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DUŠAN HOLÝ a
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1 Introduction and preliminaries

The goal of this paper is another generalization of the affirmation that Kum-
mer’s series are faster convergent, and especially, the elimination of the con-
dition lim

n→∞
4sn(a)
4sn(c)

6= 0. Accordingly to these facts, in this paper we study

faster convergence of infinite series
∞∑

n=1
an than

∞∑
n=1

bn without the condition

lim
n→∞

4sn(a)
4sn(b)

= 0. First we show that there exist convergent infinite series
∞∑

n=1
an,

∞∑
n=1

bn such that
∞∑

n=1
an is faster convergent than

∞∑
n=1

bn and either

lim
n→∞

4sn(a)
4sn(b)

= c 6= 0 or lim
n→∞

4sn(a)
4sn(b)

= ∞ or lim
n→∞

4sn(a)
4sn(b)

does not exist. It is

shown that for a certain set of faster convergent series
∞∑

n=1
an than a given

series
∞∑

n=1
bn, the series satisfying the condition lim

n→∞
4sn(a)
4sn(b)

= 0 are the best of

the given set.

Strictly speaking: if
∞∑

n=1
an is faster convergent than

∞∑
n=1

bn,
∞∑

n=1
cn is faster con-

vergent than
∞∑

n=1
bn, lim

n→∞
4sn(a)
4sn(b)

= 0 and either lim
n→∞

4sn(c)
4sn(b)

6= 0 or lim
n→∞

4sn(c)
4sn(b)

does not exist, then
∞∑

n=1
an is faster convergent than

∞∑
n=1

cn (Lemma 6). In Lem-

mas 8-10 we found equivalent conditions for the existence of faster convergent

infinite series
∞∑

n=1
an for a given series

∞∑
n=1

bn such that either lim
n→∞

4sn(a)
4sn(b)

= c 6= 0

or lim
n→∞

4sn(a)
4sn(b)

does not exist or lim
n→∞

4sn(a)
4sn(b)

= ∞. The consequences of these

Lemmas are presented in Propositions 11, 13-16. The most important conse-

quence is Lemma 17, which says that the Kummer’s series
∞∑

n=1
bn are faster

convergent than
∞∑

n=1
an for a certain set of convergent infinite series

∞∑
n=1

an,

∞∑
n=1

cn, despite of the fact that the lim
n→∞

4sn(c)
4sn(a)

need not exist.

We denote by N the set of all positive integers and by R the set of all real
numbers. Let {an}∞n=1 be a sequence of real numbers. In what follows, if we
say that lim

n→∞ an exists, we admit also the cases lim
n→∞ an = +∞ (−∞) and we

will suppose that terms of all infinite series are real nonzero numbers.

Definition 1 [2] Let
∞∑

n=1
an,

∞∑
n=1

bn be convergent series such that s(b)−sn−1(b) 6=
0, n ∈ N. The series

∞∑
n=1

an is called faster convergent series than
∞∑

n=1
bn if

lim
n→∞

s(a)−sn−1(a)
s(b)−sn−1(b)

= 0.

We will write ”fcst” instead of ”faster convergent series than”.
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Lemma 2 [10] Let
∞∑

n=1
an,

∞∑
n=1

bn be convergent series with positive terms. If

lim
n→∞

sn(a)−sn−1(a)
sn(b)−sn−1(b)

= 0 then
∞∑

n=1
an is fcst

∞∑
n=1

bn.

Lemma 3 [4] Let
∞∑

n=1
an,

∞∑
n=1

bn be convergent real series. Let s(b)−sn−1(b) 6=
0 for all n ∈ N. Let li(a) = lim inf

n→∞

∣∣∣ s(a)−sn−1(a)
sn(a)−sn−1(a)

∣∣∣ , ls(a) = lim sup
n→∞

∣∣∣ s(a)−sn−1(a)
sn(a)−sn−1(a)

∣∣∣ ,

li(b) = lim inf
n→∞

∣∣∣ s(b)−sn−1(b)
sn(b)−sn−1(b)

∣∣∣ , ls(b) = lim sup
n→∞

∣∣∣ s(b)−sn−1(b)
sn(b)−sn−1(b)

∣∣∣ . Then

(a) if ls(a) < ∞, li(b) > 0 and lim
n→∞

sn(a)− sn−1(a)

sn(b)− sn−1(b)
= 0, then

∞∑

n=1

an is fcst
∞∑

n=1

bn

(b) if s(a)− sn−1(a) 6= 0 for all n ∈ N, li(a) > 0, ls(b) < ∞ and
∞∑

n=1

an is fcst
∞∑

n=1

bn, then lim
n→∞

sn(a)− sn−1(a)

sn(b)− sn−1(b)
= 0.

2 Main results

Lemma 4 Let
∞∑

n=1
bn be a convergent series such that s(b) − sn−1(b) 6= 0,

n ∈ N and let c ∈ R \ {0}. The following are equivalent:

(a) there exist
∞∑

n=1

an fcst
∞∑

n=1

bn such that lim
n→∞

sn(a)− sn−1(a)

sn(b)− sn−1(b)
= c,

(b) there exists a convergent sequence of real numbers {rn}∞n=1 such that rn 6= 0,

n ∈ N, lim
n→∞ rn = r 6= 0 and

∞∑

n=1

(sn(b)− sn−1(b))rn

s(b)− sn−1(b)

is a convergent series.

Proof. (b) ⇒ (a). Put εn =
∞∑

j=n

(Bj−Bj+1)rjc

rBj
+ pB3

n and An = εnBn, n ∈ N
where Bn = s(b) − sn−1(b), n ∈ N. Let p ∈ R \ {0} be such that An 6= An+1

and εn 6= 0, n ∈ N ( such p exists because the number of conditions for p is
countable). Put an = An − An+1, n ∈ N. It is clear that lim

n→∞An = 0, An 6= 0,

n ∈ N, lim
n→∞

s(a)−sn−1(a)
s(b)−sn−1(b)

= lim
n→∞

An

Bn
= 0. Since

sn(a)− sn−1(a)

sn(b)− sn−1(b)
=

εnBn − εn+1Bn+1

Bn −Bn+1

= εn+1+
Bn

Bn −Bn+1

(εn−εn+1) = (1)

=
((

Bn −Bn+1

rBn

)
rnc + p

(
B3

n −B3
n+1

))
Bn

Bn −Bn+1

+ εn+1,
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we have that lim
n→∞

sn(a)−sn−1(a)
sn(b)−sn−1(b)

= c.

(a) ⇒ (b). Put εn = s(a)−sn−1(a)
s(b)−sn−1(b)

and Bn = s(b)− sn−1(b), n ∈ N. From (1) we

have lim
n→∞

Bn

Bn−Bn+1
(εn − εn+1) = c 6= 0. Hence there exists n0 ∈ N such that

for every n ≥ n0, εn − εn+1 6= 0. Put cn0+n =
Bn0+n

Bn0+n−Bn0+n+1
(εn0+n − εn0+n+1)

n ∈ N, then cn0+n 6= 0 and lim
n→∞ cn0+n = c. From the previous equality for cn0+n

we get εn0+n+1 = εn0+1 −
n∑

j=1

Bn0+j−Bn0+j+1

Bn0+j
cn0+j. Since lim

n→∞ εn = 0 we have

that
∞∑

j=1

Bn0+j−Bn0+j+1

Bn0+j
cn0+j =

∞∑
j=1

bn0+j

bn0+j+bn0+j+1+...
cn0+j is a convergent series.

We define sequence {rn}∞n=1 as follows: rn = 1 if n ≤ n0 and rn = cn if n > n0,

n ∈ N. So
∞∑

n=1

(
sn(b)−sn−1(b)
s(b)−sn−1(b)

)
rn is a convergent series. ¤

Lemma 5 Let
∞∑

n=1
bn be a convergent series such that s(b) − sn−1(b) 6= 0,

n ∈ N. The following are equivalent:

(a) there exists
∞∑

n=1

an fcst
∞∑

n=1

bn such that lim
n→∞

sn(a)− sn−1(a)

sn(b)− sn−1(b)
= +∞

(
lim

n→∞
sn(a)− sn−1(a)

sn(b)− sn−1(b)
= −∞

)
,

(b) there exists a sequence of real numbers {rn}∞n=1 such that rn 6= 0, n ∈ N,

lim
n→∞ rn = +∞ ( lim

n→∞ rn = −∞) and
∞∑

n=1

(sn(b)− sn−1(b))rn

s(b)− sn−1(b)
is a convergent

series.

Proof. The proof of (b) ⇒ (a) is similar to the proof of (b) ⇒ (a) of Lemma 8.

It is sufficient to put εn =
∞∑

j=n

(Bj−Bj+1)rj

Bj
+pB3

n, n ∈ N. The proof of (a) ⇒ (b)

is similar to the proof of (a) ⇒ (b) of Lemma 8. ¤

Lemma 6 Let
∞∑

n=1
bn be a convergent series such that s(b) − sn−1(b) 6= 0,

n ∈ N. The following are equivalent:

(a) there exists
∞∑

n=1

an fcst
∞∑

n=1

bn such that lim
n→∞

sn(a)− sn−1(a)

sn(b)− sn−1(b)
does not exist,

(b) lim inf
n→∞

∣∣∣∣∣
sn(b)− sn−1(b)

s(b)− sn−1(b)

∣∣∣∣∣ = 0.

Proof. (a) ⇒ (b). Put γn = Bn

Bn−Bn+1
, where Bn = s(b)− sn−1(b), n ∈ N and

put An = s(a)− sn−1(a) . Since lim
n→∞

s(a)−sn−1(a)
s(b)−sn−1(b)

= lim
n→∞

An

Bn
= 0, sn(a)−sn−1(a)

sn(b)−sn−1(b)
=
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An−An+1

Bn−Bn+1
= An+1

Bn+1
+ γn

(
An

Bn
− An+1

Bn+1

)
and lim

n→∞
sn(a)−sn−1(a)
sn(b)−sn−1(b)

does not exist, the se-

quence {γn}∞n=1 is not bounded. Hence lim inf
n→∞

∣∣∣ 1
γn

∣∣∣ = lim inf
n→∞

∣∣∣ sn(b)−sn−1(b)
s(b)−sn−1(b)

∣∣∣ = 0.

(b) ⇒ (a). Suppose that {γn}∞n=1 is not bounded. One of the following cases
holds:

I.) lim
n→∞ γn = +∞,

II.) lim
n→∞ γn = −∞,

III.) there are subsequences {αn}∞n=1 and {βn}∞n=1 of {γn}∞n=1 such that
lim

n→∞αn = a ∈ R and lim
n→∞ βn = +∞,

IV.) there are subsequences {αn}∞n=1 and {βn}∞n=1 of {γn}∞n=1 such that
lim

n→∞αn = a ∈ R and lim
n→∞ βn = −∞.

I.) Let lim
n→∞ γn = +∞. Suppose first that

∞∑
n=1

1
γn

= +∞. We construct the

sequence {rn}∞n=1, where rn ∈ {−1, 1}, n ∈ N such that
∞∑

j=1

rj

γj
is a convergent

series. By the induction we define an increasing sequence {nm}∞m=1, nm ∈ N.

Choose any s ∈ R, s > 1
γ1

and put n1 = min

{
n ∈ N;

n∑
j=1

1
γj

> s

}
, n2 =

min

{
n > n1;

n1∑
j=1

1
γj
− n∑

j=n1+1

1
γj

< s

}
. Suppose that we have n1 < n2 < ... <

nm−1, m > 2. If m = 2k + 1, k ∈ N we put

nm = min{n > n2k;
n1∑

j=1

1
γj
−

n2∑
j=n1+1

1
γj

+ ... −
n2k∑

j=n2k−1+1

1
γj

+
n∑

j=n2k+1

1
γj

> s},
if m = 2k + 2 we put

nm = min{n > n2k+1;
n1∑

j=1

1
γj
−

n2∑
j=n1+1

1
γj

+ ... +
n2k+1∑

j=n2k+1

1
γj
− n∑

j=n2k+1+1

1
γj

< s}.
Define {rn}∞n=1 as follows: put n0 = 1, then rn = (−1)m+1 if nm−1 < n ≤ nm,

n ∈ N. Since
∞∑

n=1

1
γn

= +∞ and lim
n→∞

1
γn

= 0 we have that
∞∑

n=1

rn

γn
is a conver-

gent series. Define εn =
∞∑

j=n

rj

γj
+ pB2

n, n ∈ N, where p ∈ R, p 6= 0 such that

εn 6= 0, εnBn 6= εn+1Bn+1, n ∈ N. ( such p exists see proof of Lemma 8 ). Put

An = εnBn, an = An −An+1, n ∈ N. Then lim
n→∞

s(a)−sn−1(a)
s(b)−sn−1(b)

= lim
n→∞

An

Bn
= 0 and

since sn(a)−sn−1(a)
sn(b)−sn−1(b)

= An−An+1

Bn−Bn+1
= εn+1 + rn + pBn(Bn + Bn+1), lim

n→∞
sn(a)−sn−1(a)
sn(b)−sn−1(b)

does not exists. If
∞∑

n=1

1
γn

is a convergent series then
∞∑

n=1

(−1)n

γn
is again a conver-

gent series because γn > 0 for n ≥ n0, n0 ∈ N. If we put rn = (−1)n, n ∈ N,

the proof is similar as in the case
∞∑

n=1

1
γn

= +∞.

II.) The proof is similar as in I.)
III.) There exists a subsequence {γnk

}∞k=1 of {γn}∞n=1 such that lim
k→∞

γnk
= +∞.

Put A = {nk; k ∈ N}. We define {rnk
}∞k=1 by the behavior of

∞∑
k=1

1
γnk

as above.
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Put

εn+1 =





εn − rn

γn
− p(B2

n −B2
n+1) for n > 1, n ∈ A

εn − p(B2
n −B2

n+1) for n > 1, n /∈ A

where ε1 =
∞∑

k=1

rnk

γnk
+ pB2

1 , p is determined as above and the proof is similar to

the above part.
IV.) The proof is similar as in III.) ¤

It is easy to show that there exist convergent series
∞∑

n=1
bn with s(b)−sn−1(b) 6=

0, n ∈ N such that
∞∑

n=1

sn(b)−sn−1(b)
s(b)−sn−1(b)

is convergent series. There also exist con-

vergent series
∞∑

n=1
bn, s(b) − sn−1(b) 6= 0, n ∈ N and sequences {rn}∞n=1 such

that rn 6= 0, n ∈ N, lim
n→∞ rn = +∞ ( lim

n→∞ rn = −∞ ) and
∞∑

n=1

(sn(b)−sn−1(b))rn

s(b)−sn−1(b)
is

convergent series.

Proposition 7 Let
∞∑

n=1
an be fcst

∞∑
n=1

bn and let lim
n→∞

sn(a)−sn−1(a)
sn(b)−sn−1(b)

= c 6= 0.

Then lim
n→∞

sn(b)−sn−1(b)
s(b)−sn−1(b)

= 0.

Proof. The proof follows from Lemma 8. ¤

Lemma 8 ( Lemma 2.2[4] ) Let
∞∑

n=1
an,

∞∑
n=1

bn be convergent real series with

positive terms. Let lim
n→∞

sn(a)−sn−1(a)
sn(b)−sn−1(b)

exist. Then lim
n→∞

sn(a)−sn−1(a)
sn(b)−sn−1(b)

= 0 if and

only if
∞∑

n=1
an is fcst

∞∑
n=1

bn.

Proposition 9 Let
∞∑

n=1
an be fcst

∞∑
n=1

bn and let lim
n→∞

sn(a)−sn−1(a)
sn(b)−sn−1(b)

= c 6= 0.

Then B+ = {n ∈ N ; bn > 0}, B− = {n ∈ N ; bn < 0}, A+ = {n ∈ N ; an > 0},
A− = {n ∈ N ; an < 0} are infinite sets.

Proof. By the way of contradiction we suppose that one of these sets is fi-
nite. Then there exists n0 ∈ N such that sign(an) = sign(am), and sign(bn) =
sign(bm) ( where sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0 ) for every

n,m > n0. From Lemma 2.2 [4] we get lim
n→∞

sn(a)−sn−1(a)
sn(b)−sn−1(b)

= 0, a contradic-

tion. ¤

Proposition 10 Let
∞∑

n=1
an be fcst

∞∑
n=1

bn and such that lim
n→∞

sn(a)−sn−1(a)
sn(b)−sn−1(b)

, lim
n→∞

sn(b)−sn−1(b)
s(b)−sn−1(b)

do not exist and lim sup
n→∞

∣∣∣ sn(a)−sn−1(a)
s(a)−sn−1(a)

∣∣∣ < ∞. Then lim inf
n→∞

∣∣∣ sn(a)−sn−1(a)
sn(b)−sn−1(b)

∣∣∣ = 0.

Proof. It follows from:
s(a)−sn−1(a)
s(b)−sn−1(b)

= s(a)−sn−1(a)
sn(a)−sn−1(a)

sn(a)−sn−1(a)
sn(b)−sn−1(b)

sn(b)−sn−1(b)
s(b)−sn−1(b)

and from Lemma 10. ¤

6



Proposition 11 Let
∞∑

n=1
bn be convergent series such that s(b)− sn−1(b) 6= 0,

n ∈ N and lim inf
n→∞

∣∣∣ sn(b)−sn−1(b)
s(b)−sn−1(b)

∣∣∣ > 0. Let
∞∑

n=1
an be fcst

∞∑
n=1

bn. Then lim
n→∞

sn(a)−sn−1(a)
sn(b)−sn−1(b)

=

0.

Proof. The proof follows from Lemmas 9, 10, 11. ¤

Proposition 12 Let
∞∑

n=1
bn be a series such that bn = qncn, q 6= 0, |q| < 1,

0 < k1 < |cn| < k2, k1, k2 ∈ R, s(b) − sn−1(b) 6= 0, n ∈ N and let
∞∑

n=1
an be a

fcst
∞∑

n=1
bn. Then lim

n→∞
sn(a)−sn−1(a)
sn(b)−sn−1(b)

= 0.

Proof. The inequality |s(b)−sn−1(b)| < k2
|q|n

1−|q| n ∈ N implies
∣∣∣ sn(b)−sn−1(b)

s(b)−sn−1(b)

∣∣∣ >
k1

k2
(1− |q|), n ∈ N. So by Lemma 15 lim

n→∞
sn(a)−sn−1(a)
sn(b)−sn−1(b)

= 0. ¤

Lemma 13 Let
∞∑

n=1
bn be a convergent series such that s(b) − sn−1(b) 6= 0,

n ∈ N and
∞∑

n=1
bn = a. Let lim

n→∞

∣∣∣ s(b)−sn−1(b)
sn(b)−sn−1(b)

∣∣∣ = +∞. Let
∞∑

n=1
cn be a con-

vergent series with a sum c. Let lim sup
n→∞

∣∣∣ sn(c)−sn−1(c)
sn(b)−sn−1(b)

∣∣∣ < ∞. Let
∞∑

n=1
an be a

Kummer’s transformation of
∞∑

n=1
bn and

∞∑
n=1

cn such that an 6= 0 for n ≥ 2 and

lim sup
n→∞

∣∣∣ s(a)−sn−1(a)
sn(a)−sn−1(a)

∣∣∣ < ∞. Then
∞∑

n=1
an = a and

∞∑
n=1

an is a fcst
∞∑

n=1
bn.

Proof. Put An = s(a) − sn−1(a), Bn = s(b) − sn−1(b), n ∈ N. From An

Bn
=

An−An+1

Bn−Bn+1

An
An−An+1

Bn
Bn−Bn+1

and from assumptions of the lemma it follows lim
n→∞

An

Bn
=

0. ¤

The above lemma is useful, for example in the case that the sum a is unknown
and the sum c is known.

The next example shows that there exist Kummer’s series
∞∑

n=1
an fcst

∞∑
n=1

bn

such that lim
n→∞

sn(a)−sn−1(a)
sn(b)−sn−1(b)

need not exist and the terms of both series need

not be positive.

Example 14 Let
∞∑

n=1
bn be a convergent series such that b1 > 0, b2n = 1

4n2+
√

2n
,

b2n+1 = 1
4n2−√2n+1

, n ∈ N. Let
∞∑

n=1
cn be a convergent series such that c1 ∈ R \

{0}, c2n = −1
2n2(8n3−1)

, c2n+1 = −1
2n2 , n ∈ N. It is easy to see that lim

n→∞

∣∣∣∣
s(b)−sn−1(b)
sn(b)−sn−1(b)

∣∣∣∣ =

+∞, bn 6= 0, s(b) − sn−1(b) 6= 0, n ∈ N, lim sup
n→∞

∣∣∣∣
sn(c)−sn−1(c)
sn(b)−sn−1(b)

∣∣∣∣ < +∞ and

7



lim
n→∞

sn(c)−sn−1(c)
sn(b)−sn−1(b)

does not exists. Put c =
∞∑

n=1
cn. The series

∞∑
n=1

an such that

an = bn + cn, n ≥ 2 and a1 = b1 + c1 − c is a Kummer’s series which fulfills

lim sup
n→∞

∣∣∣∣
s(a)−sn−1(a)
sn(a)−sn−1(a)

∣∣∣∣ < +∞, s(a) − s2n−1(a) > 0 and s(a) − s2n(a) < 0, for

n ≥ 2. By the above lemma
∞∑

n=1
an is a fcst

∞∑
n=1

bn and it has the same sum as

∞∑
n=1

bn.
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[29] Šalát T. (1974), Nekonečné rady, ACADEMIA nakladatelstv́ı
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