Model of Immersive Educational Instruments of Behavioral Analysis and Management in Distributed Educational Teams

Iurii Volk Faculty of Electronics and Information Technology Sumy State University Sumy, Ukraine y.volk@mss.sumdu.edu.ua

Oleksandr Dluhopolskyi West Ukrainian National University Ternopil, Ukraine WSEI University Lublin, Poland dlugopolsky77@gmail.com Artem Artyukhov University of Economics in Bratislava Bratislava, Slovakia WSEI University Lublin, Poland artem.artiukhov@euba.sk

Tetiana Dluhopolska Department of International Economic Relations West Ukrainian National University Ternopil, Ukraine tetianadluhopolska@gmail.com Nadiia Artyukhova Research Department Sumy State University Sumy, Ukraine n.artyukhova@pohnp.sumdu.edu

Anzhela Kuznyetsova Department of Financial Technologies & Entrepreneurship Sumy State University Sumy, Ukraine angelkuzn@gmail.com

Abstract-Current work presents an attempt to model a process of comprehensive behavioral analysis of immersive educational tools to develop a clear method of their classification and application guidelines. The research question posed by current study is the following: "What elements of immersive education tool are associated with the highest amount of student learning engagement?". The hypothesis which we test to answer the research question is formulated as "Salient elements of visual representation of immersive educational instrument are engaging most of respondents on pre-attentive processing stage". Key aims of the study include development of a model of implementing immersive educational instruments into conventional educational setup and discussion along with analysis oriented on distributed educational environments. We developed a comprehensive study design allowing to perform behavioral experiments on reaction to stimuli which represent the core elements of immersive educational tools. Presenting a design of multimodal behavioral experiment including eyetracking, facial expression analysis and biometrical data analysis we indicate key factors providing evidence of immersion effectiveness for various classes and types of educational instruments. The discussed component-based model not only serves as an organizational tool for establishing a digital infrastructure for innovative distributed universities but also offers a novel framework for understanding the underlying architecture of immersive educational tools. Furthermore, the behavioral study design presented in this article goes beyond conventional approaches by focusing on identifying the specific elements of immersive educational tools that lead to the highest levels of learner engagement, thus contributing to a deeper understanding of the mechanisms underlying immersive learning experiences. The results of current study will be of interest to a wide range of educational institutions utilizing innovative educational techniques in their practice.

Keywords—immersive education, innovative university, behavioral analysis, eye-tracking

I. INTRODUCTION

Modern higher education systems are facing several challenges posed by dynamically changing political, social, and economic situations. Even though traditional teaching and learning techniques can be transformed to use in various educational setups, the use of immersive instruments requires additional effort from educational management. The current situation in higher education worldwide is welcoming towards various innovative technologies aimed at addressing several

challenges posed by dynamically changing political, social and economic situations [1; 2]. The viability of modern higher education system can be tied to a configuration of an "educator's toolbox" employed in the learning process. Diversity and effectiveness of learning tools forming such a toolbox define the competitiveness of the higher education system. This is especially applicable to modern distributed educational systems when tutors and learners are forced to use information and communications technologies and traditional teaching/learning techniques are less applicable. Immersive learning tools such as AR, AR+, VR, etc. are offering an overhaul of the educational landscape by introducing a completely new level of learner's engagement in the educational scenario. Even though traditional teaching and learning techniques can be transformed to use in various educational setups, the use of immersive instruments requires additional effort from educational management.

Current study deals with background of distributed educational environments which prevail in modern landscape of higher education. We present a model of distributed university teams functioning and management including behavioral analysis interface between university management and e-learning system. We came up with behavioral experiment design template allowing to keep learners' engagement level controlled in distributed educational environments. The research question we pose in proposed behavioral study template is the following: "What elements of immersive education tool are associated with the highest amount of student learning engagement"? The hypothesis which we propose to test to answer the research question is formulated as "Salient elements of visual representation of immersive educational instrument are engaging most of respondents on pre-attentive processing stage". Presented model of distributed university might be recommended for implementation for Ukrainian universities forced to work in conditions of relocated personnel and online learning due to continued Russian aggression against Ukraine [3; 4]. Behavioral study design template will be interesting for all educational institutions implementing immersive learning instruments in their workflow.

II. LITERATURE ANALYSIS

The landscape of modern literature on topic highlights the inevitable digitalization of all educational processes, as well as corporate environments [5; 6; 7; 8; 9]. Innovative and

digital economies require rapid reaction to challenges presented by constantly developing counteragents [10]. Current educational systems are aimed at transferring from "spoon-feeding" learning towards immersive learning and building bridge communications allowing learners to be actively engaged in the educational process [11; 12; 13; 14]. Among immersive tools allowing to create a new generation of educational environment, virtual reality (VR) tools are particularly promising [15; 16; 17; 18]. However, as stated by J.Radianti, T.Majchrzak, J.Fromm, I.Wohlgenannt, "the majority of authors treated VR as a promising learning tool for higher education, however, the maturity of the use of VR in higher education is still questionable" [19].

Immersive instruments have no competition in providing online capabilities in skill-based learning, where practical application of manual skills is required but cannot be implemented due to various reasons [20; 21]. Such situations can often occur in medical education when the learning team is forced to work remotely [22; 23]. Evidence suggests that immersive VR tools facilitate effective learning through simulated real-life context [24]. Widely applied is the eyetracking technology to measure the engagement level through visual attention distribution of learners [25; 25; 27; 28]. Sources indicate, that behavioral analysis of immersive learning tools tend to be the most effective metric to evaluate the learners engagement in immersive learning scenario. Questions of immersive educational systems management have been a point of interest for some researchers [29; 30; 31] as well as authors of current work [16; 32]. Evidence suggests that modern education management tend to lean towards various agile models that offer quick and effective decision making process for distributed educational teams [33; 34; 35].

We supplement conventional literature review with bibliometric analysis conducted using VOSviewer software presented in Figure 1. We use Scopus database, query to analyse is "immersive education", years of publication 2020-2023, number of articles – 2000. The results presented are grouped into 5 thematic clusters with total 15830 links between items. The largest cluster containing "virtual reality" item with 344 links and 975 occurences indicate that immersive education tools such as virtual reality are used in various learning and research scenarios. Item "e-learning" with 307 links and 472 occurences indicate that modern elearning environments largely incorporate immersive learning techniques and are encorporated across various knowledge fields (Figure 2).

The articles [36; 37] explores an integrated approach for implementing immersive learning at the university level. This approach includes the establishment of a specialized laboratory equipped with virtual and augmented reality technologies, the incorporation of immersive learning methodologies into university curricula, the development of software and hardware solutions for immersive learning, and the assessment of the effectiveness of these immersive learning techniques. The authors also describe products designed to fulfill the university's third mission – ensuring the well-being of citizens. AR/VR technologies offer significant promise in the educational technology space due to their immersive capabilities, innovative information-sharing methods, and potential to provide virtual experiences that overcome cost and distance barriers [38]. In higher education, AR/VR facilitates the understanding of abstract concepts and offers hands-on experience in low-risk virtual environments.

The paper [39] introduces a socially immersive learning (SIL) pedagogy, addressing the need for a new skill set in a fragmented socio-economic landscape, emphasizing connectivity and collaboration. Current HEIs systems are predominantly designed for on-campus students, often neglecting the unique needs and experiences of online learners, thus overlooking the potential relational strengths of e-learning communities. The evolving educational landscape requires permeable departmental silos and increased collaboration to address complex global issues, challenging traditional education designs and fostering student-centric engagement and new learning opportunities.

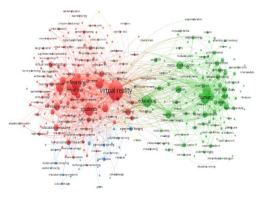


Fig. 1. Bibliometric landscape by query "immersive education" Source: original research, VOSviewer

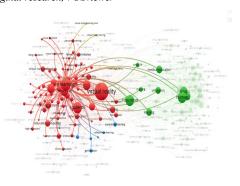


Fig. 2. "e-learning" item links to other items in landscape

Source: original research, VOSviewer

Various sources [40; 41; 42; 43] have examined different methods of utilizing immersive learning in the contemporary world. Immersive role-playing and simulations have long been foundational components in learning and development programs globally. Based on the analysis of the research landscape in the area, we clearly recognize additional effort required from educational management for the successful integration of immersive instruments into higher education systems. This suggests potential challenges in terms of resource allocation, training, and infrastructure development. Despite the promising potential of virtual reality (VR) tools in enhancing learning experiences, there remains a gap between theoretical discussions and practical implementation in higher education. Bridging this gap requires targeted efforts such as interdisciplinary between establishing collaborations educators, technologists, and researchers thus fostering a culture of experimentation and innovation within educational institutions. This work proposes a comprehensive set of tools to set grounds for such collaboration through providing a clear organizational setup and experimental study design for using multimodal behavioral analysis.

III. METHODOLOGY

Considering the results of literature review and bibliometric analysis, the aim of the article is set on proposing a comprehensive model of immersive learning tools implementation and effectiveness assessment in distributed educational environments. For the full systematic description of such model, we use UML component diagram to present a workflow incorporating distributed university concept along with behavioral engagement assessment interface. The methodological choice of UML component diagram not only facilitates a clear delineation of the model's components but also affords a practical tool for stakeholders seeking to establish a digitalized infrastructure open to the realization of innovative distributed universities.

As indicated by literature review, one of the most popular modalities allowing the studies of visual attention in educational materials is eye-tracking [24; 44]. Study design proposed in the current article focuses on defining the elements of immersive education tool that are associated with highest levels of learner engagement. For a minimal-scale focus group providing relevant results it is best to use at least 20 participants with even gender and age distribution All participants should have no or corrected vision defects. All participants should have no exposure to the purpose of the study and/or study design. After completing the full experiment, the purpose of the study is disclosed to each participant. Participants must provide verbal informed consent before commencing the experiment. Trials should be performed in normal working conditions: during daylight, no artificial lighting, no flares on the computer screen. Participants sit on a chair in pose instructed by equipment operator. Equipment necessary to conduct presented study design: eye-tracker, webcam for collecting face expression data, galvanic skin response kit and controlling software suite for presenting stimuli and collecting data. Supposedly, salience of visual representation elements will be the defining factor in attracting learners' attention during the immersive scenario. Utilizing presented study design as a deliverable, educational institutions that are forced to operate in distributed manner can seamlessly incorporate the behavioral studies as the part of the management process.

IV. RESULTS

Figure 3 depicts a comprehensive component diagram illustrating the operational framework and managerial structure of distributed university teams. Within this diagram, the Distributed University component is prominently featured, showcasing its pivotal role in the network. Notably, the Distributed University component exhibits a port facilitating communication connectivity with the Stakeholders Pool, thereby establishing a crucial dependency relationship with external stakeholders affiliated with the university. Upon closer examination of the Distributed University component, it becomes apparent that it comprises subordinate components, functioning as integral subsystems within the university's operational architecture.

Internal Faculty Team as the component describes the operation of internal university team not affected by relocation of personnel. However, the austerity of working conditions might affect the operation of internal team. This component is interfaced with University Management component through Direct Communication Interface. This direct communication includes face-to-face contacts as well as mailing, messaging, etc., and features low-latency management-faculty responses and vice versa. Internal Faculty Team component features self-explanatory dependency on University Management component. Functioning of Internal Faculty Team is ensured by following ground-level components: Research Staff and Teaching Staff that operate depending on Department Level Management. Department Level Management in the internal team setup provides the level of independence from higherlevel decision making thus liberalizing providing friendly and agile working environment. Educational and scientific content along with standard operational deliverables are supplied onto the outgoing port connected to the Direct Communication Interface. The Internal Faculty team retains full access to ICT System interface and, hence, E-learning system in order to provide learners with educational content. External Faculty Team component models the operation of faculty not included to the internal team due to relocation or any other reasons. This component is interfaced with E-learning system component through ICT System interface. Distributed teams are forced to operate mainly through means of digital communication, therefore, using proprietary ICT system for access to elearning environment might pose a challenge due to the issues of accessibility. On the other hand, proprietary ICT offers customization abilities that allow us to tailor the system to the needs of particular educational disciplines. External Faculty team operates in a manner like Internal Faculty Team, however, establishing Department Level Management in a remote office-less setup is nearly impossible. Therefore, the proposed model offers operation based off regulatory framework that provides guidance for remote Research and Teaching Staff. Outputs of these components are communicated to the outgoing port of External Faculty Team component and then supplied towards the ICT System interface.

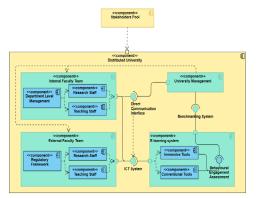


Fig. 3. Component diagram of distributed university teams functioning and management

Source: original research, Visual Paradigm online

E-learning System component include sub-systems that realize the educational process through conventional learning tools ("spoon-feeding" teaching, seminars, webinars, lectures, etc.) as well as immersive learning tools (VR-simulations, immersive problem-solving scenarios, feedback-based lectures, etc.). Operation of these components is governed by Research and Teaching Staff through ICT System. In the proposed model both conventional and immersive learning instruments are subject to behavioral analysis aimed at assessing learners' engagement level. Multimodal behavioral experiments can be used to assess the distribution of visual attention and emotional response towards presented stimulus. Modalities that serve this purpose include eye-tracking, facial expression analysis, galvanic skin response (GSR) analysis, heart rate signal tracking, etc. Figure 4 presents the template of a study design allowing to measure learners' engagement in the immersive educational environment. In the framework of the proposed model, immersive and conventional learning tools are subjected to regular behavioral assessment of engagement which is realized through corresponding interface within E-learning System component. Results of such assessments are supplied to the output port of E-learning System component and to Benchmarking System interface. From this interface, the behavioral analysis reports are accessed by University Management and incorporated into the decision-making process regarding forming an overall educational landscape.

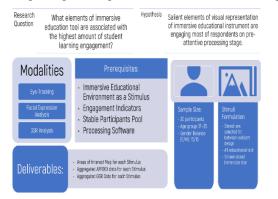


Fig. 4. Study design for behavioral analysis of immersive education tools

Source: original research, MS Powerpoint

University Management components operate as conventional management units in any project. However, a recommendation can be offered within the proposed model to incorporate agile methodologies for managing distributed educational teams. This approach allows for effective and timely decision making that serves the needs of all system components as well as external stakeholders. Figure 4 presents the study design for behavioral analysis of immersive education tools. In this template oriented towards research question and hypothesis stated above, we propose to use multimodal behavioral experiments as the assessment framework for immersive learning tools. Deliverables stated by current study design allow to obtain necessary data to use in decision making by university management. Areas of interest map allow to modify visual representation of a stimulus to keep learners engaged even at the opening experience with learning tools. Aggregated data form facial expression analysis and GSR data allow to define learner's initial emotional response when interfacing with immersive stimulus. Note that current study design focuses on the preattentive processing stage. This stage of perception defines the further experience with visual stimulus [45; 46] and must be considered in the learning tool design. Next, we attempt to present a context for operation of proposed model in Ukrainian educational landscape. We investigate Global Innovation Index (GII) data to illustrate the level of innovation in Ukrainian education and compare it to peer economies in the same income group. Table 1 provides a comparison of GII indicators across top-5 countries in lower middle-income group as defined by GII: Ukraine, India, Viet Nam, Iran, and the Philippines. Table covers the following innovation input indicators: expenditure on education as a percentage of GDP; graduates in science and engineering as a percentage of the total number of graduates; researchers as a full-time equivalent (FTE) per million population; QS university ranking within the top 3 universities; access to ICT (information and communication technology).

The Table 1 presents the rank and score for each of these indicators for each country and we analyze this data from Ukrainian perspective. Ukraine ranks 27th in indicator "Expenditure on education" with a score of 49.5, indicating that the country spends a moderate amount of its GDP on education. However, there is room for improvement in this area as there are many countries that spend a higher percentage of their GDP on education.

 TABLE I.
 GII INNOVATION INPUT INDICATORS ACROSS TOP 5

 COUNTRIES IN LOWER MIDDLE-INCOME GROUP

tior.	Ukr	aine	In	lia	Viet	Nam	ı Iran Philipj		ippines	
GII Indicator	Rank	Score	Rank	Score	Rank	Score	Rank	Score	Rank	Score
Expenditure on education, %	27	49.5	60	37.9	75	32.9	94	27.3	83	30.7
Graduates in science and engineering, %	41	50.0	11	82.0	54	44.6	2	8.66	52	45.1
Researchers, FTE/mn pop.	54	9.6	82	2.7	60	8.5	47	18.9	84	1.8
QS university ranking, top 3	48	20.3	24	46.0	99	8.1	43	25.8	48	20.3
ICT access	99 60° - G	9:98 lobal	6 Innova	20.4	4 Index,	5.06 indica	69 stors	0. 88 selected	001 l, and	table

Source: Global Innovation Index, indicators selected, and table composed by authors

There are a few factors that could potentially contribute to Ukraine's higher expenditure on education: 1. Historical emphasis on education: Ukraine has a long history of emphasizing the importance of education, with high literacy rates and a strong tradition of academic excellence. This cultural emphasis on education may translate into a higher level of investment in education. 2. Economic policies: Ukraine government made a conscious decision to prioritize education spending as part of its economic policies. Investing in education has long-term economic benefits, such as increasing productivity, promoting innovation, and reducing poverty. 3. International assistance: Ukraine receives international assistance in the form of education aid, which could contribute to its higher expenditure on education.

Ukraine ranks 41st in indicator "Graduates in science and engineering" with a score of 50.0, indicating that the country has a moderate percentage of graduates in science and engineering fields. While Ukraine has a long history of excellence in STEM education, the country could focus on increasing the number of graduates in these fields to improve its ranking in this category. The contrast is particularly notorious comparing Ukraine's scores with India (rank 11, score 82) and Iran (rank 2, score 99.8). However, such high

indicators of graduates in science and engineering fields may indicate disbalance in country educational policies. Ukraine ranks 54th in indicator "Researchers" with a score of 9.6, indicating that there are relatively few researchers in the country. This suggests that there is a need for greater investment in research and development to increase the number of researchers and improve the quality of research in Ukraine. However, comparison to other economies of lower middle-income group suggests that Ukraine possess stronger research infrastructure, with a higher number of researchers per million population compared to all countries listed in the table except Iran. However, there are factors that influence a country's research capabilities, such as the quality of research institutions, availability of research funding, and the level of collaboration between academia and industry. Regarding the indicator "QS university ranking" we can see that India and Iran have the highest scores in the QS university ranking indicator across top 5 countries in lower middle-income group, ranking 24th and 43rd in general GII respectively. Ukraine and the Philippines have the same score, ranking 48th. Vietnam has the lowest score in this indicator, ranking 66th. This suggests that India and Iran have stronger university systems, with more universities ranked among the top 3 in their respective fields, than Ukraine and the other countries listed in the table. However, it's worth noting that QS university rankings are just one measure of a university's quality and should be interpreted with caution. There are many other factors that could influence a country's higher education system, such as the availability of research funding, the quality of teaching and research, and the level of international collaboration. Finally, comparison across indicator "ICT access" suggests that Vietnam has the highest score in the ICT access indicator, ranking 41st out of the 128 countries listed, followed by Ukraine and Iran with relatively high scores as well, ranking 66th and 63rd, respectively. It is evident that Ukraine, Vietnam, and Iran have better access to ICT infrastructure and services, such as internet connectivity and mobile phone usage, compared to India and the Philippines. However, one should note that measures of a country's digital readiness are not limited to ICT access. Overall digital competitiveness of a country can be also influenced by factors such as the level of digital skills, innovation capacity, and government policies supporting the digital economy.

V. DISCUSSION

This article proposes a comprehensive model for implementing and assessing the effectiveness of immersive learning tools in distributed educational environments, based on the results of a literature review and bibliometric analysis. To fully describe this model, we use a UML component diagram to illustrate a workflow that includes the distributed university concept and a behavioral engagement assessment interface. Current study aims to create a model for integrating immersive educational tools into traditional educational settings and explores their effectiveness in distributed learning environments. To achieve this, we developed a comprehensive study design that includes behavioral experiments using stimuli that are central to immersive educational tools. Our multimodal approach involves eye-tracking, facial expression analysis, and biometric data analysis to identify key factors that contribute to the effectiveness of immersion in different types of educational tools and classes. We provide a contextual overview of the proposed model's applicability in the Ukrainian educational landscape. To achieve this, we analyze data from the Global Innovation Index (GII) to illustrate the level of innovation in Ukrainian education and compare it to other economies in the same income group. Specifically, we compare Ukraine's GII indicators to those of the top five countries in the lower middle-income group as defined by GII: India, Vietnam, Iran, and the Philippines.

VI. CONCLUSION

The model proposed in current research represents a comprehensive approach that allow to incorporate immersive educational instruments into workflow of universities that are facing challenges of working in distributed fashion. Behavioral analysis techniques are proposed as a tool to supplement decision-making process on the management level with hands-on data about educational process outcomes. Discussed component-based model can serve as an organizational chart for establishing a digital infrastructure for innovative distributed universities. Behavioral study design presented in this article focuses on identifying the elements of immersive educational tools that lead to the highest levels of learner engagement. Discussed findings will be relevant to a wide range of educational institutions that incorporate innovative educational techniques into their teaching practices.

REFERENCES

- I. Pozovna, S. Arhipov and A. Kuzior, "Determinants of Leadership in Higher Education in European Countries," Business Ethics and Leadership, 2023, Vol. 7(4), pp. 210-224, doi: 10.61093/bel.7(4).210-224.2023
- [2] M. Habenko, V. Koibichuk, D. Krawczyk, T. Mayboroda and A. Samoilikova, "Implementation of knowledge economy and innovation through business education," SocioEconomic Challenges, 2023, 7(4), pp. 211-222, doi: 10.61093/sec.7(4).211-222.2023
- [3] A. Artyukhov, I. Volk, T. Vasylieva and S. Lyeonov, "The role of the university in achieving SDGs 4 and 7: a Ukrainian case," Paper presented at the E3S Web of Conferences, 2021, 250, doi: 10.1051/e3sconf/202125004006
- [4] R. Benghebrid and M. Sahnouni, "Telework: What is impact on the Algerian employee?" SocioEconomic Challenges, 2023, 7(3), pp. 55-62, doi: 10.61093/sec.7(3).55-62.2023
- [5] G. Kibrit, F. Altinay, G. Dagli, Z. Altinay, R. Sharma, R. Shadiev and M. Bastas, "Evaluation of sustainability and accessibility strategies in vocational education training," Sustainability, 2022, 14(19), 12061, doi: 10.3390/su141912061
- [6] S. Mariam, K. F. Khawaja, M. N. Qaisar and F. Ahmad, "Blended learning sustainability in business schools: role of quality of online teaching and immersive learning experience," The International Journal of Management Education, 2023, 21(2), 100776, doi: 10.1016/j.ijme.2023.100776
- [7] S. K. Sharma, S. C. Palvia and K. Kumar, "Changing the landscape of higher education: From standardized learning to customized learning," Journal of Information Technology Case and Application Research, 2017, 19(2), pp. 75-80, doi: 10.1080/15228053.2017.1345214
- [8] M. Hara, "Educational reform for middle-income trap under digitalization: Culprits, challenges, and strategies in the Philippines," SocioEconomic Challenges, 2023, 7(3), pp. 200-218, doi: 10.61093/sec.7(3).200-218.2023
- [9] M. Melnyk, A. Blyznyukov and J. Cieślik, "The impact of digital education initiatives," SocioEconomic Challenges, 2023, 7(3), pp. 1-9, doi: 10.61093/sec.7(3).1-9.2023
- [10] O. Sour, S. B. Maliki and A. Benghalem, "Modelling the Interconnection Between Technological Leadership and the Level of Use of Information and Communication Technologies," Business Ethics and Leadership, 2023, 7(3), pp. 62-72, doi: 10.61093/bel.7(3).62-72.2023
- [11] W. Li, J. Zhu, P. Dang, J. Wu, J. Zhang, L. Fu and Q. Zhu, "Immersive virtual reality as a tool to improve bridge teaching communication," Expert Systems with Applications, 2023, 217, 119502, doi: 10.1016/j.eswa.2023.119502

- [12] V. Barvinok and T. Pudło, "Formation of Online Content Patterns of Higher Education Based on Trends to Preserve Intellectual Capital Quality Decreasing in Ukraine During Wartime," Business Ethics and Leadership, 2023, 7(2), 109-127, doi: 10.21272/bel.7(2).109-127.2023
- [13] C. J. Ninassi and D. N. Burrell, "Teaching business leadership skills to professionals in healthcare cybersecurity, biodefense and biotechnology through experiential learning methods," Health Economics and Management Review, 2023, 4(3), pp. 82-94, doi: 10.61093/hem.2023.3-07
- [14] H. Kaya, J. S. Kwok and J. LaTurner, "Experiential Learning Through the Creation of an Investment Lab," Financial Markets, Institutions and Risks, 2023, 7(1), pp. 16-25, doi: 10.21272/fmir.7(1).16-25.2023
- [15] O. Dluhopolskyi, A. Simakhova, T. Zatonatska, I. Oleksiv and S. Kozlovskyi, "Potential of virtual reality in the current digital society: economic perspectives," 11th International Conference on Advanced Computer Information Technologies (September 15-17, 2021). Deggendorf, Germany, 2021, pp. 360-363, doi: 10.1109/ACIT52158.2021.9548495
- [16] A. Artyukhov, I. Volk, O. Dluhopolskyi, E. Mieszajkina and A. Myśliwiecka, "Immersive university model: a tool to increase higher education competitiveness," Sustainability, 2023, 15, 7771, doi: 10.3390/su15107771
- [17] I. Onopriienko, K. Onopriienko and S. Bourekkadi, "Immersive Technologies in Adult Learning as an Innovative Marketing Tool in the Educational Market," Business Ethics and Leadership, 2023, 7(2), pp. 63-72, doi: 10.21272/bel.7(2).63-72.2023
- [18] J. K. Ogunleye, C. S. Afolabi, S. O. Ajayi and V. A. Omotayo, "Virtual Learning as an Impetus for Business Education Programme in the Midst of COVID-19 in Nigeria," Health Economics and Management Review, 2023, 4(2), pp. 83-89, doi: 10.21272/hem.2023.2-08
- [19] J. Radianti, T. A. Majchrzak, J. Fromm and I. Wohlgenannt, "A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda," Computers & Education, 2020, 147, 103778, doi: 10.1016/j.compedu.2019.103778
- [20] J. D. Larsen, R. O. Jensen, P. I. Pietersen, N. Jacobsen, C. Falster, A. B. Nielsen and O. Graumann, "Education in focused lung ultrasound using gamified immersive virtual reality: a randomized controlled study," Ultrasound in Medicine & Biology, 2023, 49(3), pp. 841-852, doi: 10.1016/j.ultrasmedbio.2022.11.011
- [21] J. Qiao, C. R. Huang, Q. Liu, S. Y. Li, J. Xu, L. Li and Y. Q. Ouyang, "Effectiveness of non-immersive virtual reality simulation in learning knowledge and skills for nursing students: meta-analysis," Clinical Simulation in Nursing, 2023, 76, pp. 26-38, doi: 10.1186/s12909-023-04662-x
- [22] N. Aghaei, H. Babamohamadi, M. R. Asgari and N. Dehghan-Nayeri, "Barriers to and facilitators of nursing students' adjustment to internship: a qualitative content analysis," Nurse Education Today, 2021, 99, 104825, doi: 10.1016/j.nedt.2021.104825
- [23] N. L. Andersen, R. O. Jensen, S. Posth, C. B. Laursen, R. Jørgensen and O. Graumann, "Teaching ultrasound-guided peripheral venous catheter placement through immersive virtual reality: an explorative pilot study," Medicine, 2021, 100(27), e26394, doi: 10.1097/MD.00000000026394
- [24] R. Shadiev and D. Li, "A review study on eye-tracking technology usage in immersive virtual reality learning environments," Computers & Education, 2023, 196, 104681, doi: 10.1016/j.compedu.2022.104681
- [25] M. L. Lai, M. J. Tsai, F. Y. Yang, C. Y. Hsu, T. C. Liu, S. W. Lee and C. C. Tsai, "A review of using eye-tracking technology in exploring learning from 2000 to 2012," Educational Research Review, 2013, 10, pp. 90-115, doi: 10.1016/j.compedu.2022.104681
- [26] G. E. Raptis, C. Fidas and N. Avouris, "Effects of mixed-reality on players' behaviour and immersion in a cultural tourism game: a cognitive processing perspective," International Journal of Human-Computer Studies, 2018, 114, pp. 69-79, doi: 10.1016/j.ijhcs.2018.02.003
- [27] M. Rubin, S. Minns, K. Muller, M. Tong, M. Hayhoe and M. Telch, "Avoidance of social threat: Evidence from eye movements during a public speaking challenge using 360°-video," Behaviour Research and Therapy, 2020, 134, 103706, doi: 10.1016/j.brat.2020.103706
- [28] C. Sharma, P. Bhavsar, B. Srinivasan and R. Srinivasan, "Eye gaze movement studies of control room operators: A novel approach to

improve process safety," Computers & Chemical Engineering, 2016, 85, pp. 43-57, doi: 10.1016/j.compchemeng.2015.09.012

- [29] M. J. D'Souza and P. Rodrigues, "Extreme pedagogy: an agile teaching-learning methodology for engineering education," Indian Journal of Science and Technology, 2015, 8(9), 828, doi: 10.17485/ijst/2015/v8i9/53274
- [30] J. Y. Ito, F. F. Silveira and A. C. Akkari, "Lean-Agile Education: A Bibliometric Analysis," In: Y. Iano, O. Saotome, G. L. Kemper Vásquez, C. Cotrim Pezzuto, R. Arthur and G. Gomes de Oliveira (Eds.), Proceedings of the 7th Brazilian Technology Symposium (BTSym'21), Cham: Springer International Publishing, 2023, pp. 378-385, doi: 10.1007/978-3-031-04435-9_38
- [31] A. López-Alcarria, A. Olivares-Vicente and F. Poza-Vilches, "A systematic review of the use of agile methodologies in education to foster sustainability competencies," Sustainability, 2019, 11(10), 2915, doi: 10.3390/su11102915
- [32] A. Artyukhov, I. Volk and T. Vasylieva, "Agile methodology in higher education quality assurance system for SDGs 4, 8 and 9 achievement: national experience," CTE Workshop Proceedings, 2022, 9, pp. 81-94, doi: 10.55056/cte.105
- [33] R. Glassey, P. Haller and M. Wiggberg, "Agile and adaptive learning via the ECK-model in the software development academy," In: CEUR Workshop Proceedings, 2018, 2193, https://ceur-ws.org/Vol-2193/paper8.pdf
- [34] D. Parsons and K. MacCallum, "Agile education, lean learning," In: D. Parsons and K. MacCallum (Eds.), "Agile and Lean Concepts for Teaching and Learning," Singapore: Springer Singapore, 2019, pp. 3-23, doi: 10.1007/978-981-13-2751-3_1
- [35] P. Salza, P. Musmarra and F. Ferrucci, "Agile methodologies in education: a review," In: D. Parsons and K. MacCallum (Eds.), "Agile and Lean Concepts for Teaching and Learning," Singapore: Springer Singapore, 2019, pp. 25-45, https://link.springer.com/chapter/10.1007/978-981-13-2751-3_2
- [36] V. Liubchak, Y. Zuban and A. Artyukhov, "Immersive learning technology for ensuring quality education: Ukrainian university case," CTE Workshop Proceedings, 2022, 9, pp. 336-354, https://ceurws.org/Vol-3085/paper12.pdf
- [37] H. Yarovenko, Y. Bilan, S. Lyeonov and G. Mentel, "Methodology for assessing the risk associated with information and knowledge loss management," Journal of business economics and management, 2021, 22(2), pp. 369-387, doi: 10.3846/jbem.2021.13925
- [38] E. Dick, "The promise of immersive learning: Augmented and virtual reality's potential in education," ITIF 2021, https://euagenda.eu/publications/2021-ar-vr-education
- [39] R. Gurbutt, B. Smith, D. Gurbutt, J. Duckworth and H. Partington, "Socially immersive learning: a new pedagogy," In: INTED 2019 Proceedings. 13th International Technology, Education and Development Conference, 11-13 March, Valencia, Spain, 2019, pp. 405-411, doi: 10.21125/inted.2019.0181
- [40] Digital Learning Institute. What is immersive learning? The future of online learning, 2024, https://www.digitallearninginstitute.com/blog/what-is-immersivelearning
- [41] IXR Labs. Immersive education: Unlocking new possibilities with XR, 2024, https://www.ixrlabs.com/blog/immersive-education-withextended-reality
- [42] N. Potkalitsky, "Creating immersive learning experiences with AI tools," 2024, LinkedIn, https://www.linkedin.com/pulse/creatingimmersive-learning-experience-ai-tools-nick-potkalitsky-phd-fwyge
- [43] N. Krueger, "How immersive learning prepares students for the future," ISTE, 2023, https://iste.org/blog/how-immersive-learningprepares-students-for-the-future
- [44] P. Beach and J. McConnel, "Eye tracking methodology for studying teacher learning: a review of the research," International Journal of Research & Method in Education, 2019, 42(5), pp. 485-501, doi: 10.1080/1743727X.2018.1496415
- [45] A. Erickson, G. Bruder and G. Welch, "Analysis of the saliency of color-based dichoptic cues in optical see-through augmented reality," IEEE Transactions on Visualization and Computer Graphics, 2022, pp. 1-16, doi: 10.1109/TVCG.2022.3195111
- [46] K. Cherry, "How we use selective attention to filter information and focus," Verywell Mind, 2023, https://www.verywellmind.com/whatis-selective-attention-2795022

2024 14TH INTERNATIONAL CONFERENCE ON

ADVANCED COMPUTER INFORMATION TECHNOLOGIES

CESKE BUDEJOVICE, CZECH REPUBLIC 19-21 SEPTEMBER 2024

> PART NUMBER: CFP24S92-PRT

ISBN: 979-8-3503-5003-6

ISSN: 2770-5218

ORGANIZERS:

Jihočes v Česky Univers in Česk

Wroclaw University of Economics and Business

Catholic university in Ružomberok

WEST UKRAINIAN NATIONAL UNIVERSITY, UKRAINE UNIVERSITY OF SOUTH BOHEMIA, CZECH REPUBLIC WROCLAW UNIVERSITY OF ECONOMICS AND BUSINESS, POLAND DEGGENDORF INSTITUTE OF TECHNOLOGY, GERMANY CATHOLIC UNIVERSITY IN RUŽOMBEROK, SLOVAKIA CZECHOSLOVAKIA SECTION IEEE \ COMPUTER CHAPTER, C16

2024 14th International Conference on ADVANCED COMPUTER INFORMATION TECHNOLOGIES ACIT'2024

Conference Proceedings

Ceske Budejovice, Czech Republic 19-21 September 2024

INTERNATIONAL TECHNICAL PROGRAMME COMMITTEE

Honorary Chairmen

- Desyatnyuk Oksana Rector of West Ukrainian National University, Ukraine
- Kozák Pavel Rector of University of South Bohemia, Czech Republic

Co-Chairmen

- Dyvak Mykola West Ukrainian National University, Ukraine
- Dostálek Libor Czech Technical University in Prague, Czech Republic
- Rudolf Vohnout University of South Bohemia, Czech Republic
- Rot Artur Wroclaw University of Economics and Business, Poland
- Dorner Wolfgang Deggendorf Institute of Technology, Germany

Programme Committee

- Aizenberg Igor, USA
- Belikov Juri, Estonia
- Baranek Ladislav, Czech Republic
- Berl Andreas, Germany
- Bodyanskiy Yevgeniy, Ukraine
- Bukovský Ivo, Czech Republic
- Buyak Lesia, Ukraine
- Czarnowski Ireneusz, Poland
- Dimitrov Georgi, Bulgaria
- Eisner Jan, Czech Republic
- Evaggelos Saprikis, Greece
- Fesl Jan, Czech Republic
- Fischer Andreas, Germany
- Fiser Petr, Czech Republic
- Górecki Krzysztof, Poland
- Grebennik Igor, Ukraine
- Haider M. al-Khateeb, England
- Hernes Marcin, Poland
- Ioannis Antoniadis, Greece
- Ivanek Jiri, Czech Republic
- Janecek Jan, Czech Republic
- Karpinski Mikolaj, Poland
- Kasianchuk Mykhailo, Ukraine
- Klymash Mykhailo, Ukraine
- Komar Myroslav, Ukraine
- Kornilowicz Artur, Poland

- Konstantinos Spinthiropoulos, Greece
- Kuznetsov Oleksandr, Italy
- Lange Tatjana, Germany
- Liashenko Olena, Ukraine
- Lubchik Leonid, Ukraine
- Lupenko Serhii, Ukraine
- Markovic Vera, Serbia
- Martsenyuk Vasyl, Poland
- Melnyk Anatoliy, Ukraine
- Melnyk Andriy, Ukraine
- Melnyk Viktor, Poland
- Mukerji Abhimanyu, USA
- Mukherjee Amrit, Czech Republic
- Nikitchenko Mykola, Ukraine
- Novak Milan, Czech Republic
- Osowski Stanislaw, Poland
- Owedyk Jan, Poland
- Panić Stefan, Serbia
- Paprzycki Marcin, Poland
- Pasichnyk Roman, Ukraine
- Patel Nikhil, USA;
- Peleshko Dmytro, Ukraine
- Petlenkov Eduard, Estonia
- Prochazka Ales, Czech Republic
- Pukas Andriy, Ukraine

- Rasheed Jawad, Turkey
- Rihova Zora, Czech Republic
- Romaniuk Oleksandr, Ukraine
- Roushdy Mohamed, Egypt
- Shakhovska Natalia, Ukraine
- Skrbek Miroslav, Czech Republic
- Smilic Marko, Serbia

- Stakhiv Petro, Ukraine
- Starzyński Jacek, Poland
- Stepashko Volodymyr, Ukraine
- Svata Vlasta, Czech Republic
- Szczepaniak Piotr, Poland
- Vojtech Josef, Czech Republic
- Yatskiv Vasyl, Ukraine

Organizing Committee

- Dyvak Andriy (West Ukrainian National University, Ukraine);
- **Dyvak Mykola** chairman of the editorial board (West Ukrainian National University, Ukraine);
- Kulish Vladimir member of the local organizing committee (University of South Bohemia, Czech Republic);
- Manzhula Volodymyr (West Ukrainian National University, Ukraine);
- Melnyk Andriy co-chairman of the organizing committee, member of the editorial board (West Ukrainian National University, Ukraine);
- **Mukherjee Amrit** member of the local organizing committee (University of South Bohemia, Czech Republic);
- Papa Olexander (West Ukrainian National University, Ukraine);
- **Pukas Andriy** member of the editorial board (West Ukrainian National University, Ukraine);
- Romanets Ihor (West Ukrainian National University, Ukraine);
- Shevchuk Ruslan co-chairman of the organizing committee, vice-chairman of the editorial board (West Ukrainian National University, Ukraine / University of Bielsko-Biala, Poland);
- Vohnout Rudolf chairman of the local organizing committee (University of South Bohemia, Czech Republic).

Reviewers

- Andriychuk Mykhaylo
- Belikov Juri
- Beranek Ladislav
- Bodyanskiy Yevgeniy
- Buiak Lesia
- Dimitrov Georgi
- Dostálek Libor
- Dyvak Mykola
- Eisner Jan
- Fischer Andreas
- Grebennik Igor
- Hoholyuk Oksana
- Honchar Lyudmyla
- Ivánek Jiří
- Karpinski Mikolaj
- Kasianchuk Mykhailo
- Krepych Svitlana
- Kovalchuk Olha
- Koval Vasyl
- Komar Myroslav
- Liashenko Olena
- Lo Man Fung
- Lupenko Serhii
- Lyubchyk Leonid
- Manzhula Volodymyr
- Melnyk Anatoliy

- Melnyk Andriy
- Melnyk Bohdan
- Melnyk Viktor
- Nikitchenko Mykola
- Panic Stefan
- Pasichnyk Roman
- Petlenkov Eduard
- Pitsun Oleh
- Porplytsya Natalia
- Pukas Andriy
- Říhová Zora
- Romaniuk Oleksandr
- Rot Artur
- Segin Andriy
- Shevchuk Ruslan
- Skrbek Miroslav
- Spivak Iryna
- Stakhiv Petro
- Stasiv Iryna
- Stepashko Volodymyr
- Tymchyshyn Vasyl
- Walaszczyk Ewa
- Yakymenko Igor
- Yatskiv Vasyl

CONTENTS

SECTION 1

Mathematical Models of Objects and Processes

Software Architecture for Process Simulation in Biogas Plants
Software for Implementing the Directed Cone Optimization Method
Reliability and Continuity of Hybrid Power Supply Systems Included Renewable Energy Sources
Dmytro Sobchuk, Lubov Dobrovolska, Nadiia Kuts, Andrii Hadai, Mykola Romaniuk, Ihor Kundyra
Assessment of Probabilistic Characteristics for the Fire Initial Stage Detection Using Thermal Detectors
Gennadii Sokolov, Maksym Zaliskyi, Yuliia Petrova, Ivan Yashanov
Enhancing Mood Detection in Textual Analysis through Fuzzy Logic Integration
Realisation of a Given Trucks Loading Logic using a Fuzzy Decision Making Model27 Igor Grebennik, Oleksii Kovalenko
Computer Modeling of the Dynamics of Epidemiological Processes
Mathematical Modeling of Biomass and Carotenoid Accumulation in Microalgae
Modeling Dynamic Properties of an Alkaline Electrolyzer40 Krzysztof Górecki, Przemysław Ptak
Mathematical and Fuzzy Model for Slag Thickness Control Automation in Gas-stirred Ladle45 Kyrylo Krasnikov
An Integrated Agent-Based Modelling and Machine Learning Framework for Enhancing the Digital Service Access of Minority Ethnic Communities
Modeling the Radiation Characteristics of a Set Chaotically Placed Microparticles
Modeling the Interaction of Unmanned Aerial Vehicles in a Swarm as an Object with Distributed Parameters
Mykola Dyvak, Iryna Spivak, Taras Dyvak, Oleksandr Kindzerskyi
Interval Model of pH Dynamics of the Fermentation Medium
Implementation of Parallel Computation for Identification of Interval Models based on Multi-core Parallelism and CUDA Technology
Inductive and Deductive Approaches to Modeling the Daily Cycle of Carbon Monoxide Concentrations Due to Air Pollution by Motor Vehicles

Mykola Dyvak, Roman Pasichnyk

Identification of the Mathematical Model of the pH Environment in the Biogas Plant Based on the Application of the Swarm Intelligence Method
Mykola Dyvak, Svitlana Krepych, Volodymyr Manzhula, Tsovka Yurii, Pavlo Popovych, Vadym Zabchuk
A Cloud-Based Software Architecture for Mathematical Modeling Based on Interval Data
Analysis
Fuzzy System of IT-Project Works Priority94
Nadia Vasylkiv, Lesia Dubchak, Mikolaj Karpinski, Iryna Turchenko, Liubomyr Flud, Tetiana Nadvynychna
Machine Learning Algorithms Application for Fixed-Income Market Analysis: Cross Countries Comparisons
Natalia Chernova, Olena Serhiienko, Maryna Mashchenko, Iryna Lisna, Olha Haponenko
Forecasting Key Indicators of EU International Trade Based on Hybrid Models that Combine SARIMAX and ANN
Nataliia Dziubanovska, Andrii Aliluiko, Andrii Tymkiv
Simulation of Gas Filtration Processes in Fractured-Porous Media
Mathematical Modeling of the Influence of Natural Factors on the Durability of Critical Structural Elements
The Investigation of the Long-Term and Short-Term Cointegration Effects between GDP and Migration
Migration
Migration
Migration 116 Olena Rayevnyeva, Kostyantyn Stryzhychenko, Olha Brovko 116 Analysis and Modeling of Structural Changes in Ukrainian Higher Educational System 122 Olena Rayevnyeva, Silvia Matusova, Olha Brovko 120 Mathematical Methods for Reducing the Search Space for Solutions in "Big Data" Analysis and Management 129
Migration 116 Olena Rayevnyeva, Kostyantyn Stryzhychenko, Olha Brovko 116 Analysis and Modeling of Structural Changes in Ukrainian Higher Educational System 122 Olena Rayevnyeva, Silvia Matusova, Olha Brovko 120 Mathematical Methods for Reducing the Search Space for Solutions in "Big Data" Analysis and Management 129 Olena Syrotkina, Ziad Kobti, Mykhailo Aleksieiev, Dmytro Moroz, Iryna Udovyk, Andrii Martynenko
Migration 116 Olena Rayevnyeva, Kostyantyn Stryzhychenko, Olha Brovko 116 Analysis and Modeling of Structural Changes in Ukrainian Higher Educational System 122 Olena Rayevnyeva, Silvia Matusova, Olha Brovko 120 Mathematical Methods for Reducing the Search Space for Solutions in "Big Data" Analysis and Management 129
Migration 116 Olena Rayevnyeva, Kostyantyn Stryzhychenko, Olha Brovko Analysis and Modeling of Structural Changes in Ukrainian Higher Educational System 122 Olena Rayevnyeva, Silvia Matusova, Olha Brovko Mathematical Methods for Reducing the Search Space for Solutions in "Big Data" Analysis and Management 129 Olena Syrotkina, Ziad Kobti, Mykhailo Aleksieiev, Dmytro Moroz, Iryna Udovyk, Andrii Martynenko 129 Olga Ivanets, Mikle Burichenko, Maryna Arkhyrei, Iryna Morozova, Pavlo Kulakov, Salimov Rynat 136 Neuro-Fuzzy System With Adaptive Membership-Activation Functions For Pattern Recognition 140
Migration 116 Olena Rayevnyeva, Kostyantyn Stryzhychenko, Olha Brovko 116 Analysis and Modeling of Structural Changes in Ukrainian Higher Educational System 122 Olena Rayevnyeva, Silvia Matusova, Olha Brovko 122 Mathematical Methods for Reducing the Search Space for Solutions in "Big Data" Analysis and Management 129 Olena Syrotkina, Ziad Kobti, Mykhailo Aleksieiev, Dmytro Moroz, Iryna Udovyk, Andrii Martynenko 129 Quantitative Analysis of Recurrent Plots for Assessing the State of Dynamic Systems 136 Olga Ivanets, Mikle Burichenko, Maryna Arkhyrei, Iryna Morozova, Pavlo Kulakov, Salimov Rynat 136 Neuro-Fuzzy System With Adaptive Membership-Activation Functions For Pattern
Migration 116 Olena Rayevnyeva, Kostyantyn Stryzhychenko, Olha Brovko Analysis and Modeling of Structural Changes in Ukrainian Higher Educational System 122 Olena Rayevnyeva, Silvia Matusova, Olha Brovko Mathematical Methods for Reducing the Search Space for Solutions in "Big Data" Analysis and Management 129 Olena Syrotkina, Ziad Kobti, Mykhailo Aleksieiev, Dmytro Moroz, Iryna Udovyk, Andrii Martynenko 136 Olga Ivanets, Mikle Burichenko, Maryna Arkhyrei, Iryna Morozova, Pavlo Kulakov, Salimov Rynat 140 Neuro-Fuzzy System 144 Olha Chala, Ivan Izonin, Iryna Pliss, Yevgeniy Bodyanskiy 144
Migration 116 Olena Rayevnyeva, Kostyantyn Stryzhychenko, Olha Brovko 116 Analysis and Modeling of Structural Changes in Ukrainian Higher Educational System 122 Olena Rayevnyeva, Silvia Matusova, Olha Brovko 122 Mathematical Methods for Reducing the Search Space for Solutions in "Big Data" Analysis and 129 Olena Syrotkina, Ziad Kobti, Mykhailo Aleksieiev, Dmytro Moroz, Iryna Udovyk, Andrii Martynenko 129 Olena Syrotkina, Ziad Kobti, Mykhailo Aleksieiev, Dmytro Moroz, Iryna Udovyk, Andrii Martynenko 136 Olga Ivanets, Mikle Burichenko, Maryna Arkhyrei, Iryna Morozova, Pavlo Kulakov, Salimov Rynat 136 Neuro-Fuzzy System With Adaptive Membership-Activation Functions For Pattern Recognition 140 Olha Chala, Ivan Izonin, Iryna Pliss, Yevgeniy Bodyanskiy 144 Association Rules Mining in Crime Data Analysis 144 Olha Kovalchuk, Serhiy Banakh, Mariia Masonkova, Andrii Kolesnikov, Pavlo Chopyk, Pavlo 143 Application of Neural Networks in Digital Data Processing 150

Roman Yuzefovych, Ihor Javorskyj, Oleh Lychak, Yury Torba, Yevgen Sbrodov, Bohdan Komarnytskyi

- Recognition Pattern Analysis of Astronomical Object Forms Using the Analytical Model......162 Sergii Khlamov, Vadym Savanevych, Volodymyr Troianskyi, Igor Grebennik, Yehor Bondar, Yuriy Netrebin

Optimal Planning of Operation Modes of Gas Transmission Systems.......182 Yaroslav Pyanylo, Nazar Prytula, Olga Khymko, Myroslav Prytula, Zoia Prytula

SECTION 2

Information in Economy and Management

Finfluencer: Exploring the Untapped Influence of Financial Influencers
ICT Investment Impact on Economic Growth: Comparing Developing and Advanced Economies
Andrii Oliinyk, Tetiana Melnyk, Kateryna Kovtoniuk, Liudmyla Huliaieva, Ellana Molchanova, Ianina Tkachenko
Application of the Apparatus of Fuzzy Logic for Assessing the Development of Human Capital in Ukraine
Contemporary Trends in the Information Space of Fiscal Policy209 Andriy Krysovatyy
Information Support for Property Tax Administration: Ukrainian Realities and European Experience
Transformation of the Financial Sector in the Context of the Digital Economy
Practical Comparison of UiPath and Power Automate by Creating an Automation Use Case from Logistics

Bernhard Axmann, Sevgin Ahmed, Dzhelil, Asna Najeeb

Barriers to Trust in AI: A Study of the Explainability Technologies Adoption in Banks230 Bogdan Adamyk, Vladlena Benson, Oksana Adamyk, Bożena Fraczek, Anitha Chinnaswamy
Building an Intellectualized Analytical Module for Evaluating the Effectiveness of Public Spending on Corruption Prevention Using an Ontological Approach
AI and Big Data in Analyzing Family Business Governance: Non-Family CEOs' Impact on Accounting Irregularities
Model of Product Displacement from the Market: Market Failure under Complete Information
Integration of Digital Economy, Knowledge Economy and Circular Economy in the conditions of Industry 5.0
Fuzzy Model for Complex Assessment of the Risk of Enterprise Bankruptcy254 Inna Chaikovska, Pavlo Hryhoruk, Nila Khrushch, Svitlana Grygoruk, Taras Tkach, Maksym Chaikovskyi
Artificial Intelligence as an Organized Assembly of Information Technologies for the Goals of Sustainable Development
Optimization of Renewable Energy Development Strategies in Ukraine
Fiscal Policy Activity for Digital Sustainable Development Support
Digitalization in Venture Capital Relocation in Wartime
Cost-effectiveness of Digitalisation in Europe
The Use of Hypergraph for Collaborative Filtering Recommendation Method
Digital Transformation of the Process of Monetary Evaluation of Agricultural Land
Optimization of Marketing Department Activities using Machine Learning Technologies293 Lesia Buiak, Mykola Shynkaryk, Yurii Semenenko, Kateryna Pryshliak
Modeling in the Processes of Assessment and Forecasting of Technological Aspects of Sustainable Enterprise Development
Methods and Models in Organizational Management of Production Environmental Friendliness

Lesia Buiak, Viktor Lopatovskyi, Liudmyla Yemchuk, Volodymyr Dzhulii, Larysa Dzhulii, Valentyna Bobrovnyk

- **Optimisation of SVD++ Method based on Adam's Algorithm for Small E-commerce Platforms ..318** Mykola Pylypchuk, Natalia Porplytsya, Iryna Stasiv, Lyudmyla Honchar, Viktor Sopiha, Ievgen Bondarenko
- Energy Landscape of the European Union: Assessing Convergence and Import Dependency326 Nataliia Dziubanovska, Vadym Maslii, Iryna Hural

- **Information Potential and Marketing Innovations in the Enterprise Management System.......361** Olga Gonchar, Irina Zakryzhevska , Andrii Bitiy, Irma Dikhaminjia, Anton Berdychevskyi, Halyna Nahorniak

Method and	Software f	for Managing	HR	Processes	of a	a Company	using	the	Wolf	Pack
Algorithm			•••••	•••••	••••••			••••••		376

Rostyslav Mukha, Natalia Porplytsya, Iryna Stasiv, Andriy Kovalets, Roksolana Mukha, Zoriana Pushkar

- Informational-Reflective Management of Mentoring Activities Development in the Enterprise.....389 Sviatoslav Kniaz, Vasyl Brych, Nelli Heorhiadi, Sergey Shevchenko, Roman Dzvonyk, Yuriy Tyrkalo

- An Examination of the Impact of Institutional Environment on Socio-economic Development in Candidate Countries for EU Membership using Canonical Correlation Analysis414 Tetiana Cherkashyna

Money Supply vs Inflation Expectations: What Better Explains Inflation Behavior in Ukraine....443 Viktor Koziuk, Nataliia Dziubanovska, Volodymyr Uhryn

SECTION 3

Cyber Security

Navigating IoT Security	Assessment:	Current	Methods,	Challenges	and Future	Directions	471
Alhassan Abdulhamid,	Sohag Kabir,	Ibrahim	Ghafir, Ci	Lei			

- A Method of Detecting Anomalies in IP Phone Traffic Based on Ontology of Voip Messages.......485 Andriy Melnyk, Ruslan Shevchuk, Ihor Romanets, Igor Yakymenko, Serhiy Voznyak, Vasyl Luchyk

A McEliece-type Cryptosystem Using a Random	Inverse Matrix and an Error Vector With Large
Hamming Weight	
Farshid Haidary Makoui, T. Aaron Gulliver, Moh	

Hierarchical Encryption in a Residual Number System	
Igor Yakymenko, Olesya Martyniuk, Serhii Martyniuk, Andrii Martyniuk, Yurii Yakyme	
Mykhailo Kasianchuk	,

Construction of Nonlinear Cryptographic Protocol based on Multiple Linear Cryptosystems500 Ihor Muliar, Volodymyr Anikin, Vasyl Yatskiv, Serhii Kulyna, Petro Humennyy, Halyna Kulyna

Enhancing Side-Channel Attacks Prediction using Convolutional Neural Networks	505
Khalid Alemerien, Sadeq Al-Suhemat, Fadi Alsuhimat, Enshirah Altarawneh	

Latent Semantic Analysis for Feature Selection: A Proposed Approach for Anomaly Detect	ion in
Network Traffic	517
Moemedi Lefoane, Ibrahim Ghafir, Sohag Kabir, Irfan-Ullah Awan	

Non-Negative Matrix Factorisation for Feature Selection: A Proposed Approach for the Detection
of Multi-Stage Attacks
Moemedi Lefoane, Ibrahim Ghafir, Sohag Kabir, Irfan-Ullah Awan

A Cryptographic Encryption Scheme based on a Pythagorean Triplets Manufacturin Formula	-
Crypto-Steganographic System based on the Solver of the Square Root of a Prime Number53 Nataliia Kukharska, Andrii Lagun, Oleksandr Yashchyk	65
Method for Countering Attacks on the GNSS System in Maritime Transport	i9
Research Hotspots and Trend Analysis of Social Media Security on CiteSpace Knowledg Graph	-
Encryption using Residue Number System: Research Trends and Future Challenges	52
The Built on Feistel Network Architecture Block Ciphers Modification	50
Assessing Network Security Risks: A Technological Chain Perspective	55
Towards UAT Methodology on Cryptographic Library Assessment	′1

SECTION 4 Specialized Information and Computer Systems

Augmented Reality Simulator for Recurrent Laryngeal Nerve Identification during Thyroid Surgery
Andriy Pukas, Vitalii Smal, Andriy Dyvak, Iryna Voytyuk, Ihor Deikalo, Nadiia Hrynkiv
SGD: Smart Gas Leakage Detection System for Home Safety
Configuration Tool for CI/CD Pipelines and React Web Apps
Navigation and Communications Protocols for Autonomous Intelligent Mobility
Vehicle Positioning with Geospatial Indexing597 Ivan Ostroumov
Airplane Trajectory Data Processing with Actual Weather Data601 Ivan Ostroumov, Tamara Galabir
Determination of Survivability Indicator of Unmanned Aerial Vehicle Acoustic Detection System
Leonid Ozirkovskyy, Bohdan Volochiy, Nazar Pryymak, Yurii Zhuk
Fuzzy System of Wind Turbine Defect Image Processing 610 Lesia Dubchak, Anatoliy Sachenko, Carsten Wolff, Nadia Vasylkiv
Optimization of Precision and Speed in ADCP614

Lesya Mychuda, Zynowij Mychuda, Tetiana Korobeinikova, Ihor Zhuravel, Olexandr Romanyuk, Sergii Kotlyk

Switched-capacitor ADC Error and Performance Analysis Optimization of Precision and Speed in ADCP
Lesya Mychuda, Zynowij Mychuda, Tetiana Korobeinikova, Ihor Zhuravel, Olexandr Romanyuk, Oksana Romanyuk
Method and Algorithm of Successive Approximation Analog-to-Digital Conversion of Information in Management Systems
Algorithm and Hardware for Automatic Adjustment of Electric Signal to Identify the Recurrent
Laryngeal Nerve
Algorithm for Enterprise Greenhouse Gas Emissions Control and Management System631 Mykola Striletskyi
Machine Learning-based Approach to Transcribing Language Units
Accelerated Vector Normalization for Rendering Tasks
Method for Improving the Performance of Linear Interpolation Implementation using the Formation of Two-step Movements
Adaptive Random Field Scanning System
Visualization of Code Metrics for Code Quality and Assessment of Breach of Standards
Software System for Supporting Art Therapy Processes Using Augmented Reality Technologies 660 Roman Tykhyi, Yaroslav Tsapiv, Mykola Dyvak, Dariya Popovych, Andrii Havrylenko, Tetiana Husieva
A Context-Aware Approach and Software for Notifications about Personal Safety
Enabling Cloud-based Data Analysis for Analog Metal Detectors using Microcomputer Systems 670 Serhii Robotko, Oleksandr Susak, Andrii Topalov, Oleksandr Gerasin, Artem Buznyk, Oleksiy Zivenko
Computerized Lathe Control System Based on Internet of Things Technology
Data Management Service Architecture of the Software for Modeling Harmful Emissions in
Soil
Efficient OAM-Based Programmable Hardware Accelerator Architecture

Viktor Melnyk, Anatoliy Melnyk, Mohammad Rahma

SECTION 5

Artificial Intelligence and Cognitive Systems

One Hot Encoding and Hashing_trick Transformation – Performance Comparision
Synthetic Training-Data Generation for ML-based Process Mining Tools
Deep Learning in Undeground Mines – A Review
Analysis of Methods and Means of Identifying Infrastructure Anomalies using Unmanned Aerial Vehicles within the Scope of a Smart City
Predicting Prosumption Survey Response using Machine Learning
A Smart Video Surveillance Technique using Artificial Intelligence to Detect Forgery and Violence in Real-Time Videos
FKD-YOLO: A Lightweight Student Classroom Behavior Recognition Algorithm729 Jinquan Yang, Zexi Chen, Orest Kochan, Olha Fedchyshyn
The Importance of Clustering in Word-Sense Induction
Design and Implementation of Road Monitoring System using Embedded System and IoT739 Md Mehedi Hassain, Md. Fakwer Uddin Mazumder, Kazi Mohammad Abdullah, Md Reyad Arefin, Md. Arafatur Rahman
Design and Implementation of a SCADA Based Boiler Monitoring and Controlling System744 Muaz Muhammad, Md Mehedi Hassain, Md. Khaled Hossain Jahin, Md. Ariful Islam, Md. Arafatur Rahman, Kazi Mohammad Abdullah
A Federated Learning-Based Approach for Classification of Histopathology Images
Fuzzy Control System of Arc Furnace Modes With Phase Load Equalization
A Method of Constructing Ensemble Classifiers for Recognizing Audio Data of Various Nature
Oleksandr Andronati, Svitlana Antoshchuk, Oksana Babilunha, Olena Arsirii, Anatolii Nikolenko, Kyrylo Mikhalev
Machine Learning Models for Information Support in the Justice System

Automatic Delineation of Burned	Forest Areas f	rom Satellite	Imagery t	o Analyze	and Manage
Wildfires					766
Peter Hofmann, Nichita Trofanisin,					

Group Recommendation Method for Hypergraph Message Passing Meta-path Mask......772 Sheng Qi, Rong Gao, Xiongkai Shao, Donghua Liu, Xiang Wan, Orest Kochan

An Improved Bayesian Learner Based On Weighted Beta Kernel Density Estimation	796
Yuanhu Liu, Zhiwei Ye, Wanfang Bai, Orest Kochan, Yuquan Zhang, Donglei Xu	

Traffic Flow Prediction Model Based on Gated Temporal Attention and Down-samplingConvolutional NetworkZuhua Li, Siwei Wei, Zexi Chen, Lei Yu, Beier Luo, Haibo Wang

SECTION 6

Information Technology in Education

Employers' Expectations of students' generative AI skills: A Student Perspective	809
Anatolijs Prohorovs, Olga Tsaryk, Levs Fainglozs	

Automatic Generation of Problem Scenarios for Assessment of Methodological Knowledge815 Andriy Melnyk, Andriy Hirnyak, Halyna Hirnyak, Mariya Mudrak, Ihor Hevko, Yuriy Popovych

- **Digital Competence of Specialists: Development Technology in a Higher Education Institution ...834** Halyna Henseruk, Serhii Martyniuk, Oksana Vasylenko, Yuliia Henseruk, Viktor Henseruk, Valerii Habrusiev

The Conceptual Information Model for Enhancing Social Mobility among Students through the Digitalization of the University's Educational Space
Model of Immersive Educational Instruments of Behavioral Analysis and Management in Distributed Educational Teams
Image Processing Techniques in a Python Course based on Ancient Manuscript Processing854 Paulina T. Tsvetkova, Georgi P. Dimitrov, Iva Kostadinova, Katia Rasheva–Yordanova, Lyubomir Gotsev, Pavel S. Petrov
The Concept and Role of Digitalization in the Realization of the Human Right to Education: A Comparative Legal Perspective
Principles for Constructing the Architecture of Information Ecosystems in Education
AUTHOR'S INDEX