Some Remarks On Faster Convergent Infinite Series II

DUŠAN HOLÝa ${ }^{a}$
${ }^{\text {a }}$ Faculty of Industrial Technologies in Púchov
Trenc̆ín University of Alexander Dubček in Trenc̆ín
I. Krasku 491/30, 02001 Púchov, Slovakia
LADISLAV MATEJÍČKA b,*
${ }^{\mathrm{b}}$ Faculty of Industrial Technologies in Púchov
Trenčín University of Alexander Dubček in Trenčín
I. Krasku 491/30, 02001 Púchov, Slovakia

ĽUDOVÍT PINDA ${ }^{\text {c }}$
${ }^{\text {c }}$ Faculty of Informatics, University of Economics
Dolnozemská 1, 852 35, Bratislava, Slovakia

Abstract

Next necessary and sufficient conditions for the existence of faster convergent series with different types of their terms are found. A faster convergence of certain Kummer's series is proved in this paper.

Key words: faster convergent series, terms of convergent series 1991 MSC: 65B10, 40A10

1

[^0]
1 Introduction and preliminaries

The goal of this paper is another generalization of the affirmation that Kummer's series are faster convergent, and especially, the elimination of the condition $\lim _{n \rightarrow \infty} \frac{\Delta s_{n}(a)}{\Delta s_{n}(c)} \neq 0$. Accordingly to these facts, in this paper we study faster convergence of infinite series $\sum_{n=1}^{\infty} a_{n}$ than $\sum_{n=1}^{\infty} b_{n}$ without the condition $\lim _{n \rightarrow \infty} \frac{\Delta s_{n}(a)}{\Delta s_{n}(b)}=0$. First we show that there exist convergent infinite series $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ such that $\sum_{n=1}^{\infty} a_{n}$ is faster convergent than $\sum_{n=1}^{\infty} b_{n}$ and either $\lim _{n \rightarrow \infty} \frac{\Delta s_{n}(a)}{\Delta s_{n}(b)}=c \neq 0$ or $\lim _{n \rightarrow \infty} \frac{\Delta s_{n}(a)}{\Delta s_{n}(b)}=\infty$ or $\lim _{n \rightarrow \infty} \frac{\Delta s_{n}(a)}{\Delta s_{n}(b)}$ does not exist. It is shown that for a certain set of faster convergent series $\sum_{n=1}^{\infty} a_{n}$ than a given series $\sum_{n=1}^{\infty} b_{n}$, the series satisfying the condition $\lim _{n \rightarrow \infty} \frac{\Delta s_{n}(a)}{\Delta s_{n}(b)}=0$ are the best of the given set.
Strictly speaking: if $\sum_{n=1}^{\infty} a_{n}$ is faster convergent than $\sum_{n=1}^{\infty} b_{n}, \sum_{n=1}^{\infty} c_{n}$ is faster convergent than $\sum_{n=1}^{\infty} b_{n}, \lim _{n \rightarrow \infty} \frac{\Delta s_{n}(a)}{\Delta s_{n}(b)}=0$ and either $\lim _{n \rightarrow \infty} \frac{\Delta s_{n}(c)}{\Delta s_{n}(b)} \neq 0$ or $\lim _{n \rightarrow \infty} \frac{\Delta s_{n}(c)}{\Delta s_{n}(b)}$ does not exist, then $\sum_{n=1}^{\infty} a_{n}$ is faster convergent than $\sum_{n=1}^{\infty} c_{n}$ (Lemma 6). In Lemmas 8-10 we found equivalent conditions for the existence of faster convergent infinite series $\sum_{n=1}^{\infty} a_{n}$ for a given series $\sum_{n=1}^{\infty} b_{n}$ such that either $\lim _{n \rightarrow \infty} \frac{\Delta s_{n}(a)}{\Delta s_{n}(b)}=c \neq 0$ or $\lim _{n \rightarrow \infty} \frac{\Delta s_{n}(a)}{\Delta s_{n}(b)}$ does not exist or $\lim _{n \rightarrow \infty} \frac{\Delta s_{n}(a)}{\Delta s_{n}(b)}=\infty$. The consequences of these Lemmas are presented in Propositions 11, 13-16. The most important consequence is Lemma 17, which says that the Kummer's series $\sum_{n=1}^{\infty} b_{n}$ are faster convergent than $\sum_{n=1}^{\infty} a_{n}$ for a certain set of convergent infinite series $\sum_{n=1}^{\infty} a_{n}$, $\sum_{n=1}^{\infty} c_{n}$, despite of the fact that the $\lim _{n \rightarrow \infty} \frac{\Delta s_{n}(c)}{\Delta s_{n}(a)}$ need not exist.
We denote by \mathbb{N} the set of all positive integers and by \mathbb{R} the set of all real numbers. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. In what follows, if we say that $\lim _{n \rightarrow \infty} a_{n}$ exists, we admit also the cases $\lim _{n \rightarrow \infty} a_{n}=+\infty(-\infty)$ and we will suppose that terms of all infinite series are real nonzero numbers.

Definition 1 [2] Let $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ be convergent series such that $s(b)-s_{n-1}(b) \neq$ $0, n \in \mathbb{N}$. The series $\sum_{n=1}^{\infty} a_{n}$ is called faster convergent series than $\sum_{n=1}^{\infty} b_{n}$ if $\lim _{n \rightarrow \infty} \frac{s(a)-s_{n-1}(a)}{s(b)-s_{n-1}(b)}=0$.

We will write "fcst" instead of "faster convergent series than".

Lemma 2 [10] Let $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ be convergent series with positive terms. If $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=0$ then $\sum_{n=1}^{\infty} a_{n}$ is fcst $\sum_{n=1}^{\infty} b_{n}$.

Lemma 3 [4] Let $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ be convergent real series. Let $s(b)-s_{n-1}(b) \neq$ 0 for all $n \in \mathbb{N}$. Let $l_{i}(a)=\liminf _{n \rightarrow \infty}\left|\frac{s(a)-s_{n-1}(a)}{s_{n}(a)-s_{n-1}(a)}\right|, l_{s}(a)=\limsup _{n \rightarrow \infty}\left|\frac{s(a)-s_{n-1}(a)}{s_{n}(a)-s_{n-1}(a)}\right|$, $l_{i}(b)=\liminf _{n \rightarrow \infty}\left|\frac{s(b)-s_{n-1}(b)}{s_{n}(b)-s_{n-1}(b)}\right|, l_{s}(b)=\limsup _{n \rightarrow \infty}\left|\frac{s(b)-s_{n-1}(b)}{s_{n}(b)-s_{n-1}(b)}\right|$. Then
(a) if $l_{s}(a)<\infty, l_{i}(b)>0$ and $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=0$, then $\sum_{n=1}^{\infty} a_{n}$ is fcst $\sum_{n=1}^{\infty} b_{n}$
(b) if $s(a)-s_{n-1}(a) \neq 0 \quad$ for all $n \in \mathbb{N}, \quad l_{i}(a)>0, \quad l_{s}(b)<\infty$ and

$$
\sum_{n=1}^{\infty} a_{n} \text { is fcst } \sum_{n=1}^{\infty} b_{n}, \quad \text { then } \quad \lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=0 .
$$

2 Main results

Lemma 4 Let $\sum_{n=1}^{\infty} b_{n}$ be a convergent series such that $s(b)-s_{n-1}(b) \neq 0$, $n \in \mathbb{N}$ and let $c \in \mathbb{R} \backslash\{0\}$. The following are equivalent:
(a) there exist $\sum_{n=1}^{\infty} a_{n} f c s t \sum_{n=1}^{\infty} b_{n}$ such that $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=c$,
(b) there exists a convergent sequence of real numbers $\left\{r_{n}\right\}_{n=1}^{\infty}$ such that $r_{n} \neq 0$, $n \in \mathbb{N}, \lim _{n \rightarrow \infty} r_{n}=r \neq 0$ and $\sum_{n=1}^{\infty} \frac{\left(s_{n}(b)-s_{n-1}(b)\right) r_{n}}{s(b)-s_{n-1}(b)}$
is a convergent series.

Proof. (b) \Rightarrow (a). Put $\varepsilon_{n}=\sum_{j=n}^{\infty} \frac{\left(B_{j}-B_{j+1}\right) r_{j} c}{r B_{j}}+p B_{n}^{3}$ and $A_{n}=\varepsilon_{n} B_{n}, n \in \mathbb{N}$ where $B_{n}=s(b)-s_{n-1}(b), n \in \mathbb{N}$. Let $p \in \mathbb{R} \backslash\{0\}$ be such that $A_{n} \neq A_{n+1}$ and $\varepsilon_{n} \neq 0, n \in \mathbb{N}$ (such p exists because the number of conditions for p is countable). Put $a_{n}=A_{n}-A_{n+1}, n \in \mathbb{N}$. It is clear that $\lim _{n \rightarrow \infty} A_{n}=0, A_{n} \neq 0$, $n \in \mathbb{N}, \lim _{n \rightarrow \infty} \frac{s(a)-s_{n-1}(a)}{s(b)-s_{n-1}(b)}=\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}}=0$. Since

$$
\begin{gather*}
\frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=\frac{\varepsilon_{n} B_{n}-\varepsilon_{n+1} B_{n+1}}{B_{n}-B_{n+1}}=\varepsilon_{n+1}+\frac{B_{n}}{B_{n}-B_{n+1}}\left(\varepsilon_{n}-\varepsilon_{n+1}\right)= \tag{1}\\
=\left(\left(\frac{B_{n}-B_{n+1}}{r B_{n}}\right) r_{n} c+p\left(B_{n}^{3}-B_{n+1}^{3}\right)\right) \frac{B_{n}}{B_{n}-B_{n+1}}+\varepsilon_{n+1}
\end{gather*}
$$

we have that $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=c$.
$(a) \Rightarrow(b)$. Put $\varepsilon_{n}=\frac{s(a)-s_{n-1}(a)}{s(b)-s_{n-1}(b)}$ and $B_{n}=s(b)-s_{n-1}(b), n \in \mathbb{N}$. From (1) we have $\lim _{n \rightarrow \infty} \frac{B_{n}}{B_{n}-B_{n+1}}\left(\varepsilon_{n}-\varepsilon_{n+1}\right)=c \neq 0$. Hence there exists $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}, \varepsilon_{n}-\varepsilon_{n+1} \neq 0$. Put $c_{n_{0}+n}=\frac{B_{n_{0}+n}}{B_{n_{0}+n}-B_{n_{0}+n+1}}\left(\varepsilon_{n_{0}+n}-\varepsilon_{n_{0}+n+1}\right)$ $n \in \mathbb{N}$, then $c_{n_{0}+n} \neq 0$ and $\lim _{n \rightarrow \infty} c_{n_{0}+n}=c$. From the previous equality for $c_{n_{0}+n}$ we get $\varepsilon_{n_{0}+n+1}=\varepsilon_{n_{0}+1}-\sum_{j=1}^{n} \frac{B_{n_{0}+j}-B_{n_{0}+j+1}}{B_{n_{0}+j}} c_{n_{0}+j}$. Since $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ we have that $\sum_{j=1}^{\infty} \frac{B_{n_{0}+j}-B_{n_{0}+j+1}}{B_{n_{0}+j}} c_{n_{0}+j}=\sum_{j=1}^{\infty} \frac{b_{n_{0}+j}}{b_{n_{0}+j}+b_{n_{0}+j+1}+\ldots} c_{n_{0}+j}$ is a convergent series. We define sequence $\left\{r_{n}\right\}_{n=1}^{\infty}$ as follows: $r_{n}=1$ if $n \leq n_{0}$ and $r_{n}=c_{n}$ if $n>n_{0}$, $n \in \mathbb{N}$. So $\sum_{n=1}^{\infty}\left(\frac{s_{n}(b)-s_{n-1}(b)}{s(b)-s_{n-1}(b)}\right) r_{n}$ is a convergent series.

Lemma 5 Let $\sum_{n=1}^{\infty} b_{n}$ be a convergent series such that $s(b)-s_{n-1}(b) \neq 0$, $n \in \mathbb{N}$. The following are equivalent:
(a) there exists $\sum_{n=1}^{\infty} a_{n} f c s t \sum_{n=1}^{\infty} b_{n}$ such that $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=+\infty$

$$
\left(\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=-\infty\right)
$$

(b) there exists a sequence of real numbers $\left\{r_{n}\right\}_{n=1}^{\infty}$ such that $r_{n} \neq 0, n \in \mathbb{N}$, $\lim _{n \rightarrow \infty} r_{n}=+\infty\left(\lim _{n \rightarrow \infty} r_{n}=-\infty\right)$ and $\sum_{n=1}^{\infty} \frac{\left(s_{n}(b)-s_{n-1}(b)\right) r_{n}}{s(b)-s_{n-1}(b)}$ is a convergent series.

Proof. The proof of $(b) \Rightarrow(a)$ is similar to the proof of $(b) \Rightarrow(a)$ of Lemma 8 . It is sufficient to put $\varepsilon_{n}=\sum_{j=n}^{\infty} \frac{\left(B_{j}-B_{j+1}\right) r_{j}}{B_{j}}+p B_{n}^{3}, n \in \mathbb{N}$. The proof of $(a) \Rightarrow(b)$ is similar to the proof of $(a) \Rightarrow(b)$ of Lemma 8 .

Lemma 6 Let $\sum_{n=1}^{\infty} b_{n}$ be a convergent series such that $s(b)-s_{n-1}(b) \neq 0$, $n \in \mathbb{N}$. The following are equivalent:
(a) there exists $\sum_{n=1}^{\infty} a_{n} f c s t \sum_{n=1}^{\infty} b_{n}$ such that $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}$ does not exist,
(b) $\quad \liminf _{n \rightarrow \infty}\left|\frac{s_{n}(b)-s_{n-1}(b)}{s(b)-s_{n-1}(b)}\right|=0$.

Proof. $(a) \Rightarrow(b)$. Put $\gamma_{n}=\frac{B_{n}}{B_{n}-B_{n+1}}$, where $B_{n}=s(b)-s_{n-1}(b), n \in \mathbb{N}$ and put $A_{n}=s(a)-s_{n-1}(a)$. Since $\lim _{n \rightarrow \infty} \frac{s(a)-s_{n-1}(a)}{s(b)-s_{n-1}(b)}=\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}}=0, \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=$
$\frac{A_{n}-A_{n+1}}{B_{n}-B_{n+1}}=\frac{A_{n+1}}{B_{n+1}}+\gamma_{n}\left(\frac{A_{n}}{B_{n}}-\frac{A_{n+1}}{B_{n+1}}\right)$ and $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}$ does not exist, the sequence $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ is not bounded. Hence $\liminf _{n \rightarrow \infty}\left|\frac{1}{\gamma_{n}}\right|=\liminf _{n \rightarrow \infty}\left|\frac{s_{n}(b)-s_{n-1}(b)}{s(b)-s_{n-1}(b)}\right|=0$. $(b) \Rightarrow(a)$. Suppose that $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ is not bounded. One of the following cases holds:
I.) $\lim _{n \rightarrow \infty} \gamma_{n}=+\infty$,
II.) $\lim _{n \rightarrow \infty} \gamma_{n}=-\infty$,
III.) there are subsequences $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ of $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=a \in \mathbb{R}$ and $\lim _{n \rightarrow \infty} \beta_{n}=+\infty$,
IV.) there are subsequences $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ of $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=a \in \mathbb{R}$ and $\lim _{n \rightarrow \infty} \beta_{n}=-\infty$.
I.) Let $\lim _{n \rightarrow \infty} \gamma_{n}=+\infty$. Suppose first that $\sum_{n=1}^{\infty} \frac{1}{\gamma_{n}}=+\infty$. We construct the sequence $\left\{r_{n}\right\}_{n=1}^{\infty}$, where $r_{n} \in\{-1,1\}, n \in \mathbb{N}$ such that $\sum_{j=1}^{\infty} \frac{r_{j}}{\gamma_{j}}$ is a convergent series. By the induction we define an increasing sequence $\left\{n_{m}\right\}_{m=1}^{\infty}, n_{m} \in \mathbb{N}$. Choose any $s \in \mathbb{R}, s>\frac{1}{\gamma_{1}}$ and put $n_{1}=\min \left\{n \in \mathbb{N} ; \sum_{j=1}^{n} \frac{1}{\gamma_{j}}>s\right\}, n_{2}=$ $\min \left\{n>n_{1} ; \sum_{j=1}^{n_{1}} \frac{1}{\gamma_{j}}-\sum_{j=n_{1}+1}^{n} \frac{1}{\gamma_{j}}<s\right\}$. Suppose that we have $n_{1}<n_{2}<\ldots<$ $n_{m-1}, m>2$. If $m=2 k+1, k \in \mathbb{N}$ we put $n_{m}=\min \left\{n>n_{2 k} ; \sum_{j=1}^{n_{1}} \frac{1}{\gamma_{j}}-\sum_{j=n_{1}+1}^{n_{2}} \frac{1}{\gamma_{j}}+\ldots-\sum_{j=n_{2 k-1}+1}^{n_{2 k}} \frac{1}{\gamma_{j}}+\sum_{j=n_{2 k}+1}^{n} \frac{1}{\gamma_{j}}>s\right\}$, if $m=2 k+2$ we put
$n_{m}=\min \left\{n>n_{2 k+1} ; \sum_{j=1}^{n_{1}} \frac{1}{\gamma_{j}}-\sum_{j=n_{1}+1}^{n_{2}} \frac{1}{\gamma_{j}}+\ldots+\sum_{j=n_{2 k}+1}^{n_{2 k+1}} \frac{1}{\gamma_{j}}-\sum_{j=n_{2 k+1}+1}^{n} \frac{1}{\gamma_{j}}<s\right\}$. Define $\left\{r_{n}\right\}_{n=1}^{\infty}$ as follows: put $n_{0}=1$, then $r_{n}=(-1)^{m+1}$ if $n_{m-1}<n \leq n_{m}$, $n \in \mathbb{N}$. Since $\sum_{n=1}^{\infty} \frac{1}{\gamma_{n}}=+\infty$ and $\lim _{n \rightarrow \infty} \frac{1}{\gamma_{n}}=0$ we have that $\sum_{n=1}^{\infty} \frac{r_{n}}{\gamma_{n}}$ is a convergent series. Define $\varepsilon_{n}=\sum_{j=n}^{\infty} \frac{r_{j}}{\gamma_{j}}+p B_{n}^{2}, n \in \mathbb{N}$, where $p \in \mathbb{R}, p \neq 0$ such that $\varepsilon_{n} \neq 0, \varepsilon_{n} B_{n} \neq \varepsilon_{n+1} B_{n+1}, n \in \mathbb{N}$. (such p exists see proof of Lemma 8). Put $A_{n}=\varepsilon_{n} B_{n}, a_{n}=A_{n}-A_{n+1}, n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty} \frac{s(a)-s_{n-1}(a)}{s(b)-s_{n-1}(b)}=\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}}=0$ and since $\frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=\frac{A_{n}-A_{n+1}}{B_{n}-B_{n+1}}=\varepsilon_{n+1}+r_{n}+p B_{n}\left(B_{n}+B_{n+1}\right), \lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}$ does not exists. If $\sum_{n=1}^{\infty} \frac{1}{\gamma_{n}}$ is a convergent series then $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\gamma_{n}}$ is again a convergent series because $\gamma_{n}>0$ for $n \geq n_{0}, n_{0} \in \mathbb{N}$. If we put $r_{n}=(-1)^{n}, n \in \mathbb{N}$, the proof is similar as in the case $\sum_{n=1}^{\infty} \frac{1}{\gamma_{n}}=+\infty$.
II.) The proof is similar as in I.)
III.) There exists a subsequence $\left\{\gamma_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{k \rightarrow \infty} \gamma_{n_{k}}=+\infty$. Put $A=\left\{n_{k} ; k \in \mathbb{N}\right\}$. We define $\left\{r_{n_{k}}\right\}_{k=1}^{\infty}$ by the behavior of $\sum_{k=1}^{\infty} \frac{1}{\gamma_{n_{k}}}$ as above.

Put

$$
\varepsilon_{n+1}= \begin{cases}\varepsilon_{n}-\frac{r_{n}}{\gamma_{n}}-p\left(B_{n}^{2}-B_{n+1}^{2}\right) & \text { for } n>1, n \in A \\ \varepsilon_{n}-p\left(B_{n}^{2}-B_{n+1}^{2}\right) & \text { for } n>1, n \notin A\end{cases}
$$

where $\varepsilon_{1}=\sum_{k=1}^{\infty} \frac{r_{n_{k}}}{\gamma_{n_{k}}}+p B_{1}^{2}, p$ is determined as above and the proof is similar to the above part.
IV.) The proof is similar as in III.)

It is easy to show that there exist convergent series $\sum_{n=1}^{\infty} b_{n}$ with $s(b)-s_{n-1}(b) \neq$ $0, n \in \mathbb{N}$ such that $\sum_{n=1}^{\infty} \frac{s_{n}(b)-s_{n-1}(b)}{s(b)-s_{n-1}(b)}$ is convergent series. There also exist convergent series $\sum_{n=1}^{\infty} b_{n}, s(b)-s_{n-1}(b) \neq 0, n \in \mathbb{N}$ and sequences $\left\{r_{n}\right\}_{n=1}^{\infty}$ such that $r_{n} \neq 0, n \in \mathbb{N}, \lim _{n \rightarrow \infty} r_{n}=+\infty\left(\lim _{n \rightarrow \infty} r_{n}=-\infty\right)$ and $\sum_{n=1}^{\infty} \frac{\left(s_{n}(b)-s_{n-1}(b)\right) r_{n}}{s(b)-s_{n-1}(b)}$ is convergent series.

Proposition 7 Let $\sum_{n=1}^{\infty} a_{n}$ be fcst $\sum_{n=1}^{\infty} b_{n}$ and let $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=c \neq 0$. Then $\lim _{n \rightarrow \infty} \frac{s_{n}(b)-s_{n-1}(b)}{s(b)-s_{n-1}(b)}=0$.

Proof. The proof follows from Lemma 8.
Lemma 8 (Lemma 2.2[4]) Let $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ be convergent real series with positive terms. Let $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}$ exist. Then $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=0$ if and only if $\sum_{n=1}^{\infty} a_{n}$ is fcst $\sum_{n=1}^{\infty} b_{n}$.

Proposition 9 Let $\sum_{n=1}^{\infty} a_{n}$ be fcst $\sum_{n=1}^{\infty} b_{n}$ and let $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=c \neq 0$. Then $B_{+}=\left\{n \in N ; b_{n}>0\right\}, B_{-}=\left\{n \in N ; b_{n}<0\right\}, A_{+}=\left\{n \in N ; a_{n}>0\right\}$, $A_{-}=\left\{n \in N ; a_{n}<0\right\}$ are infinite sets.

Proof. By the way of contradiction we suppose that one of these sets is finite. Then there exists $n_{0} \in \mathbb{N}$ such that $\operatorname{sign}\left(a_{n}\right)=\operatorname{sign}\left(a_{m}\right)$, and $\operatorname{sign}\left(b_{n}\right)=$ $\operatorname{sign}\left(b_{m}\right)($ where $\operatorname{sign}(x)=1$ if $x>0$ and $\operatorname{sign}(x)=-1$ if $x<0)$ for every $n, m>n_{0}$. From Lemma 2.2 [4] we get $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=0$, a contradiction.

Proposition 10 Let $\sum_{n=1}^{\infty} a_{n}$ befcst $\sum_{n=1}^{\infty} b_{n}$ and such that $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}, \lim _{n \rightarrow \infty} \frac{s_{n}(b)-s_{n-1}(b)}{s(b)-s_{n-1}(b)}$ do not exist and $\limsup _{n \rightarrow \infty}\left|\frac{s_{n}(a)-s_{n-1}(a)}{s(a)-s_{n-1}(a)}\right|<\infty$. Then $\liminf _{n \rightarrow \infty}\left|\frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}\right|=0$.

Proof. It follows from:
$\frac{s(a)-s_{n-1}(a)}{s(b)-s_{n-1}(b)}=\frac{s(a)-s_{n-1}(a)}{s_{n}(a)-s_{n-1}(a)} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)} \frac{s_{n}(b)-s_{n-1}(b)}{s(b)-s_{n-1}(b)}$ and from Lemma 10.

Proposition 11 Let $\sum_{n=1}^{\infty} b_{n}$ be convergent series such that $s(b)-s_{n-1}(b) \neq 0$, $n \in \mathbb{N}$ and $\liminf _{n \rightarrow \infty}\left|\frac{s_{n}(b)-s_{n-1}(b)}{s(b)-s_{n-1}(b)}\right|>0$. Let $\sum_{n=1}^{\infty} a_{n}$ be fcst $\sum_{n=1}^{\infty} b_{n}$. Then $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=$ 0 .

Proof. The proof follows from Lemmas 9, 10, 11.
Proposition 12 Let $\sum_{n=1}^{\infty} b_{n}$ be a series such that $b_{n}=q^{n} c_{n}, q \neq 0,|q|<1$, $0<k_{1}<\left|c_{n}\right|<k_{2}, k_{1}, k_{2} \in \mathbb{R}, s(b)-s_{n-1}(b) \neq 0, n \in \mathbb{N}$ and let $\sum_{n=1}^{\infty} a_{n}$ be a $f c s t \sum_{n=1}^{\infty} b_{n}$. Then $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=0$.

Proof. The inequality $\left|s(b)-s_{n-1}(b)\right|<k_{2} \frac{|q|^{n}}{1-|q|} n \in \mathbb{N}$ implies $\left|\frac{s_{n}(b)-s_{n-1}(b)}{s(b)-s_{n-1}(b)}\right|>$ $\frac{k_{1}}{k_{2}}(1-|q|), n \in \mathbb{N}$. So by Lemma $15 \lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}=0$.

Lemma 13 Let $\sum_{n=1}^{\infty} b_{n}$ be a convergent series such that $s(b)-s_{n-1}(b) \neq 0$, $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} b_{n}=$. Let $\lim _{n \rightarrow \infty}\left|\frac{s(b)-s_{n-1}(b)}{s_{n}(b)-s_{n-1}(b)}\right|=+\infty$. Let $\sum_{n=1}^{\infty} c_{n}$ be a convergent series with a sum c. Let $\limsup _{n \rightarrow \infty}\left|\frac{s_{n}(c)-s_{n-1}(c)}{s_{n}(b)-s_{n-1}(b)}\right|<\infty$. Let $\sum_{n=1}^{\infty} a_{n}$ be a Kummer's transformation of $\sum_{n=1}^{\infty} b_{n}$ and $\sum_{n=1}^{\infty} c_{n}$ such that $a_{n} \neq 0$ for $n \geq 2$ and $\limsup _{n \rightarrow \infty}\left|\frac{s(a)-s_{n-1}(a)}{s_{n}(a)-s_{n-1}(a)}\right|<\infty$. Then $\sum_{n=1}^{\infty} a_{n}=a$ and $\sum_{n=1}^{\infty} a_{n}$ is a fcst $\sum_{n=1}^{\infty} b_{n}$.

Proof. Put $A_{n}=s(a)-s_{n-1}(a), B_{n}=s(b)-s_{n-1}(b), n \in \mathbb{N}$. From $\frac{A_{n}}{B_{n}}=$ $\frac{A_{n}-A_{n+1}}{B_{n}-B_{n+1}} \frac{\frac{A_{n}}{B_{n}-A_{n+1}}}{B_{n}-B_{n+1}}$ and from assumptions of the lemma it follows $\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}}=$ 0 .

The above lemma is useful, for example in the case that the sum a is unknown and the sum c is known.

The next example shows that there exist Kummer's series $\sum_{n=1}^{\infty} a_{n}$ fcst $\sum_{n=1}^{\infty} b_{n}$ such that $\lim _{n \rightarrow \infty} \frac{s_{n}(a)-s_{n-1}(a)}{s_{n}(b)-s_{n-1}(b)}$ need not exist and the terms of both series need not be positive.

Example 14 Let $\sum_{n=1}^{\infty} b_{n}$ be a convergent series such that $b_{1}>0, b_{2 n}=\frac{1}{4 n^{2}+\sqrt{2 n}}$, $b_{2 n+1}=\frac{1}{4 n^{2}-\sqrt{2 n+1}}, n \in \mathbb{N}$. Let $\sum_{n=1}^{\infty} c_{n}$ be a convergent series such that $c_{1} \in \mathbb{R} \backslash$ $\{0\}, c_{2 n}=\frac{-1}{2 n^{2}\left(8 n^{3}-1\right)}, c_{2 n+1}=\frac{-1}{2 n^{2}}, n \in \mathbb{N}$. It is easy to see that $\lim _{n \rightarrow \infty}\left|\frac{s(b)-s_{n-1}(b)}{s_{n}(b)-s_{n-1}(b)}\right|=$ $+\infty, b_{n} \neq 0, s(b)-s_{n-1}(b) \neq 0, n \in \mathbb{N}, \limsup _{n \rightarrow \infty}\left|\frac{s_{n}(c)-s_{n-1}(c)}{s_{n}(b)-s_{n-1}(b)}\right|<+\infty$ and
$\lim _{n \rightarrow \infty} \frac{s_{n}(c)-s_{n-1}(c)}{s_{n}(b)-s_{n-1}(b)}$ does not exists. Put $c=\sum_{n=1}^{\infty} c_{n}$. The series $\sum_{n=1}^{\infty} a_{n}$ such that $a_{n}=b_{n}+c_{n}, n \geq 2$ and $a_{1}=b_{1}+c_{1}-c$ is a Kummer's series which fulfills $\limsup _{n \rightarrow \infty}\left|\frac{s(a)-s_{n-1}(a)}{s_{n}(a)-s_{n-1}(a)}\right|<+\infty, s(a)-s_{2 n-1}(a)>0$ and $s(a)-s_{2 n}(a)<0$, for $n \geq 2$. By the above lemma $\sum_{n=1}^{\infty} a_{n}$ is a fcst $\sum_{n=1}^{\infty} b_{n}$ and it has the same sum as $\sum_{n=1}^{\infty} b_{n}$.

References

[1] Abramowitz M. and Stegun I.A.(eds.) (1972),Handbook of Mathematical Functions (National Bureau of Standards, Washington, D. C.).
[2] Bornemann F., Laurie D., Wagon S., and Waldvogel J. (2004), The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing (Society of Industrial Applied Mathematics, Philadelphia).
[3] Brezinski C. (1977), Accélération de la Convergence en Analyse Numérique (Springer/Verlag, Berlin).
[4] Brezinski C. (1978), Algorithmes d'Accélération de la Convergence - Étude Numérique (Éditions Technip, Paris).
[5] Brezinski C. (1980), Padé-Type Approximation and General Orthogonal Polynomials (Birkhäuser, Basel).
[6] Brezinski C. (1991), History of Continued Fractions and Padé Approximants, (Springer/Verlag, Berlin).
[7] Brezinski C. (1991), A Bibliography on Continued Fractions, Padé Approximation. Sequence Transformation and Related Subjects (Prensas Universitarias de Zaragoza, Zaragoza) .
[8] Brezinski C. and Redivo Zaglia M. (1991), Extrapolation Methods (NorthHolland, Amsterdam).
[9] Bromwich T.J.I. (1991), An Introduction to the Theory of Infinite Series (Chelsea, New York), 3rd edn. Originally published by Macmillan (London, 1908 and 1926).
[10] Caliceti E., Meyer-Hermann M., Ribeca P., Surzhykov A., and Jentschura U.D. (2007), From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions, Phys. Rep. 446, 1-96.
[11] Clark W.D., Gray H.L., and Adams J.E. (1969), A note on the Ttransformation of Lubkin, J.Res.Natl.Bur.Stand. B73, 25-29.
[12] Cuyt A. and Wuytack L. (1987), Nonlinear Methods in Numerical Analysis (North-Holland, Amsterdam).
[13] D.F. Dawson, Matrix summability over certain classes of sequences ordered with respect to rate of convergence, Pacific Journal of Mathematics, vol. 24, no.1, 1968, pp. 51-56.
[14] Delahaye J.P. (1988), Sequence Transformations (Springer-Verlag, Berlin).
[15] Ferraro G. (2008), The Rise and Development of the Theory of Series up to the Early 1820s (Springer-Verlag, New York).
[16] Holý D., Matejíčka L., and Pinda Ľ.,(2008), On faster convergent infinite series, Int.J.Math.Math.Sci. 2008, 753632-1-753632-9.
[17] Homeier H.H.H. (2000), Scalar Levin-type sequence transformations, J.Comput.Appl.Math. 122,81-147. Reprinted as [17].
[18] Homeier H.H.H. (2000), Scalar Levin-type sequence transformations, in C. Brezinski(ed.), Numerical Analysis 2000, Vol. 2: Interpolation and Extrapolation, 81-147 (Elsevier, Amsterdam).
[19] Jentschura U.D., Mohr P.J., Soff G., and Weniger E.J. (1999), Convergence acceleration via combined nonlinear-condensation transformations, Comput. Phys. Commun. 116, 28-54.
[20] Keagy T.A., and Ford W.F. (1998), Acceleration by subsequence transformation, Pacific Journal of Mathematics, vol. 132, no.2, 1988, 357-362.
[21] Knopp K. (1964), Theorie und Anwendung der unendlichen Reihen (Springer-Verlag, Berlin).
[22] Liem C.B., Lü T., and Shih T.M. (1995), The Splitting Extrapolation Method (World Scientific, Singapore).
[23] Marchuk G.I., and Shaidurov V.V. (1983), Difference Methods and Their Extrapolations (Springer-Verlag, New York).
[24] Press W.H., Teukolsky S.A., Vetterling W.T., and Flannery B.P. (2007), Numerical Recipes: The Art of Scientific Computing (Cambridge U. P., Cambridge).
[25] Salzer H.E. (1955), A simple method for summing certain slowly convergent series, Journal of Mathematics and Physics, vol. 33, 1955, 356-359.
[26] Sidi A. (2003), Practical Extrapolation Methods (Cambridge U.P., Cambridge).
[27] Smith D.A., and Ford W.F. (1979), Acceleration of linear and logarithmic convergence, Siam Journal of Numerical Analysis, vol. 16, no.2, 1979, 223240.
[28] Srivastava H.M. and Choi J. (2001), Series Associated with the Zeta and Related Functions (Kluwer, Dordrecht).
[29] Šalát T. (1974), Nekonečné rady, ACADEMIA nakladatelství Československé akademie věd Praha, (1974).
[30] Tripathy B.C., and Sen M. (2005), A note on rate of convergence of sequences and density of subsets of natural numbers, Italian Journal of Pure and Applied Mathematics, vol. 17, 2005, 151-158.
[31] Walz G. (1996), Asymptotics and Extrapolation (Akademie Verlag, Berlin).
[32] Weniger E.J. (1989), Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series, Comput. Phys. Rep. 10, 189-371, Los Alamos Preprint mathph/0306302(http://arXiv.org).
[33] Wimp J. (1981), Sequence Transformations and Their Applications (Academic Press, New York).
[34] Wimp J. (1972), Some transformations of monotone sequences, Mathematics of Computation, vol. 26, no.117, 1972, 251-254.

[^0]: * Corresponding author. Address: Faculty of Industrial Technologies in Púchov Trenčín University of Alexander Dubček in Trenčín
 I. Krasku 491/30, 02001 Púchov, Slovakia

 Email addresses: holy@fpt.tnuni.sk, matejicka@tnuni.sk (LADISLAV MATEJÍČKA), pinda@dec.euba.sk (ĽUDOVÍT PINDA).
 ${ }^{1}$ This work was supported by VEGA no.1/0094/08.

