
European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

1

The Role of the Collaborative Integrated Model

(MDSIC) in Agile Software Development - Case Study

and Practical Advice

PhD José Luis Cendejas Valdéz

MGTI Gustavo Abraham Vanegas Contreras
Research; Cuerpo Académico Transferencia Tecnológica para la

Construcción de Software, Universidad Tecnológica de Morelia,

Vicepresidente Pino Suarez No. 750 Cd. Industrial, Morelia, Michoacán

58200/ México

PhD Heberto Ferreira Medina
Research; Instituto de Investigaciones en Ecosistemas y Sustentabilidad,

Universidad Nacional Autónoma de México, antigua carretera a Pátzcuaro

No.8701 Col. Ex Hacienda de San José de la Huerta, Morelia, Michoacán

58190/ México.

MTI Alfonso Hiram Ginori González

Research; Instituto de Radioastronomía y Astrofísica, Universidad Nacional

Autónoma de México, Antigua Carretera a Pátzcuaro No.8701 Col. Ex

Hacienda de San José de la Huerta, Morelia, Michoacán 58190/ México.

Doi: 10.19044/esj.2018.c3p1 URL:http://dx.doi.org/10.19044/esj.2018.c3p1

Abstract

 This research aims to determine the importance of the generation and

application of models in the software development area, performing a

comparison of existing models and their applicability. One of these models is

the collaborative integrated software development model (MDSIC). There are

several methodologies and models that help in software development, but

most of them have processes in place that make the development more

complex instead of agile. The MDSIC proposes five levels of better practices

that should be followed in software development projects. Also, the model

supports the main areas of knowledge proposed by the Project Management

Institute (PMI), thereby generating software in line with the objectives of the

organizations. The MDSIC is supported by an internet platform (MDSIC

v1.0), which has been developed using Java Server Pages technology and

responsive web design. This platform has generated a knowledge base using

social business, thus generating an information bank helpful in obtaining the

experiences of specialists, proposing best practices in building agile software

http://dx.doi.org/10.19044/esj.2018.c3p1

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

2

projects. Therefore, this article also aims to show matching indicators and

results of implementating MDSIC in software projects, evaluating the needed

parameters to generate good quality software, and thus align technology with

the goals of the organizations.

Keywords: Software development; MDSIC; Agile methodologies; Quality

assurance

Introduction

 Development of software made to measure in Mexico represents high

costs for organizations and many of these projects do not meet the minimum

requirements to software factories have to improve their processes.

Organizations with different business line looking for the fluidity of

information processes with the help of software development companies,

called software factories. Those factories systematize and improve the

processes of organizations.

 According to (Piattini and Garzás, 2010) the term “software factories”

conceptualizes an organization wich main objective is to produce quality

software, implying a specific way of organizing work, with a considerable

specialization, as well as processes formalization and standardization. For

optimal software development several fundamental elements must converge

to obtain a custom made product that provides proper process functioning in

organizations.

 Among fundamental elements are: 1) hardware; 2) software; 3)

qualified personnel (technically as well as working with processes); 4) project

administration; 5) agile models for software construction. The purpose of

these elements is to expedite, ease and fulfill different projects of software

development towards covering organizations’ objectives. Therefore, in this

paper is presented MDSIC as part of the industry in Center-West Mexico’s

region. MDSIC helps to achieve a product based on norms, quality assessment

based on indicators and cover needs of enterprises with line of business in

software development.

I.

A. Literature review

 This section offers a literature review on use of different models for

software development, also experiences generated using the software

development model implementation (MDSIC) in Mexico. Nowadays there is

a need to create software based on models that give certainty to enterprises

having quality products and allowing a direct impact on their objectives. With

the goal that models will aid the enterprises developing software, not

otherwise, enterprises end up working for the models.

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

3

 At this time software has unique challenges, such as: a) Form factors,

b) User’s technology, c) Usability, d) Design/user interaction, e)

Programmers’ choice for mobile devices implementation, f) Development

processes issues, g) Programming tools, h) User interface design, i)

Applications portability, j) Quality and k) Security. Additionally, look for

development process time reduction.

 One of the best ways to fight complexity in software development is

with abstraction decomposition and problem break out. This leads to use of

models that allow all the elements mentioned to interact. Business process

modeling role in informatics systems (software) construction has a great

importance due to these systems grow in scale and complexity, Barjis (2008).

An example of business process modeling is based in theoretical concepts of

the DEMO methodology, which is built upon graphical notations using Petri

Networks. Both, DEMO concept and Petri Networks have been studied

broadly in different research lines. DEMO methodology was developed and

implemented in several real life projects, Dietz (2006). Therefore, models can

be found in all areas such as software engineering.

 In (Greenfield and Short 2003), it was concluded that: “The software

industry remains reliant on the craftsmanship of skilled individuals engaged

in labor intensive manual tasks. However, growing pressure to reduce cost and

time to market, and to improve software quality, may catalyze a transition to

more automated methods”. In Cendejas et al (2014), is mentioned that for the

last three decades software development has been immerged in a problematic

from which has been difficult to get over. The main issue on this matter is, to

develop quality products that satisfies organizations’ needs and objectives.

 In addition, the software is not aligned with the goals and objectives of

the organization. Software is built by IT experts who are dedicated to analysis,

design and development, but are never accompanied by experts in the

organizational processes that benefit product development in a formal way.

There is a need to analyze how to improve the software industry, and describe

the best technologies that can be used to support this view. “Therefore it is

suggested that the current software development paradigm, based on object

orientation, may have reached the point of exhaustion, and models are

proposed for its successor”. In the last decade, this has progressed compared

to what Booch (2002), one of the creators of UML estimated in 2002.

 According to Booch (2002), in that year only 5% of developers used

UML in its projects and the majority used it for documentation. In several

studies, (Piattini and Garzás, 2010), concluded that: "The model-driven

software development (MDSD) was founded with the objective of integrating

models and code as participants in software production process. The

development of any system software needs to be addressed with two different

perspectives: a) the perspective that addresses issues related to the application

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

4

domain (the problem domain) and b) the perspective that addresses aspects of

software technology used to implement the system (the solution domain). The

problem domain usually has nothing to do with the software technology. For

the end-user, software is a mere tool that should not cause concerns".

 (Quintero and Anaya, 2007), discusses the role of models as

fundamental in software development to enhance elements of software reuse

and facilitate the work of the different roles involved in the process. In many

cases the use of models and methodologies for software development requires

time, effort and investment, and if the staff is not trained delays may occur in

the delivery of software projects. Here is where the models help to solve real

projects and provide flexible solutions to the needs of organizations through

software development.

 There are different models and methodologies that function as support

tools for software development. In a recent study about models and

methodologies Somerville (2005), conceptualize the following:

▪ Software development model: is a simplified representation of

software development process, presented from a specific perspective.

▪ Software development methodology: Is a structured approach for

software development including system models, notations, rules, designs

suggestions and process guidance.

 Another way of making software is through agile methodologies,

allowing to carrying out a more effective and faster tracking scheme. Harleen

et al., (2014); say that agile methodologies follow an iterative approach to

build software quickly, where the entire software development life cycle is

divided into smaller iterations, which helps minimize overall risk. Agile

software development approach refers to the iterative and incremental strategy

involving self-organizing teams and functional teams that work together to

create software. Some of the existing agile methods are: Crystal

Methodologies, Dynamic Software Development Method (DSDM), Lean

Software Development, Scrum and Extreme Programming (XP). Table 1

describes each according to their references.
Table 1. Description of leading methods for agile development

Method agil Description Reference

Crystal

Methodologies

A family of methods for co-located teams of different sizes and

criticality: Clear, Yellow, Orange, Red, Blue. The most agile

method, Crystal Clear, focuses on communication in small

teams developing software that is not life-critical. Clear

development has seven characteristics: frequent delivery,

reflective improvement, osmotic communication, personal

safety, focus, easy access to expert users, and requirements for

the technical environment.

Cockburn  
(2000, 2004).

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

5

Dynamic software

development

method (DSDM)

Divides projects in three phases: pre-project, project life-cycle,

and post project. Nine principles underlie DSDM: user

involvement, empowering the project team, frequent delivery,

addressing current business needs, iterative and incremental

development, allow for reversing changes, high-level scope

being fixed before project starts, testing throughout the

lifecycle, and efficient and effective communication.

Stapleton (2003).

Lean software

development

An adaptation of principles from lean production and, in

particular, the Toyota production system to software

development. Consists of seven principles: eliminate waste,

amplify learning, decide as late as possible, deliver as fast as

possible, empower the team, build integrity, and see the whole.

Poppendieck &

Poppendieck

(2003).

Scrum Focuses on project management in situations where it is

difficult to plan ahead, with mechanisms for ‘‘empirical process

control”; where feedback loops constitute the core element.

Software is developed by a self-organizing team in increments

(called ‘‘sprints”), starting with planning and ending with a

review. Features to be implemented in the system are registered

in a backlog. Then, the product owner decides which backlog

items should be developed in the following sprint. Team

members coordinate their work in a daily stand-up meeting. One

team member, the scrum master, is in charge of solving

problems that stop the team from working effectively.

Schwaber &

Beedle (2001).

Extreme

Programming (XP)

Focuses on best practice for development. Consists of twelve

practices: the planning game, small releases, metaphor, simple

design, testing, refactoring, pair programming, collective

ownership, continuous integration, 40-h week, on-site

customers, and coding standards. The revised ‘‘XP2” consists of

the following ‘‘primary practices”: sit together, whole team,

informative workspace, energized work, pair programming,

stories, weekly cycle, quarterly cycle, slack, 10-minute build,

continuous integration, test-first programming, and incremental

design. There are also 11 ‘‘corollary practices”.

Beck (2000,

2004)

 According to Sutherland et al., (2008); the XP methodology receives

more bibliographical attention because it applies conceptual premises to solve

a problem that is slightly different from the evolutionary development of

applications. (Schuwaber and Sutherland 2011), comment that organizations

are focusing their attention to the agile methodology named Scrum. Scrum is

used for managing software development, whose main objective is to

maximize the return on investment for the company and generate innovation.

 Harleen et al., (2014); propose that the agile development promotes

stakeholder involvement in projects where those stakeholders enable

monitoring of the activities, which increases productivity and profit. Agile

development encourages users to participate actively in the entire product

development. Pressman (2006), found that: "Modern computer software is

characterized by continuous change, very short delivery times and an intense

need to satisfy customers/users. In many cases, the time-to-market is the most

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

6

important management requirement. If this requirement is lost, the software

project itself may lose its meaning."

 In recent years the technology acceptance has been investigated by the

theory of diffusion of innovations and models of social psychology

Bhattacherjee (2000). The main focus of the theory of diffusion of innovations

and for the adoption of an innovation is communication Rogers (2003). Often

the diffusion of innovation within a population can occur from a very small

proportion, which can be modeled mathematically for selection Bohlmann et

al, (2010). The diffusion of an innovation can be a "special kind of

communication." According to Rogers (2003), it comes from word of mouth

and the existence of adopters will depend on the influence of early users.

 Kiron et al, (2012); proposed in his research at the Massachusetts

Institute of Technology (MIT), published in MIT Sloan Management Review

(MIT SMR) and Deloitte in the spring of 2012, that "social business is an

activity that uses social media, social software and social networks to enable

more efficient and effective mutual connections between people, information

and resources. These connections can facilitate business decisions, actions and

outcomes in different areas of the companies" Yunus et al. (2010); report that

in the coming years there will be a growing interest in building business

models based on social participation, because humans have an instinctive

natural desire to improve the lives of their fellowmen when possible.

 A real innovative option is the collaborative integrated software

development model (MDSIC). Cendejas et al. (2005); mention that "the

collaborative integrated software development model (MDSIC) offers experts

an easy way to interact with it through five levels that provide best practices

for software development; these levels also consider the basic functions

proposed by the Project Management Institute (PMI), which allows generating

quality software aligned with organizational goals.

 MDSIC allows evaluating software quality using a series of indicators

that must be considered for optimum performance of a given software. These

indicators are supported by quality standards. A key part of MDSIC is the

creation of a knowledge base that feeds through social business, which is

generated using social networks (Facebook, Twitter, StumbleUpon, Pinterest

etc.), thereby producing a data bank with opinions of experts in software

development. Cendejas et al. (2005); propose the use of MDSIC through a

series of steps that facilitate agile project management and software

development.

 This model consists of five levels: 1) Level 0: Problem detection; 2)

Level 1: Analysis and design; 3) Level 2: Development; 4) Level 3:

Implementation; 5) Level 4: Quality indicators. MDSIC also contemplates the

five basic functions covered under the Project Management Institute (PMI),

which are: 1) Integration of project management; 2) Scope; 3) Time; 4) Cost;

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

7

5) Quality. Figure 1 presents the general structure proposed by the MDSIC

including its elements.

Figure 1. Collaborative Integrated Software Development Model (MDSIC)

B. Methodology

 MDSIC has been the basis for software development in several

companies in Mexico and has served as a medium for monitoring and

providing continuity in several of those projects. It has become a tool that has

contributed to achieving the objectives in each project and thus helps

enterprises, which act as clients of software developments, to be more

competitive. The methodology of this research was to implement MDSIC in

different projects and use its indicators to measure the quality of the software

produced. Having identified the problem, the research objectives were

established and the nature of the investigation, which defines procedures to

obtain the information needed to solve the problem, is described.

 A cross-sectional study was conducted with the following nature of

research: quantitative, field, quasi-experimental and explanatory, Kothari

(2004). This generated a synthesis analysis of different models and

methodologies for agile software development, besides obtaining coincident

indicators. Figure 2 shows the process followed for carrying out this research.

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

8

Figure 2. Description of the methodological process

 Using this prior study, an analysis was conducted to determine the

feasibility of applying the MDSIC model in software development projects

based on the strengths, weaknesses, opportunities and threats (SWOT)

analysis compared to other methodologies. According to Bockle et al (2004),

"The SWOT analysis allows an assessment of the strengths and weaknesses

factors that together diagnose the internal situation of an organization and also

its external evaluation; that is, opportunities and threats".

 With help of the SWOT analysis, behavior of MDSIC compared with

eight of the most commonly used methodologies was identified. This

comparison was based on the areas of: 1) stages considered; 2) projects size;

3) quality assessment and 4) application of social business. Figure 3 shows the

comparison of stages considered by each one of the models and/or

methodologies, in addition to size of the projects.

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

9

Figure 3. Stages and size of projects

 Quality in software development can be measured in two ways: 1) by

the degree of precision with which each product (software) conforms to the

needs of every customer and 2) through the ratio of defects or product errors.

Figure 4 shows the comparative evaluation of MDSIC referring to the use of

indicators that assess the quality of software and the implementation of social

business as a key element of the agile software development.

Figure 4. Quality and integration of social business

 A survey was conceived and was answered by 52 software

development companies from different states of the central-western area of

Mexico. The survey had 29 questions that were designed by the Likert scale,

where a reliability analysis was performed using Cronbach's Alpha study with

help of statistical software for social sciences (IBM’s SPSS), obtaining a value

of reliability acceptance 0.812. This shows a good consistency in the responses

obtained.

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

10

 Based on this test it was identified that the instrument (survey)

designed and implemented is valid and reveals different coincident indicators

that should be considered to improve the quality in agile software

development. The following process was to conduct a study of Pearson

correlations of the main direct and indirect variables of the study to determine

their affinity Bockle et al (2004). Table 2 shows correlations between variables

with the greatest impact (> = 0.6).
Table 2. Correlations between variables with the greatest impact

C. Results

 An essential part of MDSIC is the "activity report", which has a

presence through a system that is implemented based on a technology known

as "responsive web", which is a way of programming that allows the system

to adapt to the size and shape of any device that connects to it. The software

accompanying MDSIC aims to capture and store the information generated

from software projects. In addition to creating a knowledge base enhanced by

expert developers looking to propose improvements in the processes of

software development. This allows collaborative work from its multiuser

nature as shown in Figure 5.

Figure 5. MDSIC v1.0 screens for user’s registration, validation and welcome

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

11

 In MDSIC v1.0 there are different levels and roles, where users can

participate as: 1) project manager; 2) customer; 3) analyst; 4) designer; 5)

developer and 6) QA (quality assurance). The role of project manager is the

highest level since it is responsible for creating, managing and monitoring the

entire project from level 0 to level 4 as proposed by MDSIC. In addition, it is

responsible for capturing information from the memorandums of the meetings

at every level, as shown in Figure 6. The creation of the other roles depends

on the needs of each project.

Figure 6. MDSIC v1.0 software screen for user’s participation

 The projects developed through MDSIC v1.0 have the facility to

measure the progress of these projects through the quality module, which

allows to measure the progress of each of the levels. Thus the project manager,

quality assurance (QA) and the collaborative team can measure the progress

of each project graphically according to plan, as shown in Figure 7.

Figure 7. Graphic displays of project progress in the MDSIC v1.0 software

 Table 3 shows the coincident indicators in software development

projects using the MDSIC model.

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

12

Table 3. Coincident indicators in projects based on MDSIC

 To measure the impact of the application of MDSIC, a quasi-

experimental study was conducted, to compare the development of software

before and after the use of MDSIC in two projects. For results of the study, a

questionnaire was applied. The questions were designed based on the "Likert"

scale, where the lowest value is 1 and represents the answer "strongly

disagree" and the highest value is 5 and the answer is "strongly agree". The

results of the questions can be seen in Table 4.
Table 4. Results of quasi-experimental study

 The results of the questions made to expert developers who used

MDSIC in companies "A" and "B" are shown in Figure 8, where it can be seen

the behavior of the items listed before and after using MDSIC.

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

13

Figure 8. Project development before and after using MDSIC

 Using MDSIC can significantly increase the productivity of software

engineers, which results in reducing the effort and cost required to develop

and implement software. According to Piattini & Garzás (2010), the turning

point on a software development project can be around three points; impact,

cost and benefit. Therefore, the evaluation of companies "A" and "B" was

conducted with reference to those parameters.

Conclusion

 The problems identified in the field of software development in the last

three decades is mainly due to not having well defined methods for building

software; this can be offset by using the model MDSIC; it has proven to be a

tool that helps software development companies to develop projects that line

up with the goals and objectives of organizations, thus contributing to their

productivity. MDSIC aims to integrate all involved by forming teams of

collaborative work that allow significant progress in building the software.

 The need for documenting software projects is very important and

MDSIC, with its system MDSIC v1.0, enables to register and document all the

processes of software development. This application has multi-user features

and was designed to function as a responsive technology; MDSIC v1.0

automatically adjusts to any device. MDSIC v1.0 can be used at the following

address: http://132.248.203.28:8080/mdsic/.

 The research results show the advantages of applying the MDSIC on

agile development, by evaluating groups of software development companies.

This research is relevant to the agile software development as it provides a

better understanding and organization on this issue, in order to improve

investment in resources, efforts and agile principles. It is concluded that the

application of MDSIC improves process control and the quality of software is

measured by the proposed indicators.

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

14

 The experiences of software developers who have used MDSIC

improved a knowledge base through the use of social networks and social

business. This knowledge base stores best practices and experiences using

MDSIC v1.0, and has improved the building of software development

projects.

 This work contributes with relevant information to research focused

on software engineering and process modeling, in addition to professionals in

the use of agile methodologies, allowing the identification and best practices

to achieve success in agile software development. In the area of statistics, this

study confirms that research in software engineering can be certified and

validated by the multivariate analysis. Furthermore, the work contributes a

quantitative research that encourages organizations to use agile principles in

software development.

 At present version 2.0 of the MDSIC software is under development,

aiming at the development for mobile devices, with adherence to the agile

development of custom software. Consequently, it is advisable to software

industry professionals to use this article as a map of issues related to the topic,

as they can benefit from the analysis in order to better understand trends in

agile software development. It is expected that the proposals made in this

document provide guidance for future research.

References:

1. Piattini V. M. G., & Garzás P. J., 2010. Fábricas de software,

experiencias, tecnologías y organización. (2da. Edición) Madrid,

España. Editorial Ra – Ma.

2. Barjis, J. (2008). The importance of business process modeling in

software systems design. Science of Computer Programming, 71(1),

73–87. doi:10.1016/j.scico.2008.01.002

3. Dietz, J.L.G.(2006), Enterprise Ontology - Theory and Methodology,

Springer, New York.

4. Greenfield, J., Short, K., Cook, S. y Kent, S. (2003). Software

factories: Assembling Applications with Patterns, Models,

Frameworks, and Tools. Wiley.

5. Cendejas Valdéz, J. L., Vega Lebrún, C. A., Careta Isordia, A., &

Ferreyra Medina, H. (2014). Design of the integrated collaborative

model for agile development software in the central-western

companies in Mexico. Nova Scientia , 7 (13), 133-148.

6. Booch, G. (2002). Growing the UML. Software and Systems Modeling,

1(2), 157-160.

7. Quintero, J. B., & Anaya, R. (2007). MDA y el papel de los modelos

en el proceso de desarrollo de software. Redalyc, (8), 131–146.

Escuela de ingeniería de Antioquia.

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

15

8. Someerville, I. (2005). Ingeniería del software (septima ed.). (A. B.

María Isabel Alfonso Galipienso, Trad.) Madrid, Madrid, España:

pp:130-145 Pearson.

9. Harleen K. Flora, Wang X., Swati V Chande. "An Investigation into

Mobile Application Development Process, Challenges and Best

Practices". International Journal of Modern Education and Computer

Science (IJMECS). 2014.

10. Cokburn A., Selecting a project’s methodology, IEEE Software 17 (4)

(2000) 64–71.

11. Cockburn A., Crystal Clear: A Human-Powered Methodology for

Small Teams, Addison-Wesley, 2004, ISBN 0-201-69947-8.

12. Stapleton, J. (Ed.). (2003). DSDM: Business focused development.

Pearson Education.

13. Poppendieck M., Poppendieck T., Lean Software Development – An

Agile Toolkit for Software Development Managers, Addison-Wesley,

Boston, 2003, ISBN 0-321-15078-3.

14. Schwaber K., Beedle M., Agile Software Development with Scrum,

Prentice Hall, Upper Saddle River, 2001.

15. K. Beck, Extreme Programming Explained: Embrace Change, Addi-

son-Wesley, 2000, ISBN 0-201-61641-6.

16. K. Beck, Extreme Programming Explained: Embrace Chage, second

ed., Addison-Wesley, 2004, ISBN 978-0321278654.

17. Sutherland, J., Jakobsen, C. & Johnson, K., 2008. Scrum and CMMI

level 5 The magic potion for code warriors. s.l., IEEE.

18. Schwaber, K. & Sutherland, J., 2011. The Scrum Guide: The Definitive

Guide to Scrum, The rules of the game, s.l.: Scrum.org

19. Pressman, R. Ingeniería de software. Un enfoque práctico.

España,McGraw.Hill, 2006. 61 p.

20. Bhattacherjee, A., 2000. Acceptance of e-commerce services: the case

of electronic brokerages. IEEE Trans. Syst., Man Cybern., Part A:

Syst. Hum. 30 (4), 411–420.

21. Rogers, E.M., 2003. Diffusion of Innovations, 5th ed. Free Press, New

York

22. Bohlmann, J.D., Calantone, R.J., Zhao, M., 2010. The effects of market

network heterogeneity on innovation diffusion: an agent-based

modeling approach. J. Prod. Innov. Manag. 27 (5), 741–760.

23. Kiron, D., Palmer, D., Phillips, A., & Kruschwitz, N. (2012). Social

Business : What Are Companies Really Doing? MIT Sloan

Management Review , 31.

24. Yunus, M., Moingeon, B., & Lehmann-Ortega, L. (2010). Building

Social Business Models: Lessons from the Grameen Experience. Long

European Scientific Journal February 2018 /SPECIAL/ edition ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

16

Range Planning Elsevier, 43(2-3), 308–325.

doi:10.1016/j.lrp.2009.12.005

25. Hernández S., R., Fernández C., C., & Baptista L., P. (2010).

Metodología de la investigación. (J. Mares C., Ed.) México, Perú:

McGRAW-HILL.

26. Kothari, C. (2004). Methods of Data Collection. In C. R. Kothari,

Research Methodology methods and thecniques (pp. 95-151). New

Delhi: new age international (p) limited, publishers.

27. Bockle, G., Clements, P., McGregor, J. D., Muthig, D. y Schmid, K.

(2004). Calculating ROI for software product lines. IEEE software,

21(3), pp. 23 - 31.

