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Abstract: This paper analyses the stock market linkages of the selected Central and Eastern European 

(CEE) markets (Czech Republic – PX, Hungary – BUX and Poland – WIG20) with the 

Western European stock market represented by the German DAX and studies also the co-

movement between the individual CEE countries’ stock markets. The dynamic conditional 

correlation (DCC) models were used to model the co-movements and thereafter in some 

cases the smooth transition analysis was carried out in order to capture how these correla-

tions evolve over time. The analysis was based on weekly data over the sample period Jan-

uary 3rd, 1997 – November 29th, 2013 (883 observations). In the first step the asymmetric 

univariate autoregressive conditional heteroscedasticity model of Glosten, Jagannathan 

and Runkle (GJR) was estimated for individual stock return series. The results of the DCC-

GJR models estimated in the next step show almost in all analysed cases the increasing lev-

el of conditional correlations. In four cases (BUX_DAX, WIG20_DAX, BUX_PX and 

PX_WIG20) the DCC series were identified to be nonstationary – I(1) and nonlinear lo-

gistic smooth transition regression (LSTR) model was used to capture the gradual transi-

tion towards greater co-movements and to find out if the increasing level of DCC could be 

attributed to the accession of these countries into the European Union (EU) in May 2004. 

Keywords: stock market linkages, dynamic conditional correlation, logistic smooth transition regres-

sion model, Central and Eastern European markets 

 

1. Introduction 

Stock market linkages have been attracting the attention of analysts for a long time. 
There exist plenty of studies dealing with this issue using various ways and methods of 
analysis in order to capture how shocks from one market can be transmitted to another mar-
ket(s). It is also known that the correlation of emerging markets with the developed markets 
is relatively low and returns in emerging markets are much higher than in the developed 
markets. These issues provide opportunities for international diversification and present one 
of the reasons explaining the capital inflow into the emerging markets (see e.g. [6], [9]). To 
analyse the co-movements of financial returns from different markets, especially to study 
volatility spillover, i. e. if and how the shocks from one stock market influence the volatility 
development of the other market is an interesting and challenging issue. Forbes and 
Rigobon [11] distinguish the stock market co-movement during the periods of stability and 
during the periods after a shock or crisis. They use the term contagion to define 
„a significant increase in cross-market linkages after a shock to one country (or group of 
countries)“. So, in case that the co-movement does not increase significantly after a shock or 
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crisis, they speak about interdependence. They also present different methodologies for 
analysis of the stock market co-movements, e. g. cross-market correlation coefficients, Au-
toregressive Conditional Heteroscedasticity (ARCH) and Generalized ARCH (GARCH) 
models, cointegration techniques and direct estimation of specific transmission mechanisms. 
Nowadays it has become very popular the use of multivariate GARCH models. Different 
types of multivariate GARCH models can be found in the literature, e. g. VECH model, 
CCC model, BEKK model, GDC model, DCC model and AG-DCC model.1 

There exist quite a lot of studies analysing the co-movements2 of Central and Eastern 
European (CEE) stock markets (especially V4 countries stock markets  - Czech, Hungarian, 
Polish and Slovak) and their co-movement with the Western European stock markets using 
various techniques since it is commonly known that the CEE countries did during the last 
decades the significant steps in the area of financial reforms and also in the development of 
stock markets [18]. Kash-Haroutounian and Price [16] analysed the volatility of the stock 
markets in V4 countries using daily data based on several variants of univariate GARCH 
models and two types of multivariate GARCH models (CCC and BEKK).  Based on the 
CCC model they indicated significant conditional correlations between two pairs of coun-
tries: Hungary and Poland, and Hungary and the Czech Republic. The BEKK model showed 
evidence of return volatility spilovers from Hungarian to Polish stock market, but not vice 
versa. Égert and Kočenda [10] studied co-movements between three developed (France, 
Germany, the UK) and three emerging (the Czech Republic, Hungary and Poland) European 
stock markets based on five-minute tick intraday stock price data applying the DCC-
GARCH models. They detected very little systematic positive correlation between the 
Western European stock markets and the three CEE stock markets. Wang and Moore [20] 
investigated the extent of integration of three CEE stock markets with the aggregate euro-
zone market based on daily data using the bivariate DCC-EGARCH model. They proved a 
higher level of the stock market correlation during and after the Asian and Russian crisis 
and also during the period after integration of the CEE countries into the EU. Baumöhl et al. 
[1] analysed the integration of the stock markets of V4 countries with the German market 
and also mutual correlations between the stock markets of individual V4 countries using the 
DCC-GARCH model. Horvath and Petrovski [15] analysed the stock market co-movements 
between Western Europe (based on STOXX Europe 600 index) and some CEE countries 
(the Czech Republic, Hungary and Poland) and also some South Eastern European countries 
(Croatia, Macedonia, Serbia). They did the analysis based on daily data using the multivari-
ate GARCH models and confirmed a quite high level of stock market integration between 
the analysed CEE countries and Western Europe and significantly lower  conditional corre-
lations for the South Eastern European countries (with exception of Croatia). Chocholatá [7] 
analysed the stock market integration of Serbia and Slovakia with the Western European 
stock market (represented by the German DAX) based on the bivariate BEKK-GARCH(1,1) 
models using the daily data. For the Slovak stock market no stock market integration was 
identified, but in case of Serbian stock market the conditional correlations varied around 0,2 
during the whole analysed period what can indicate the low degree of integration. The im-
pact of the current financial crisis on the development of conditional correlation was not 
confirmed. Chocholatá [8] analysed the stock market integration of the CEE stock markets 

                                                 
1 For an extensive survey of multivariate GARCH models and also for the references to the authors of the-

se models see e. g. [3], [19].  
2 Some authors use the term „integration“  instead of „co-movement”, but we similarly as Lahrech and 

Sylwester [17] prefer the term „co-movement”. These two authors emphasize that although the analysis of 
evolution of correlations between equity markets is an important component in assessing whether markets are 
integrated, it is not the only one.  
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(Czech, Hungarian and Polish) vis-à-vis the Western European stock market (as a bench-
mark the French CAC40, German DAX and STOXX Europe 600 were used) based on 
BEKK-GARCH models using daily closing values of individual stock market indices and 
investigated was also the impact of the current global financial crisis on the corresponding 
conditional correlations. The values of conditional correlations from the BEKK-
GARCH(1,1) models ranged during the whole analysed period between 0,415 and 0,525, no 
higher intensity of the stock market integration was proved during the crisis period. 

In order to assess the low correlation as an indicator of low level of market integration 
and to check for any possible movement it shows towards integration, various authors use 
the Logistic Smooth Transition Regression (LSTR) models of Granger and Teräsvirta [14] 
which assume that market integration takes place as a gradual process. Chelley-Steeley [6] 
based on this methodology analysed the extent to which the CEE markets and Russia had 
become less segmented and found out that Hungary is becoming integrated the most quick-
ly. The LSTR models used in their analysis also e.g. Berben and Jansen [4] who analysed 
the weekly data from Germany, Japan, the UK and the US and found out that correlations 
among the German, UK and US stock markets had doubled, whereas the Japanese correla-
tions had remained the same during the analysed period. Lahrech and Sylwester [17] exam-
ined the stock market linkages of US and Latin American stock markets based on DCC-
GARCH models and LSTR models and they inter alia pointed to the fact that through the 
LSTR models it is possible to observe longer-run changes in the co-movements and not to 
assume that the long-run relationship is stable as in case of a cointegrated system. Durai and 
Bhaduri [9] used the same methodology for analysis of the correlation structure of the Indi-
an equity markets with that of world markets. Smooth transition conditional correlation 
models used in their analysis of stock market integration between new EU member states 
and the Euro-zone Savva and Aslanidis [18]. Baumöhl [2] investigated the stock market 
integration between CEE-4 stock marktes and the G7 markets based on AG-DCC model and 
LSTR model. 

The main aim of this paper is to study the stock market co-movements of the selected 
CEE markets (Czech Republic – PX, Hungary – BUX and Poland – WIG20) with the West-
ern European stock market represented by the German DAX and also to analyse the co-
movement between the individual CEE countries’ stock markets based on dynamic condi-
tional correlation (DCC) models and LSTR models. The effect of the EU entry on the level 
of conditional correlations is also assessed. The paper is organised as follows: Section 2 
investigates the methodological issues – univariate GJR-GARCH model, multivariate DCC-
GJR model and LSTR model, Section 3 describes the data used for analysis and empirical 
results and Section 4 concludes. 

2. Methodology 

In this section we will briefly describe some methodological issues connected with the 
subject of the paper – the returns calculation, specification of the conditional mean equation 
and DCC and LSTR models used for analysis.  

If we assume that tP  is e.g. the closing value of the stock index at time t  and tr  denotes 

logarithm of the corresponding stock return, the formula for calculation of the logarithmic 
stock return is as follows: 
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The logarithmic stock returns’ equation, i.e. the conditional mean equation, can be in 
general written as a Box-Jenkins ARMA(m,n) model3 of the form: 
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where 0ω  is unknown constant, jφ ( )mj ,...2,1=  and kθ ( )nk ,...2,1=  are the parameters of 

the appropriate ARMA(m,n) model, tε  is a disturbance term. 

The simplest way how to assess the stock market interdependencies is the calculation of 
the unconditional correlation coefficients between the pairs of returns. Since many authors 
have shown that international correlations are not constant over time, the models of time-
varying conditional correlations will be presented. In order to model the fluctuations of 
correlation and volatility between the analysed pairs of stock markets in this paper the DCC 
model is being used. In case that the calculated bivariate dynamic conditional correlations 
are non-stationary a smooth transition model can be applied. The LSTR models enable to 
find out when the structural change occurred and also time of its duration. 

2.1. Dynamic Conditional Correlation (DCC) Model 

The estimation of DCC model follows in two steps: firstly the appropriate univariate 
GARCH model is to be estimated4 and thereafter the DCC model is estimated. Since in this 
paper the asymmetric GJR(p,q,r) model of Glosten, Jaganathan, and Runkle [13] will be 
used to model the conditional variance, we will concentrate here just on this type of 
GARCH model. The conditional variance equation th  in case of a GJR(p,q,r) is as follows: 

 −
−

=

−

=

−

=

− ∑∑∑ +++= kt

r

k

ktk

p

j

jtj

q

i

itit Ihh
1

2

11

2
0 εγβεαα  (3) 

where 




>

<
=

−

−−
− 0,0

0,1

kt

kt

kt
if

if
I

ε

ε
. It seems to be clear that in this model the impact of the good 

news 0>−ktε and the bad news 0<−ktε  on conditional variance is different. In case e.g. of 

model GJR(0,1,1) is the impact of good news represented by the value 1α  and the impact of 

bad news by the sum 11 γα + . If 01 >γ , it means that the negative news increase the volatili-

ty and we speak about the leverage effect. If 01 ≠γ , it indicates the presence of the asym-
metric effect. After diagnostic checking of standardized residuals from the univariate 
GARCH model, it follows the estimation of the DCC model. 

We denote as tr the 1×k  dimensional vector of stock returns and it will be furthermore 

assumed that it has conditional multivariate normal distribution with the zero expected value 
and variance-covariance matrix tH , i.e. 

 )(~1 tt H0,r Nt−Ω  (4) 

                                                 
3 ARMA model = Autoregressive Moving Average model 
4 Cappiello et al. [5] pointed out the problems connected with incorrect specification of the univariate 

models. 
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where 1−Ωt  is the information set that includes all the information up to and including time 

1−t . The specification of the variance-covariance matrix tH  has in case of DCC model the 

following form: 

 tttt DCDH =  (5) 

where tD  is the kk ×  diagonal matrix with the time-varying standard deviations from uni-

variate GJR models on the diagonal and tC  is the time-varying correlation matrix of condi-

tional correlation coefficients. 
The evolution of the correlation in the DCC model can be described as follows (see e.g. 

[20]): 

 1t

T
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where { }tijq ,=tQ  is the kk ×  conditional variance-covariance matrix of residuals,  

( )T

ttεεQ E=  the unconditional (i.e. time-invariant) variance-covariance matrix and the 

symbols aq , bq  denote the non-negative scalar parameters which fulfil the condition 

1<+ ba qq . Taking into account the fact that the matrix tQ  from the formula (6) does not 

have unit diagonal elements, it is necessary to scale it and we will receive the correlation 
matrix tC  of the form (see e.g. [20]): 

 2121 )()( −−= tttt QQQC diagdiag  (7) 

The typical element of matrix tC , i.e. the conditional correlation coefficient is as fol-

lows: 
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2.2. Logistic Smooth Transition Regression (LSTR) Model 

The LSTR model can be applied to measure the stock market co-movements between 
the analysed stock markets. This model enables to capture the smooth transition between 
two correlation regimes unlike the structural break models supposing the instantaneous re-
gime change. Before application of the LSTR model it is useful to test the conditional corre-
lations for stationarity. If the conditional correlations are stationary, there is no indication of 
a structural break and therefore no indication of a change in the degree of market co-
movement. In such a case there is no reason to use the LSTR model. Otherwise, in case that 
the conditional correlations are I(1), it is appropriate to apply the LSTR model (see e.g. 
[6], [17]). 

The LSTR model for the bivariate conditional correlations calculated based on formula 
(8) is as follows [6]: 

 ( ) tttij vS ++= τγβαρ ,,  (9) 

where α  and β  are parameters and tv  is a stationary zero mean process. The logistic 

smooth transition function ( )τγ ,tS  which controls the transition between the two correla-

tion regimes has the following form: 
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 ( ) ( )( )( ) 1/exp1, −
−−+= τγτγ TtS t   (10) 

where T  is the sample size, parameter τ  determines the timing of transition midpoint and 
parameter γ  measures the speed of the transition between the two correlation regimes. The 
small value of γ  indicates a slow gradual movement towards integration, the large value of  
γ  speaks for an abrupt change between the two correlation regimes. The parameter α  
measures the degree of market co-movement in the first regime and the sum of parameters 

βα +  the degree of market co-movement in the second regime. The values 0<β  also in-
dicate the decrease of market co-movement, whereas the values 0>β  indicate that the 
conditional correlations move upward. After estimation of the LSTR model, it is necessary 
to test the residuals for stationarity (for more information see e.g. [17]). 

3. Data and empirical results 

The analysed data set consists of weekly data of stock price indices of CEE countries - 
the Czech PX, Hungarian BUX, Polish WIG20 and the German DAX which was used as a 
benchmark for Western European stock markets. We used the above mentioned weekly data 
spanning from January 3rd, 1997 to November 29th, 2013 (i.e. 883 observations for each 
index) in order to avoid the problems connected with the use of the daily data like different 
trading hours, national holidays or day-of-week effects. All the data were retrieved from the 
web-page http://stooq.com ([22], [23], [24], [25]) and the analysis was carried out in econ-
ometric software EViews.5  

Since one of the typical features of the financial time series is the non-stationarity, we 
started the analysis by the unit root testing of individual logarithmic stock price indices 
based on the Augmented Dickey – Fuller (ADF) test. At 1 % significance level we failed to 
reject the null hypothesis about the existence of unit root, i. e. all the series were identified 
to be non-stationary. The first differences of all analysed logarithmic stock indices, i. e. log-
arithmic stock returns, were already stationary6. In further analysis we also concentrated on 
modelling of logarithmic returns. Individual logarithmic stock indices (prefix “L”) and loga-
rithmic returns (prefix “DL”)7 are graphically depicted on the Figure 1(a) – (d). Concerning 
the logarithmic return series there is a clear evidence of volatility clustering, i.e. that large 
(small) returns tend to be followed by another large (small) returns. 

The summary descriptive statistics of logarithmic returns together with the values of 
Jarque – Bera test statistics are given in Table 1. The highest weekly percentage return was 
provided by Hungarian market (0,170%), followed by the German, Czech and Polish market 
with 0,134%, 0,073% and 0,066%, respectively. Concerning the standard deviations, the 
most volatile is the Hungarian market (4,08 %) followed by the Polish (3,72 %), German 
(3,43 %) and the Czech market (3,26 %). From the Table 1 it is furthermore clear that all the 
analysed series are negatively skewed with higher kurtosis than the normal distribution 
which has the kurtosis of 3. The non-normality of the distribution is also indicated by the 
values of the Jarque-Bera test statistics. 

                                                 
5 Programs for estimation of DCC and LSTR models were written with the help of advice provided on the 

web-page of EViews User Forum [21]. 
6 The results are available from the author upon request. 
7 Logarithmic returns were calculated as the first differences of logarithmic index series (see (1)) and 

thereafter multiplied by 100%. 
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Figure 1. Logarithmic indices and logarithmic return series. 
Source: Own calculations in econometric software EViews. 

Table 1. Descriptive statistics of logarithmic returns 

 DLBUX DLPX DLWIG20 DLDAX 

 Mean   0,169942  0,072862  0,065830  0,134345 
 Std. Dev.   4,082434  3,267682  3,723509  3,432103 
 Skewness -1,066868 -1,072662 -0,246356 -0,640427 
 Kurtosis  11,42798  13,32422  5,211695  7,454353 
 Jarque-Bera  2777,700***  4086,301***  188,6878***  789,4578*** 
Note: Symbol *** denotes rejection of the normality hypothesis at 1% significance level. 
Source: Own calculations in econometric software EViews. 

Table 2. Unconditional correlation coefficients for the whole analysed period 

 DLBUX DLPX DLWIG20 DLDAX 

DLBUX  1,000000  0,640948  0,636964  0,556778 
DLPX   1,000000  0,613074  0,536131 

DLWIG20    1,000000  0,547422 
DLDAX     1,000000 

Source: Own calculations in econometric software EViews. 
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The unconditional correlation coefficients between the pairs of returns for the whole an-
alysed period are presented in Table 2. As we can see, the unconditional correlations of in-
dividual CEE markets with the German market reach quite high values – varying between 
0,536 and 0,557. Even higher values of unconditional correlations spanning from 0,613 to 
0,641 were achieved for the pairs of CEE markets. 

Since the unconditional correlations for the whole analysed period are not able to detect 
the increasing co-movement of stock markets, the calculations were carried out separately 
for individual years (see also [6]). Figure 2 (a) – (b) represent the results and it is clear, that 
the values of unconditional correlations were in individual years very different and unlike 
Chelley-Steeley [6], who did her analysis for the period 1995-1999, there is no clear tenden-
cy of growing correlation during the whole analysed period in neither case. Concerning the 
values of unconditional correlations Forbes and Rigobon [11] accented the limitations con-
nected with these coefficients which are biased and inaccurate due to heteroscedasticity in 
market returns. In further analysis we therefore concentrated on the analysis of conditional 
correlations based on DCC models. 
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Figure 2. Unconditional correlations for individual analysed years. 
Source: Own calculations in econometric software EViews. 

3.1. Univariate GJR models 

As it was already mentioned in section 2, the first step in estimation of the DCC model 
is the selection and estimation of an appropriate univariate GARCH model.  

Foremost the individual logarithmic return series were modelled as ARMA models as 
follows: 

 
DLBUX – AR(2)    DLWIG20 – without AR, MA components 
DLPX – AR(1), AR(2), AR(7) DLDAX – AR(3) 
 

The residuals from these ARMA models were then tested for uncorrelatedness (Ljung – 
Box Q – statistics) and for normality (Jarque – Bera test statistics). The results show that the 
residuals are till the lag 200 (maximal possible lag in EViews)8 uncorrelated and non-
normally distributed (see Table 3).  

                                                 
8 Corresponding critical value is 44,249)200(2

01,0 =χ . 
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The squared residuals however exhibit significant autocorrelation (the values of the 
Ljung – Box Q – statistics till the lag 12 are summarized in Table 4). Since the occurrence 
of the second order dependence of squared series, it is adequate to apply an appropriate 
ARCH-class model. 

Table 3. Ljung – Box Q – statistics for residuals and values of Jarque-Bera statistics 

 
DLBUX+ 

AR(2) 
DLPX+  

AR(1, 2, 7) 
DLWIG20 DLDAX+ AR(3) 

Q(200) 210,38 197,57 184,97 209,17 

Jarque-Bera 2671,201*** 3830,253*** 188,6878*** 748,37*** 

Note: Symbol *** denotes rejection of the normality hypothesis at 1% significance level. 
Source: Own calculations in econometric software EViews. 

Table 4. Ljung – Box Q – statistics for squared residuals 

lag DLBUX+AR(2) DLPX+ AR(1, 2, 7) DLWIG20 DLDAX+ AR(3) 

1 8,2426 5,3771 39,065*** 25,754 

2 23,957*** 16,943 66,918*** 81,392*** 

3 30,521*** 66,765 96,221*** 116,89*** 

4 31,474*** 71,193*** 101,90*** 122,63*** 

5 36,238*** 94,139*** 108,20*** 137,83*** 

6 38,522*** 97,721*** 113,51*** 170,55*** 

7 64,546*** 119,72*** 118,42*** 199,20*** 

8 64,596*** 121,90*** 120,20*** 206,47*** 

9 66,923*** 122,09*** 121,17*** 208,53*** 

10 67,886*** 122,37*** 121,20*** 209,96*** 

11 68,400*** 122,56*** 124,22*** 212,02*** 

12 77,320*** 124,36*** 132,58*** 224,21*** 

Note: Symbol *** denotes rejection of the no autocorrelation hypothesis at 1% significance level. 
Source: Own calculations in econometric software EViews. 

Table 5. Estimated parameters of univariate GJR models 

 
DLBUX+ 

AR(2) 
DLPX+ 

AR(1, 2, 7) 
DLWIG20 

 
DLDAX+ 

AR(3) 

Model type GJR(1,0,1) GJR(1,1,1) GJR(1,0,1) GJR(1,0,1) 

0α  0,659273 0,679051 0,440847 1,095590 

1α  - 0,076560 - - 

1γ  0,147830 0,127660 0,101456 0,387025 

1β  0,882861 0,793385 0,912989 0,705407 

Diagnostic test results of standardized residuals 

Q(200) 204,57 197,22 175,62 183,12 

Q
2
(200) 94,003 216,67 158,48 156,17 

ARCH-LM 0,0056 0,0109 0,0052 0,2861 

Jarque-Bera 1397,864*** 434,844*** 103,062*** 206,068*** 

Note: Symbol *** denotes rejection of the normality hypothesis at 1% significance level. 
Source: Own calculations in econometric software EViews. 
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Figure 3. Conditional standard deviations from GJR models. 
Source: Own calculations in econometric software EViews. 

Concerning the possible asymmetric effects in conditional variance, the conditional var-
iance was modelled by the asymmetric GJR-GARCH model (3). Information about the type 
of estimated GJR models together with the values of estimated parameters from the condi-
tional variance equations and the diagnostic tests of standardized residuals are in Table 5. 
All the parameters were statistically significant at 1% significance level, there was no auto-
correlation in the standardized residuals and squared standardized residuals till the lag 200 
at 1% significance level and also no remaining heteroscedasticity was detected by the 
ARCH-LM test (critical value 635,6)1(2

01,0 =χ ). However the normality assumption was not 

fulfilled for the standardized residuals, so the estimates are consistent only as quasi-
maximum likelihood estimates (see e.g. [12]). 

The development of conditional standard deviations from univariate GJR models is 
graphically depicted on the Figure 3 (a) – (d). The highest values of conditional standard 
deviations were recorded for the second half of 1998 and the first months of 1999 and dur-
ing the last quarter of 20089. 

                                                 
9 The same conclusion can be taken also from the development of logarithmic returns depicted on the 

Figure 1 (a)-(d). 
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3.2. Modelling of Dynamic Conditional Correlations (DCC) 

After the estimation of univariate GJR models and adequate diagnostic check it followed 
the construction and estimation of multivariate DCC models. The estimated parameters10 
together with descriptive statistics of conditional correlations (8), the Jarque-Bera and ADF 
test results are summarized in Table 6. All the series were non-normally distributed, four 
series (DCC_BUX_DAX, DCC_WIG_DAX, DCC_BUX_PX, DCC_PX_WIG) were non-
stationary I(1) and the remaining two conditional correlations were stationary I(0). Graph-
ically the conditional correlations are plotted on the Figure 4 (a) – (f). For the non-stationary 
conditional correlations the LSTR models were applied.  

Table 6. Estimated parameters of DCC models and descriptive statistics 

 
DCC_BUX_

DAX 
DCC_PX_ 

DAX 
DCC_WIG_

DAX 
DCC_BUX_

PX 
DCC_BUX_

WIG 
DCC_PX_ 

WIG 

aq  0,017458 0,042888 0,011112 0,008838 0,035232 0,010131 

bq  0,976763 0,922430 0,989437 0,990793 0,922186 0,990177 

Descriptive statistics 

Mean 0,516883 0,459542 0,527514 0,585251 0,574011 0,550901 

Maximum 0,760553 0,844715 0,711276 0,744401 0,817725 0,728139 

Minimum 0,292822 0,064643 0,361900 0,435862 0,277275 0,380693 

Std. Dev. 0,094888 0,133903 0,090457 0,089105 0,082968 0,101974 

Skewness 0,320024 -0,365403 0,439111 0,335593 -0,189191 0,269625 

Kurtosis 3,072519 3,241297 1,951304 1,724765 3,381397 1,529412 

Jarque-Bera 15,23100*** 21,74243*** 68,68264*** 76,23276*** 10,59539*** 90,06101*** 

ADF test - 
conclusion I(1) I(0) I(1) I(1) I(0) I(1) 

Note: Symbol *** denotes rejection of the normality hypothesis at 1% significance level. 
Source: Own calculations in econometric software EViews. 

3.3. Smooth transition analysis 

Table 7 presents the estimated parameters of the LSTR models and contains also the in-
formation about the transition midpoint. All the estimated parameters were statistically sig-
nificant at 1% significance level, the only exception was the parameter γ  in 
LSTR_BUX_DAX which was significant only at 13,11% significance level. All the parame-
ters β  were non-negative, indicating an increase of the mean correlation in the „new” corre-
lation regime. Higher increases were reached between the CEE markets correlations 
whereas the correlation increases with DAX were not so high. The values of γ  were in in-
dividual cases quite different - the higher the value of γ  was, the sharper was the transition 
between correlation regimes. 

Graphically the fitted correlations are depicted together with the actual correlations on 
Figure 4 (a), (c), (d), (f). The most abrupt change between the two correlation regimes was 
identified for the pair BUX_DAX, followed by WIG_DAX, PX_WIG and BUX_PX. In all 
the four cases the transition midpoint occurred later after the entrance of the CEE countries 
to the EU. The residuals of the LSTR models were tested for stationarity via ADF test (for 

                                                 
10 All the parameters were statistically significant at 1% significance level. 
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more information see e.g. [6], [17]). All the residual series were identified to be stationary, 
i.e. the use of the LSTR model was justified.11 
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Figure 4. Dynamic conditional correlations and Logistic Smooth Transition Regression models. 
Source: Own calculations in econometric software EViews. 

                                                 
11 The results are available from the author upon request. 
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Table 7. Estimated parameters of LSTR models  

 
LSTR 

BUX_DAX 
LSTR 

WIG_DAX 
LSTR 

BUX_PX 
LSTR 

PX_WIG 

α  0,463199 0,463587 0,499916 0,461293 

β  0,135941 0,186453 0,213906 0,217631 
γ  69,08097 39,59171 11,30365 25,15060 

τ  0,606789 0,658933 0,603615 0,589181 

Transition midpoint 
April 6th, 

2007 
February 22nd, 

2008 
March 16th, 

2007 
December 15th, 

2006 
Source: Own calculations in econometric software EViews. 
 

4. Summary and conclusion 

The analysis of the stock market co-movement builds an important issue in order to de-
sign the optimal portfolio and also for policy makers. The high correlations indicate that 
equity market disturbances in one country have a tendency to be transmitted into another 
country. 

In this paper we analysed the stock market co-movement of the CEE countries with 
German DAX and also the stock market linkages between the individual CEE countries 
based on DCC and LSTR models. The dynamic conditional correlations were in four ana-
lysed cases (DCC_BUX_DAX, DCC_WIG_DAX, DCC_BUX_PX, DCC_PX_WIG) non-
stationary with the transition midpoints calculated by LSTR models located between De-
cember 2006 and February 2008. The conditional correlations had in these cases the increas-
ing tendency with notable increase during the years 2006 and 2007, but the most rapid 
increase in the degree of the stock market co-movement was recorded in October 2008 and 
can be attributed to the global financial crisis. The conditional correlations of the remaining 
pairs, i.e. DCC_PX_DAX and DCC_BUX_WIG were stationary with no significant shifts 
in the level of conditional correlation. 

Taking into account the results of our study, we can conclude, similarly as Chelley-
Steeley [6], that the most rapid progress in the degree of stock market co-movement be-
tween the CEE country and DAX was achieved for Hungary and Poland followed by only 
the slight progress in case of the Czech Republic.  

Concerning the conditional correlations between the individual CEE stock markets, the 
co-movement of Hungarian and Polish market measured by the DCC values was around the 
mean 0,517 during the whole analysed period. Very interesting is the conclusion about the 
remaining two pairs Hungarian BUX with the Czech PX and Polish WIG20 with the Czech 
PX, since in both these cases it was recorded quite a significant progress in the degree of co-
movement. 
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