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Abstract: Reality mining is defined as “collection and analysis of  machine-
sensed environmental  data pertaining  to human  social behavior, with  the goal  
of  identifying  predictable patterns  of  behavior”.  As such it can be understood 
as a particular application area of data mining. Or is there more behind this new 
notion?  And will reality mining become a new subfield of data mining in a same 
way as text mining or web mining?  The paper looks on similarities and 
differences between reality mining and “classical” data mining and reviews some 
applications presented by their authors as reality mining. 
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1 Introduction 
Knowledge  discovery  in  databases  (KDD)  or  data mining (DM) is aimed at acquiring 

implicit knowledge from data and using it to build classification, prediction, description, etc. 
models for decision support. As more data is gathered, with the amount of data doubling 
every three years, data mining becomes an increasingly important tool to transform this data 
into knowledge. 

In 1990th data mining was used to analyze tabelar data, where each row corresponds to a 
single object (market basket, patient, bank client, etc.) and each column corresponds to an 
attribute (categorical or  numerical)  describing  a  property  of  the  objects. Such data can be 
found in many many application areas: banking and finance, medicine, manufacturing, 
sociology, etc. Nevertheless, this type of data is not the only one to be analysed. Nowdays we 
can see data mining applied to time series, graphs, dat streams, texts, images. And data 
mining on particular data types became its own name. So text mining became the name for 
data mining on unstructured textual documents and web mining became the name for data 
mining on data gathered from web. These subfields of data mining are already well 
established and accepted both by the data mining/scientific comunity and users of the data 
mining results. 

A decade ago, a new term "reality mining" occurs in the data mining community. How is 
this new term related to "classical" data mining? And what are characteristical features of 
reality mining apllications and projects? The paper looks on similarities and differences 
between reality mining and “classical” data mining and reviews some applications presented 
by their authors as reality mining. 

2 Reality Mining vs. Data Mining 
The term "reality minig" was coined by Nathan Eagle and Alex Pentland  from Media 

Laboratory, Massachusetts Institute of Technology (MIT) about 10 years ago. According to 
them, reality mining is the collection  and analysis of  machine-sensed environmental  data 
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pertaining  to human  social behavior, with  the goal  of  identifying  predictable patterns of  
behavior. 

Reality  mining  studies human  interactions based on  the usage of  wireless devices such  
as mobile phones and GPS systems providing  a more accurate picture of  what  people do, 
where they  go, and with  whom  they communicate with  rather than  from  more subjective 
sources such  as a person's own  account. As such it can be understood as a particular 
application area of data mining, where the analysed data are (usually) collected from wireless 
devices (like mobile phones or GPS receivers). 

From the data mining point-of-view, reality mining deals with the most challenging data 
mining problems as defined in [12]. In particular, it tackles the issues of “scaling up for high 
dimensional data/high speed streams”, “mining sequence data and time series data”, and “data  
mining  in  a  network  setting”. Le's review some of these issuse in this section. 

2.1 Sensor Networks 

Sensor networks consist of distributed autonomous devices that cooperatively monitor an 
environment. Each node in a sensor network is able to sense, process and act. Sensors are 
equipped with capacities to store information in memory, process information and 
communicate with neighbors. They have strong constraints on resources such as energy, 
memory, computational speed and bandwidth. 

Typical applications of sensor networks include monitoring, tracking, and controlling. 
Some of the specific applications are habitat monitoring, object tracking, nuclear reactor 
controlling, fire detection, traffic monitoring etc. In a typical application, a wireless sensor 
network (WSN) is scattered in a region where it is meant to collect data through its sensor 
nodes. Sensor nodes can be imagined as small computers, equipped with basic capacities in 
terms of their interfaces and components. Sensors act in dynamic environments, under 
adversarial conditions. 

With the evolution of sensing hardware, sensor networks have attracted the attention of 
data stream researchers as a platform for many significant applications. 

2.2 Mining Data Streams 
Many sources produce data continuously. Examples include sensor networks, wireless 

networks, radio frequency identification (RFID), customer click streams, telephone records, 
multimedia data, scientific data, sets of retail chain transactions etc. These sources are called 
data streams. A data stream is an ordered sequence of instances that can be read only once or 
a small number of times using limited computing and storage capabilities. These sources of 
data are characterized by being open-ended, flowing at high-speed, and generated by non 
stationary distributions in dynamic environments. 

Data streams are everywhere these days. Examples of applications include network 
monitoring, user modeling in web applications, sensor networks in electrical networks, 
telecommunications data management, surveillance systems,  prediction in stock markets, 
monitoring radio frequency identification, smart houses and assistive living etc.  

Extracting knowledge from multiple, possibly distributed data streams, is one of the most 
significant challenges that we face today. In these applications it is not feasible to load the 
arriving data into a traditional data base management system. Also the use of conventional 
data mining algorithms for analyzing static data sets that work based on many assumptions 
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such as stationary distribution, ability to store all the data in memory at the same time, and 
centralized collection of all the data for subsequent analysis are questionable in this new 
domain. 

2.3 Ubiquitous Knowledge Discovery 
The concept of reality mining is also closely related to the concept of ubiquitous 

knowledge discovery. Ubiquitous Knowledge Discovery can be defined as  "Knowledge 
discovery process in mobile, distributed, dynamic environments, in presence of massive 
amounts of data". Knowledge discovery in ubiquitous environments is an emerging area of 
research at the intersection of the two major challenges of highly distributed and mobile 
systems and advanced knowledge discovery systems. Research areas as defined in the EU 
funded project KDUbiq (2005-2008 FP6 FET IST ) are [3]: 

• data mining in mobile systems, wireless communication networks, calm technologies, 
• distributed architectures: distributed data mining, grid, P2P, autonomic computing, 
• agents, 
• learning components: statistical learning (incl. online learning), evolutionary 

computing, 
• anytime algorithms data types: spatio-temporal, stream, multimedia, 
• security and privacy: privacy preserving data mining, intrusion detection, 
• HCI and cognitive modelling: user interfaces of ubiquitous discovery systems. 

This multi-disciplinary approach constitutes a paradigm shift for the field of knowledge 
discovery since the idea of a standalone (desktop or workstation) analysis tool is abandoned in 
favour of process integrated, distributed and autonomous analysis systems. In a fully 
ubiquitous setting, the learning typically takes place inside the small devices. Instead of off-
line learning in a batch setting, sequential learning, anytime learning, real-time learning, 
online learning eytc. under real-time constraints from ubiquitous and distributed data is 
needed. Instead of learning from stationary distributions, concept drift is the rule rather than 
the exception. Instead of large stand-alone workstations, learning takes place inside small, 
unreliable devices. 

3 Example Reality Mining Projects 
Let's have a closer look on some applications presented by their authors as reality mining. 

3.1 Complex social systems 

A pioneering project in the area of reality mining was realized by Eagle and Pentland in 
2004 [2]. They collected data from 100 mobile phones of students and researchers at MIT 
over the course of 9 months. This makes about 45 000 hours of communication logs, location 
and proximity data.  Seventy-five users were either students or faculty in the MIT Media 
Laboratory, while the remaining twenty-five were incoming students at the MIT Sloan 
business school adjacent to the Laboratory. Of the 75 users at the Lab, 20 were incoming 
master’s students and 5 were incoming MIT freshman.  The collected information includes 
call logs, Bluetooth devices in proximity, cell tower IDs, application usage, and phone status 
(such as charging and idle). Capturing mobile phone usage patterns of 100 people for an 
extended period of time can provide insight into both the users and the ease of use of the 
device itself. By continually logging and time-stamping information about a user’s activity, 
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location, and proximity to other users, the large-scale dynamics of collective human behavior 
can be analyzed. If deployed within a group of people working closely together, correlations 
between the phone log and proximity log could also be used to provide insight behind the 
factors driving mobile phone use. The initial study presented a  simple model of behavior in 
three states: home, work, and elsewhere, the ultimate goal was to create a predictive classifier 
that can perceive aspects of a user’s life more accurately than a human observer (including the 
actual user). So one central intent of this research was to verify the accuracy of automatically 
collected data from mobile phones for quantifying social networks. The labels for the 
classifier came from a survey taken by all the experimental subjects at the end of two months 
of data collection. The survey asked who they spent time with, both in the workplace and out 
of the workplace, and who they would consider to be within their circle of friends. These 
labels were compared with estimated location (using cell tower distribution and static 
Bluetooth device distribution), proximity (measured from Bluetooth logs), and time of day. 
Workplace colleagues, outside friends, and people within a user’s circle of friends were 
identified with over 90% accuracy [2]. 

 

 
Fig. 1 Proximity pattern found in data. Source: [2] 

 

 
Fig. 2 Friendship network inferred from proximity pattern. Source: [2] 
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Weselowski et al. [13] analysed the daily travel patterns of 14 816 521 (approx. 38% of the 
Kenyan population) individuals across Kenya from June 2008 to June 2009 using nearly 12 
billion calls and text messages to estimate daily locations for each one. They used a common 
measure of individual mobility, the radius of gyration, to examine how mobility patterns 
varied across the country on the district and population levels. This measure reflects both the 
frequency of travel and distance. For each person, they calculated a radius of gyration value 
over the year and then aggregated these population values to the district level. They couple 
this analysis with the results from a survey of socioeconomic status, mobile phone ownership 
and usage patterns across the country, providing regional estimates of population distributions 
of income, reported airtime expenditure and actual airtime expenditure across the country. For 
each district, they used the CDR (call data records) data to calculate the average mobility of 
individuals within discretized ranges of actual airtime expenditures. In the majority of 
districts individual mobility and airtime expenditure were positively correlated in the CDR 
data, also the monthly income and expenditure on airtime reported in survey were positively 
correlated. 

Miklas et al. [8] examined how mobile systems could exploit people’s social relations, in 
particular interactions between friends, that is people who meet more regularly and for longer 
periods of time, and interactions between strangers, that is people who meet sporadically, by 
passing each other by. The authors performed a social-based analysis of a trace of Bluetooth 
activity to annotate it with the required information. By studying the frequency of encounters, 
they could annotate this trace with social information by classifying pairs of people who 
encounter frequently as “friends”, whereas pairs of people encountering sporadically are 
classified as “strangers”. They used a 101-day trace of encounters between people equipped 
with Bluetooth-enabled mobile phones collected by the “Reality Mining” project at the MIT 
Media Lab [2] with the goal to characterize the key temporal and social parameters of 
people’s encounters from this trace. 

3.2 Public health and medicine 
Mobile  phones can  be particularly  useful  in  gathering  health - related information. Data 

on  a sample population  over a given  period (a week or a month) can be used, and then  
assuming some of  people  are sick, a model to predict  how an  illness spreads can be created. 

A well known example of this kind is the work by Buckee et al. [1]; a study of the role of 
human mobility in the dissemination of malaria parasites in Kenya. Local and regional 
movements between areas with different  malaria risks have several consequences for the 
transmission and epidemiology  of  the disease: individuals from low malaria risk regions 
traveling to high risk regions are particularly susceptible to disease because they lack well-
developed immune responses, individuals from high risk regions traveling to low risk regions 
may carry parasites with them, the movement of people between different endemic regions 
can bring together populations of parasites that would otherwise remain genetically distinct. 
Traditional approaches to measuring human movements on these regional scales rely on 
survey data from national censuses or other household surveys. Mobile phones offer 
individual-level  information on a scale previously impossible, providing a “big data” 
approach to understanding human mobility. The authors discussed the opportunities for 
measuring human mobility using data from mobile phones, as well as some of the issues 
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associated with combining mobility estimates with malaria infection risk maps to 
meaningfully estimate routes of parasite importation.  When compared the data from CDR 
(for 34861 phone users) with travel data collected as part of a malariometric survey (for 2650 
persons), they found out, that mobile phones allow to collect more accurate data in 
significantly larger scale and thus allow to create better models. 

3.3 Trafic monitoring and control 
After the September 11 attacks, U.S. officials scrambled to secure other national landmarks 

that might become future targets. One of them was the California's Golden Gate Bridge. 
Might terrorists try to destroy the passageway between San Francisco and Marin County, and 
if so, how widespread would the fallout be? To answer those questions, the Homeland 
Security Dept. turned to a small company called Inrix that uses GPS-enabled mobile phones 
and tracking devices installed on commercial vehicles to monitor traffic conditions. Inrix used 
its models to predict that the loss of the 1.7-mile bridge would result in immediate transport 
chaos. But Inrix found that within four days the situation tends to stabilize because people 
know what is happening and adjust their plans [6]. 

The Mobile Century experiment, carried out at the University of Berkeley on February 8, 
2008 was intended as a proof-of-concept of traffic monitoring system based on vehicles 
equipped with GPS-enabled mobile phones. The goal of this controlled field experiment was 
to test traffic data collection from GPS-equipped mobile phones driving on a stretch of a 
highway located in the San Francisco Bay Area. One hundred vehicles carrying the GPS-
enabled Nokia N95 drove along a 10-mile stretch of I-880 from 9:30am to 6:30pm. The 
experiment proved that data from GPS-enabled mobile phones alone were sufficient to infer 
traffic features, i.e., to construct an accurate velocity map over time and space [5]. The Mobile 
Millennium project grew from Mobile Century with a strategic objective to demonstrate the 
potential of GPS in mobile phones to alter the way traffic data is collected, by leveraging the 
existing mobile phone infrastructure to collect data and transmit it directly back to drivers. 
The public-private research partnership — UC Berkeley, Nokia Research Center, and 
NAVTEQ, with sponsorship from the California Department of Transportation — launched 
the pilot program from the Berkeley campus on November 10, 2008. It ran for exactly 12 
months. During that time, more than 5,000 users downloaded the Mobile Millennium traffic 
software onto their phones (http://trafic.berkekey.edu). 
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Fig. 3 Snapshot of Mobile Millennium Traffic in San Francisco and the Bay Area. Source: [5] 

 
Santani et al. presented an empirical analysis of the GPS-enabled taxi dispatch system in 

Singapore [11]. The data set records the movement of 6,230 GPS-enabled taxicabs over a 24-
hour period, as well as the time and location of 38,048 booking requests. The main goals of 
the  analysis were (a) to characterize the efficiency of the taxi system, and (b) to explore the 
sources of inefficiency. The two types of analysed data (taxi locations, booking requests) were 
firstly used to comparing the density of taxis with the frequency of bookings in each of four 
geographic zones. The results of this first step are then used to identify times and locations in 
which the demand for taxis exceeded the supply or vice versa.  They then analysed the 
efficiency of the taxi system by defining driver satisfaction (as ratio of time the taxi was 
occupied and time the taxi was free or occupied) and passenger satisfaction (as median 
waiting time in given zone and given hour). 

 

3.4 Smart homes and ambient assisted living 
Smart Home and Ambient Assisted Living systems utilize advanced and ubiquitous 

technologies including sensors and other devices that are integrated in the residential 
infrastructure or wearable, to capture data describing activities of daily living and health 
related events (for a generic structure of such a system see Fig. 4). The used technologies can 
allow for the detection of emergencies and provide the means  to increase social interaction 
and minimize isolation for residents. Smart Home and Ambient Assisted Living systems are 
composed of different components one of them being a reality mining component. To 
illustrate, consider two examples of how reality mining can be used within ambient assisted 
living system. By taking advantage of special sensors in mobile phones, such as the 
microphone or the accelerometers, important diagnostic data can be captured. Clinical pilot 
data demonstrate that it may be possible to diagnose depression from the way a person talks--
a depressed person tends to speak more slowly, a change that speech analysis software on a 
phone might recognize more readily than friends or family do. Similarly, monitoring a 
phone's motion sensors can also reveal small changes in gait, which could be an early 
indicator of ailments such as Parkinson's disease [10].  
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Fig. 4 A generic scheme of Ambient Assisitve Living Systems. Source: [9] 

3.5 Environmental monitoring 

Noise pollution is a major problem in big cities around the world. It affects human 
behaviour, well-being, productivity and long-term health. Recognising noise pollution as an 
important issue, the European Commission adopted the European Noise Directive, which 
requires major cities to establish a noise management policy. The first step in the 
establishment of such a policy is to assess the current situation by gathering real-world data 
and building strategic noise maps. A standard way how to get data is using sensor networks. 
However, this approach has several limitations: sparsity of network, fixed location of sensors 
and high cost. An alternative is thus to use mobil phones to collect the data about noise 
pollution.  

Maisonneuve et al. propose a low-cost approach involving the general public to monitor 
noise pollution using their mobile phones as noise sensors [7]. The NoiseTube is a research 
project started in 2008 at the Sony Computer Science Laboratory in Paris in collaboration 
with Vrije Universiteit Brussel. The NoiseTube platform consists of two components, the 
mobile application and the Web-based community memory. The mobile application can be 
downloaded for free (e.g. from http://play.google.com for Android based phones) to turn 
mobile phones into mobile noise sensors. It collects information from different sensors 
(microphone, GPS receiver, user input) which is logged locally and/or sent to NoiseTube 
community memory server in real-time. The collected data are thus composed not only of the 
sound level recorded by the phone’s microphone, but also of geographical coordinates, and 
annotations added by the users.  The community memory operates on a central Web-server 
and collects and post-processes all gathered noise pollution measurements and runs a website 
which lets users explore, visualise, analyse and search through the data. The main post-
processing performed on the server is aggregating info obtained fromdifferent users, 
automatic contextual tagging and GPS correction. NoiseTube thus goes beyond traditional 
noise maps due to the new nature of the collected data – real, local and personal exposure 
measurements with additional semantic information. 
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Fig. 5 Collective noise map for part of Paris, France. Source: [7] 

4 Conclusions 
The concept of reality mining is closely related to ubiquitous knowledge discovery (and 

one of the first papers on reality mining was published in ubiquitous computing journal). 
Anyway, the term reality mining sounds better.  

The main source of data for reality mining applications are mobile phones equipped with 
GPS receivers. Researchers say they can get a more accurate picture of what people do, where 
they go, and with whom they communicate from a device they carry than from more 
subjective sources, including what people say about themselves. In short, people lie - mobile 
phones don't.  

Although the example applications of reality mining discussed in section 3 do not use 
soffisticated machine learning algorithms, they still can be cosidered as data mining tasks 
aiming (at lest) at data description and summarization.  

Reality mining seems to be a perspective field in which some applications (helth status 
monitoring, environmental monitoring or traffic monitoring) can directly influence our daily 
life. But if reality mining belongs to 10 most important technolgies, as published in MIT 
Technology Review [4] remains an open question. 
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