rate), 
<http://research.stlouised.org/fred2/>. 

 
 One can observe values approximately between –0.18 and 0.08. In our calcu-
lations we use the estimate from the whole period, 0.01082ρ = − .8 This model 

however has some drawbacks. We have not considered historical inflation, 
which is one of the key parameters influencing the bond returns. Values of all 
parameters of equity and bond funds used in the baseline scenario can be found 
in Table 3.  
 
T a b l e  3  

Parameters of Equity and Bond Funds 

κ 0.8993  Tb   3 

θ 0.0226  µt
s   8.44% 

σb 0.148  σt
s   0.1417 

λ 0  ρ –0.01082 

 
Source: Our estimates. 

 

                                                 
 8 S&P 500, daily data; source: <http://finance.yahoo.com/>. US short rate (Effective Federal 
Funds Rate); source: <http://research.stlouised.org/fred2/>. 
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3.3.  Results for the Baseline Scenario 
 
 The output of the model is the functionˆ( ,  )δ t td r . This function tells us what 

the optimal proportion of savings invested in equity funds is, provided that we 
are in the t-th year of saving, the current short rate is tr  and we have already 

saved td  yearly salaries. The development of the average level of savings and 

average proportion of the stock investment with standard deviations for 100 000 
Monte Carlo simulations can be found in Figure 3. Using the basic model 
parameters, the average terminal level of savings is relatively low (around 2.5 
times of the yearly salary, see also Table 4). This is mainly due to low contribu-
tions and relatively high wage growth. The right graph shows that, at the begin-
ning of saving, the model recommends to invest all savings in the stock fund. 
The reason is simple. Possible negative return of the stock fund has a small im-
pact on future pension, since essential part of the contributions is expected in the 
future. Later on, return of the stock fund has higher impact on the final level of 
savings (the ratio of future contributions to the level of savings is lower). There-
fore, the decreasing tendency of stock investments is natural. The linear decrease 
in the last years is due to governmental regulations. The governmental regula-
tions supplemented with high wage growth are the reasons of stagnant level of 
savings in the last years before retirement. 
 
F i g u r e  3 

The Development of the Average level  Average Proportion of the Stock 
of Savings Investment with Standard Deviations  

 
Source: Our calculations. 

 
3.4.  Sensitivity Analysis 
 
 It is difficult to forecast the model parameters exactly. Therefore, we have 
performed simulations for the following modifications of the baseline scenario:  
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(M0) Baseline scenario.  
(M1) Contributions 4%τ =t  during the entire saving period.  

(M2) Contributions 9%τ =t  during the entire saving period.  

(M3) No governmental regulations for the stock fund, i.e. 1∆ =t during the 

entire saving period.  
(M4) Lower aversion to risk a = 5.  
(M5) Higher duration of the bond fund 5=bT .  

(M6) Lower wage growth: 4 39 4 39 1%β β− −= −ɶ .  

(M7) Lower drift of the stock returns: 5%µ =s
t .  

(M8) Linear growth of the drift of the stock returns: 2% 0.25( 1)%µ = + −s
t t   

(M9) Higher volatility of the stock returns: 20%σ =s
t .  

(M10) Forbidden mixing of stock and bond funds, i.e. {0,  1}δ ∈t .  
 
 Expected values of the final level of savings E( )Td , standard deviations 

( )σ Td , catastrophic scenarios represented by 5% quantiles 5%( )TQ d  and certain-

ty equivalents (CE) defined as 1[E( ( ))]−
TU U d  (i.e. a certain value having the 

same utility as the random result of the strategy) can be found in Table 4. One 
can observe that final level of savings is most of all sensitive to the contribution 
rate9 and the drift of the stock returns.  
 
T a b l e  4   

Sensitivity Analysis – Comparison with the Baseline Scenario  

Modification E( )Td  ( )σ Td  5%( )TQ d  CE 

(M0)  2.4947 0.6441 1.6226 1.9304 
(M1)  1.7922 0.4747 1.1454 1.3591 
(M2)  4.0357 1.0757 2.5808 3.0676 
(M3)  2.8063 0.8028 1.7302 2.0361 
(M4)  2.9284 1.1535 1.5875 2.2103 
(M5)  2.4984 0.6487 1.6195 1.9266 
(M6)  2.9597 0.7774 1.8997 2.2569 
(M7)  1.6873 0.2326 1.3415 1.5550 
(M8)  2.2122 0.5093 1.5049 1.7900 
(M9)  2.1803 0.4912 1.4893 1.7719 
(M10)  2.0326 0.4924 1.4054 1.6857 

 
Columns contain the mean expected value, the standard deviation, the 5% quantile and the certainty equivalent 
of the final level of savings respectively. 

Source: Our calculations. 

                                                 
 9 It is worth to note that the model does not consider the part of the pension received from the 
first pillar. The pension from the first pillar decreases when increasing contributions to the second 
pillar (assuming the same total amount of pension contributions). The conclusion applies only to 
the level of savings from the second pillar. 
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4.  Stress-testing 
 
4.1. Scenarios and Strategies 
 
 The estimates of model parameters associated with asset returns (especially 
drifts of the stock returns) are usually unreliable. Therefore, we have tested se-
lected strategies against a set of different models for the equity fund returns. The 
model for the bond fund was the same as the one used in the previous section.  

 We have considered the following drift scenarios µ s
t :  

(SC1) 11%µ =s
t  during the entire saving period.  

(SC2) 9%µ =s
t  during the entire saving period.  

(SC3) 7%µ =s
t  during the entire saving period.  

(SC4) 5%µ =s
t  during the entire saving period.  

(SC5) Linear growth of the drift from 2% to 11.5%:  
2% 0.25( 1)%µ = + −s

t t .  

(SC6) S&P 500 (1900 – 1939): growth scenario with depression at the end..10 
(SC7) S&P 500 (1915 – 1954): scenario of stagnation, boom, recession and 

recovery.  
(SC8) S&P 500 (1950 – 1989): long-term healthy growth scenario.  
(SC9) S&P 500 (1929 – 1968): scenario of recession, recovery and growth.  
(SC10) S&P 500 (1880 – 1919): scenario of stagnation and modest growth.  
(SC11) Nikkei 225 (1991 – 2012, 1949 – 1967): scenario with long-term re-
cession and recovery.11  

 
 Scenarios (SC6) – (SC11) based on historical returns of the stock indices are 
summarized in Figure 4. We have tested 15 strategies (ST1) – (ST15) against the 
set of 11 scenarios (SC1) – (SC11). Strategies (ST1) – (ST11) are the optimal 
ones according to our dynamic model. (ST12) and (ST13) invest all the savings 
to bond and equity funds respectively. Strategy (ST14) begins with the invest-
ment in the equity fund and each year linearly moves the savings into the bond 
fund.  
 The last one follows a popular rule: ,,invest (100-age)% to stocks”. Complete 
list of strategies can be found in Table 5.  
 

                                                 
 10 Historical annual returns of U.S. stock index S&P 500 with reinvested dividends (total re-
turn). Source: <http://www.econ.yale.edu/~shiller/data.htm>.   
 11 The scenario is created artificially by combining 22-year period of the recent Japanese stock 
market decline completed with its previous period of growth. Historical annual returns of the Japa-
nese stock index NIKKEI225. Source: <http://indexes.nikkei.co.jp/en/nkave/archives/data>. 
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F i g u r e  4  

Scenarios (SC6) – (SC11) Used in Stress-testing. Monthly Data 

 
Source: S&P 500, daily data: <http://finance.yahoo.com/>. Historical annual returns of the Japanese stock 
index NIKKEI225: <http://indexes.nikkei.co.jp/en/nkave/archives/data>. 

 
T a b l e  5 

Investment Strategies for Stress-testing 

Strategy  Description 

(ST1)-(ST11)  Optimal δ̂  for corresponding scenario 
(ST12)  0δ =  

(ST13)  min{ ,  1}δ = ∆t t  

(ST14)  max{0,  1 ( 1) / 36}δ = − −t t  

(ST15)  min{ ,  1 ( 22) /100}δ = ∆ − +t t t  

Source: Our calculations. 

 
4.2.  Stress-testing: The Outcome 
 
 For each pair (strategy i, scenario j) 100 000 Monte Carlo simulations have 
been performed supposing that strategy i is applied and scenario j takes place. 
Using the simulations, values of three different indicators have been calculated. 
We have used the following indicators: certainty equivalent CE (see Section 4 
for the definition), mean value of the final level of savings E( )Td  and 5%( )TQ d  

(5% quantile of the final level of savings). Results are presented in Tables 6 – 8. 
Concerning the certainty equivalent indicator, strategies (ST6) – (ST11) achieve 
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high values in the case when the corresponding scenarios (SC6) – (SC11) take 
place. On the other hand, they are not as flexible as the other strategies in the 
case a different scenario occurs. The mean value indicator prefers the most risky 
investment strategies. Exceptions are strategies (ST6) – (ST11) but again only in 
the case of occurrence of the corresponding scenarios.  
 
T a b l e  6  

Certainty Equivalents CE Using Various Strategies and Scenarios 

 (SC1) (SC2) (SC3) (SC4) (SC5) (SC6) (SC7) (SC8) (SC9) (SC10) (SC11) 

(ST1) 2.40 2.00 1.71 1.48 1.76 1.87 1.81 1.94 2.85 1.72 2.64 
(ST2) 2.37 2.01 1.73 1.50 1.78 1.83 1.87 2.01 2.72 1.77 2.58 
(ST3) 2.28 1.99 1.74 1.54 1.77 1.82 1.94 2.05 2.48 1.77 2.30 
(ST4) 2.05 1.87 1.70 1.56 1.70 1.76 1.90 1.95 2.13 1.70 1.92 
(ST5) 2.29 1.99 1.73 1.52 1.79 1.80 1.97 2.02 2.62 1.76 2.58 
(ST6) 1.91 1.72 1.57 1.44 1.60 3.78 1.33 1.61 2.03 1.74 1.86 
(ST7) 1.90 1.73 1.57 1.45 1.61 1.73 4.67 1.68 1.92 1.43 2.49 
(ST8) 2.04 1.81 1.62 1.46 1.66 1.83 1.85 3.11 2.51 2.00 1.72 
(ST9) 2.01 1.79 1.61 1.46 1.67 1.45 1.45 1.83 4.39 1.41 3.11 
(ST10) 1.89 1.72 1.57 1.45 1.60 1.88 1.81 1.93 2.09 2.69 1.38 
(ST11) 1.82 1.66 1.53 1.42 1.59 1.45 1.70 1.63 2.26 1.25 6.98 
(ST12) 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 
(ST13) 2.38 1.99 1.69 1.46 1.76 1.90 1.76 1.91 2.89 1.68 2.58 
(ST14) 1.95 1.78 1.64 1.53 1.63 1.73 1.77 1.82 2.05 1.67 1.87 
(ST15) 2.16 1.90 1.70 1.53 1.76 1.73 1.88 1.96 2.44 1.68 2.40 

Source: Our calculations. 

 
T a b l e  7  
Mean Values E( )Td  Using Various Strategies and Scenarios 

 (SC1) (SC2) (SC3) (SC4) (SC5) (SC6) (SC7) (SC8) (SC9) (SC10) (SC11) 

(ST1) 3.69 2.94 2.38 1.96 2.44 2.58 2.64 2.95 4.33 2.44   3.85 
(ST2) 3.26 2.70 2.25 1.90 2.29 2.38 2.56 2.79 3.68 2.30   3.37 
(ST3) 2.76 2.39 2.07 1.81 2.09 2.20 2.41 2.52 3.00 2.09   2.74 
(ST4) 2.24 2.04 1.85 1.69 1.84 1.96 2.13 2.16 2.34 1.85   2.15 
(ST5) 2.89 2.48 2.14 1.85 2.21 2.22 2.53 2.57 3.32 2.17   3.30 
(ST6) 2.47 2.16 1.92 1.71 1.95 5.91 1.54 1.99 2.65 2.21   2.39 
(ST7) 2.41 2.12 1.88 1.69 1.91 2.07 7.79 2.06 2.42 1.66   3.24 
(ST8) 2.72 2.33 2.01 1.76 2.05 2.35 2.38 4.75 3.41 2.62   2.13 
(ST9) 2.67 2.30 2.00 1.76 2.07 1.82 1.70 2.38 7.60 1.72   4.38 
(ST10) 2.37 2.10 1.88 1.69 1.90 2.35 2.32 2.41 2.63 3.73   1.56 
(ST11) 2.26 2.03 1.83 1.66 1.90 1.73 2.12 1.98 2.91 1.42 11.17 
(ST12) 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40   1.40 
(ST13) 4.33 3.23 2.49 1.99 2.57 2.97 2.60 3.01 5.43 2.50   4.10 
(ST14) 2.15 1.93 1.76 1.61 1.73 1.85 1.92 1.99 2.25 1.78   1.99 
(ST15) 2.67 2.28 1.98 1.74 2.04 2.03 2.23 2.35 3.07 1.96   2.93 

Source: Our calculations. 

 
 A natural question arises, which strategy can be regarded as the best under all 
circumstances. The answer to this question obviously depends on how we define 
an evaluation criterion for the strategies. For some savers it could be e.g. a strategy 
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that has the highest mean value of the final level of savings averaged from all 
scenarios, i.e. Max-Mean approach. Risk-takers would prefer the strategy with 
the highest value of the indicator for the best scenario, i.e. Max-Max criterion. 
Risk averse investors would probably use Max-Min approach (maximizing the 
value for the worst strategy). In addition we have used the Max-Median (maxim-
izing the median of scenarios) and Max-E[U] (maximizing the mean expected 
utility with the same probability for all scenarios) criteria. The best strategies 
using mentioned criteria are presented in Table 9. One can e.g. observe that the 
stock investment strategy (ST13) dominates for the mean value indicator. For the 
certainty equivalent indicator and Max-Min criterion, strategy (ST4) is optimal. 
For the same indicator and Max-Mean approach, (ST11) should be used. This is 
mainly due to high value of the indicator in the case scenario (SC11) occurs. It 
could be also seen from the fact, that (ST11) is the winning strategy for the Max- 
-Max criterion as well. 
 
T a b l e  8  
5-percent Quantiles 5%Q  of the Final Wealth Td  Using Various Strategies  
and Scenarios 

 (SC1) (SC2) (SC3) (SC4) (SC5) (SC6) (SC7) (SC8) (SC9) (SC10) (SC11) 

(ST1) 2.06 1.69 1.42 1.22 1.47 1.56 1.51 1.63 2.44 1.44 2.25 
(ST2) 2.01 1.69 1.45 1.25 1.49 1.53 1.57 1.70 2.30 1.48 2.18 
(ST3) 1.91 1.67 1.46 1.30 1.49 1.53 1.63 1.72 2.09 1.49 1.93 
(ST4) 1.75 1.60 1.47 1.34 1.47 1.51 1.62 1.67 1.82 1.46 1.63 
(ST5) 1.93 1.67 1.45 1.28 1.50 1.51 1.66 1.71 2.20 1.47 2.18 
(ST6) 1.59 1.43 1.31 1.20 1.34 3.27 1.12 1.34 1.69 1.45 1.55 
(ST7) 1.58 1.44 1.32 1.22 1.35 1.45 4.07 1.41 1.60 1.21 2.08 
(ST8) 1.70 1.51 1.35 1.22 1.38 1.53 1.54 2.64 2.10 1.67 1.44 
(ST9) 1.68 1.49 1.34 1.22 1.39 1.20 1.22 1.52 3.87 1.18 2.61 
(ST10) 1.57 1.44 1.32 1.22 1.34 1.57 1.51 1.61 1.74 2.26 1.18 
(ST11) 1.52 1.39 1.28 1.20 1.33 1.21 1.42 1.36 1.88 1.06 6.09 
(ST12) 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 
(ST13) 2.03 1.67 1.40 1.21 1.46 1.59 1.46 1.59 2.53 1.40 2.19 
(ST14) 1.67 1.55 1.44 1.35 1.43 1.50 1.54 1.57 1.76 1.46 1.63 
(ST15) 1.80 1.60 1.43 1.30 1.48 1.45 1.58 1.64 2.04 1.42 2.01 

Source: Our calculations. 

 
T a b l e  9  

Best Strategies for Different Indicators and Criteria Using the Results Presented  
in Tables 6 – 8 

 CE E( )Td  5%( )TQ d  

Max-Min  (ST4) 5% (ST13) stock (ST12) bond 
Max-Mean  (ST11) recession (ST13) stock (ST11) recession 
Max-Median  (ST5) 2 to 12 (ST13) stock (ST5) 2 to 12 
Max-E[U]  (ST3) 7% (ST13) stock (ST3) 7% 
Max-Max  (ST11) recession (ST11) recession (ST11) recession 

Source: Our calculations. 
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5.  Annuities from the Second Pillar 
 
 In this section we recalculate the savings represented by the number of yearly 
salaries to a non-indexed perpetual annuity. Consider a person of age x  years. 
The probability that this person dies within the next year is denoted by xq . The 

probability of complementary event, i.e., that the person aged x  years will sur-
vive to age ( 1)+x  , is defined by 1= −x xp q . One-year probabilities of death xq  

are usually known for }{0,  1,  2,∈ …x , given in life tables. Generally, k xp  de-

notes the probability that the person of age x  will survive at least k  consecutive 
years and is defined by 
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 As we mentioned in Section 3, future pensioners after reaching the retirement 
age will use accumulated savings to buy an additional part of the pension in 
a commercial insurance company, typically in a form of life annuity. Let us de-
fine the basic whole life annuity-due which provides for annual payments of 1 
unit as long as the beneficiary lives (payments are made at the beginning of each 
year). Denote by ɺɺxa  the expected net present value of the annuity payments: 
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where i  represents the technical interest rate per annum. In real life, pension 
benefits are not paid annually, but usually with a monthly frequency. In this case 
one has 
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where (12)

ɺɺxa  represents the net present value of an annuity of 1 unit per year pay-

able 12 times per year (1/12 unit per month) until the policyholders death (see 
Gerber, 1997).  
 Consider the ratio Td  of accumulated sum and the yearly salary at retirement 

time T  and the annual annuity payment M  payable monthly. Based on the as-
sumption of net premium principle, we have the following relationship:  
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 In Table 10 we present annual amounts of annuity payments (payable monthly) 
in case of various levels of savings Td  and technical interest rate i . These values 

are usually called replacement rates and represent the ratio of the last yearly 
salary to the yearly pension. Within our calculations we applied static probabili-
ties of death drawn from the unisex life tables of the Statistical Office of the 
Slovak Republic applicable for year 2012 and we did not consider the dynamics 
of mortality and the potential longevity of future pensioners.12 
 To illustrate the calculated levels of replacement rates let us consider a person 
contributing to the second pillar 6% of the gross wage13 (i.e. 1/3 of old-age con-
tributions). This future pensioner will receive 2/3 of the pension from the first 
pillar designed for 50% replacement rate. Therefore, the saving pillar is efficient 
for this person if it delivers at least 17% replacement rate. Using Table 10 one 
can see, that such a replacement rate needs at least 2.5 – 3 yearly salaries saved 
(depending on the technical interest rate). Recall that the average level of savings 
using the baseline scenario was 2.5 times the yearly salary. Considering the risk 
associated with saving one can conclude that reaching the benchmark replace-
ment rate is quite questionable. 
 
T a b l e  10  

Annual Amounts of Annuity Payments Expressed in Yearly Salary  
(Replacement Rates) 

  Technical interest rater per annum (i ) 

Accumulated sum in yearly salaries 0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 

1.0 0.05 0.06 0.06 0.06 0.07 0.07 0.07 
1.5 0.08 0.08 0.09 0.09 0.10 0.10 0.11 
2.0 0.11 0.11 0.12 0.13 0.13 0.14 0.15 
2.5 0.13 0.14 0.15 0.16 0.16 0.17 0.18 
3.0 0.16 0.17 0.18 0.19 0.20 0.21 0.22 
3.5 0.19 0.20 0.21 0.22 0.23 0.24 0.25 
4.0 0.21 0.23 0.24 0.25 0.26 0.28 0.29 

Source: Our calculations. 

 
 
Conclusions 
 
 We have extended the dynamic stochastic accumulation model introduced 
firstly in Kilianová, Melicherčík and Ševčovič (2006) and later generalized in 
Melicherčík and Ševčovič (2010). As in the previous versions of the model, the 

                                                 
 12 Statistical Office of the Slovak Republic [Online.] Mortality Tables. [Cit. 22. 04. 2014]. 
URL <http://portal.statistics.sk/showdoc.do?docid=33032>.  
 13 The average contribution rate from Table 1 is 5.63%. We have used close value of 6% for 
clearer illustration. 
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stock returns were modelled using the geometric Brownian motion, the interest 
rates followed the CIR model. The last legislative changes in Slovakia allow the 
pension asset managers to increase the duration of the bond fund. Therefore, we 
have generalized the model to account for any duration. As a result, the model 
may be, in addition to the Slovak scheme, utilized in any other DC scheme. Fur-
thermore, the decrease of the contributions to the funded pillar in Slovakia from 
9% to 4% also induced a necessity of new calculations. For better understanding 
of the results, we have recalculated the final savings to the replacement rate. 
Comparing to Kilianová, Melicherčík and Ševčovič (2006) and Melicherčík and 
Ševčovič (2010) our calculated estimates of the level of pensions from the fund-
ed pillar are lower. The achievement of the benchmark first pillar replacement 
rate is not certain. 
 Our results show that equities still play an important role in a pension invest-
ment. Especially at the beginning of saving, our model recommends to invest all 
savings in the stock fund. Later on, it is optimal to decrease the equity investments.  
 Since it is very difficult to estimate the parameters of the model, we have 
performed a sensitivity analysis for various parameter settings. We analyze sen-
sitivity to the contribution rates, the equity return’s drift and volatility, the pen-
sioner’s risk aversion, the duration of the bond fund, the wage growth and the 
absence of governmental regulations. The final level of savings is most of all 
sensitive to the contribution rate and the drifts of the stock returns.  
 The estimates of the drifts of the stock returns are usually unreliable. Not-
withstanding, they are a crucial component of the model and can alter results 
significantly. Therefore, we have considered several strategies which have been 
tested against a set of scenarios of the drifts. The optimal strategy is not exclu-
sive under all considered conditions. For a particular investor, the optimal strate-
gy depends on the preferred criterion and indicator.  
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