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Abstract: The article analyses and evaluates the ever-important topic of assessing geometric deviation
of tolerated formations related to bases with the usage of coordinate measuring machines. The basic
system for off-line simulation consists of the coordinate planes of a component’s coordinate system.
At the beginning of the measurement, the coordinate system is created by the “3–2–1” alignment. Due
to production deviations in real surfaces of the component, each measurement generates mutually
different coordinate systems, which is well proven by the experiment on measuring with a coordinate
measuring machine DEA Global Performance 12.22.10. An integral part of the article is also the
quantification of geometric deviations of ideal tolerated formations related to bases, the estimate of
the uncertainty of measurement arising from the placement of points in defining the base system,
and the effect of such uncertainty upon the interval of satisfactory values in conformity with the STN
EN ISO 14253-1 technical standard. The article also includes a proposal measure in order to ensure
the reproducibility of defining the mutual position of coordinate systems.

Keywords: coordinate measuring machine; means of measuring; DEA; parametric model; measuring
program; measuring protocol; uncertainty of measurement; STN EN ISO 14253-1

1. Introduction
1.1. The State-of-the-Art

Kumru and Kumru [1] stated that the production system performance usually depends
on the chosen types of machine tools used by companies. The overall production system
performance can be adversely affected by incorrectly chosen machine tools. Zhang et al. [2],
in their research, pointed out the fact that large-scale measurement systems are widely
used in industrial measurement fields such as robot performance evaluation, ship building,
aerospace assembling, railway facility collimation and calibration, automobile quality
inspection, numerical control machine calibration, reverse engineering and so on. The
rapid progress observed today in the field of engineering design includes the growing need
to incorporate shapes of complex geometry into design, as Skalski et al. [3] explained.

A constant development of computer numerical control (CNC) production machines
and their operating systems enables the production of complex machine parts with high
measurement and shape accuracy, as Adams [4] explained. Wdowik et al. [5] mentioned
that the challenges of today’s competitive environment are the result of new development
in the construction of CNC machine tools and coordinate measuring machines (CMMs).
Nekrasov and Tempel [6] reported that the creation and usage of flexible production mod-
ules and production complexes for material processing by cutting leads to the acquisition
and widespread usage of CNC machines. Swornowski [7], in his research, presented the
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application of neural networks in determining and correcting the deformation of a coordi-
nate measuring machine workspace. Gaska et al. [8] stated that as production accuracy
increases, the measurements and methods used to assess the measurement uncertainty
need to be more accurate.

The coordinate measuring machine means “any measuring machine that records
information from the work piece step-by-step using optical or tactile means on the basis of a
coordinate system defined by the device and further processes the coordinate values using a
computer”, as stated Cuesta et al. [9]. As it was presented in Quality Magazine Editorial [10],
CMMs can measure parts regardless of their distorted condition. This provides immediate
variable data that quantify how badly and in what manner parts are distorted so that
process corrections can be made immediately if necessary. Compared to other types of
measurement, it is the ability to correctly and quickly capture and evaluate the obtained
data ranks coordinate measuring machines among the top measuring technology with
perfectly sophisticated tactile or non-contact scanning systems, such as Schmalzried and
Schmitz [11] explained.

Equipping of coordinate measuring machines with powerful control and processing
computers predetermines them as a practical solution suitable for checking the complex ge-
ometry of the produced component base, as stated by Schneider et al. [12]. Waurzyniak [13]
performed research about off-line programming LK’s Camio Studio CMM programming
software and he found out that off-line programming software tools for CMMs allow
producers to increase measurement capacity and throughput by programming CMMs,
probes, and fixtures before parts are made. Krawczyk et al. [14] presented the fact that
evaluating the accuracy of coordinate measurement is a very complex task, and especially
the development of one method for all coordinate measuring systems. Most methods focus
only on coordinate measuring machines. Research work from Hussien [15] presented a
computer-aided inspection system that reads as input a fixed B-rep model in SAT format
and produces the final CMM program in DMIS format. In research by Gaska et al. [16]
they tried to present the direction of further research, but the discussion focused mainly
on five-axis systems using touch-trigger probes. Models for these systems would be the
basis for a bigger problem, a virtual machine for five-axis scan measurements. There is
no satisfactory solution for this problem even with typical three-axis CMMs. Neamtu
et al. [17] reported that, currently, most 3D measuring software offers functions for off-line
coordinate measuring machine (CMM) programming. Several software solutions allow
the simulation of CMM and other elements involved in the measurement process, such
as a human operator or an automated system for loading and unloading the measured
parts. In research by Qu et al. [18], a new approach to measurement methodology for a
vision integrated coordinate measuring system was developed and demonstrated. The
vision coordinate measurement system features the integrated use of a high-precision
coordinate measuring machine (CMM), a vision system, advanced computing software
and related electronics. It has potential usage across a range of producing issues with a
big impact on metrology, control and reverse engineering. Lin et al. [19] presented the
view that fast and accurate measurement in the process has recently become standard
in product cycles, especially in the production of parts having 3D contoured shapes. As
a result, the ability to analyse large amounts of dimensional data requires that today’s
coordinate measuring machines (CMMs) take advantage of their extreme functionality.
Lotze [20] and Vermeulen et al. [21] defined Coordinate Measuring Machines (CMMs) in
a very similar way, as the universal machines that are often used to measure geometrical
dimensions and shapes of rather complex products in production. Cheng et al. [22] pointed
out that measuring instruments should be intelligent, accurate, and multifunctional and
evolve in a multidirectional, scientific and proportionate manner; reliable evaluation of the
measurement uncertainty of precision instruments is also becoming increasingly difficult,
and the measurement uncertainty of coordinate measuring machines (CMMs) is one of the
typical problems.
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The study performed by Suzuki et al. [23] proposes a method for quick production of
the deformed evaluation image using a whole-space tabulation method. Another study
conducted by Shiou and Chen [24] represents the development of a hybrid measuring
system integrated into a machining centre to perform a possible intermittent measurement
of the work piece. The work conducted by Sladek [25] mainly focuses on the issue of
measuring tip contact with the measured object, and it is based on the author’s original
method for the identification of a probing system: contact probe errors with the use of a
circular standard together with the system of software separation of components. Gaska
et al. [26] stated that coordinate measuring machines are today a necessary tool of quality
management systems, as they allow quick verification of the conformity of the object with
the geometric specifications contained in the technical documentation.

Since coordinate measuring machines are a part of every modern production plant,
the paper is a response to the current situation, and its development required not only
knowledge of the coordinate measuring machine and related software, but also the knowl-
edge of mechanical metrology, computer technology, reading and drawing preparation,
documentation and parametric modelling in the CAD (computer-aided design) system.

1.2. Problem Description

The measuring program is created in the measuring and evaluating software PC-DMIS
(PC-Dimensional Measurement Interface Specification), which is based on the analysis
of the measured part and the prepared measuring procedure, which was pointed out
by Jing [27]. Theoretical and practical skills are used, regarding not only the coordinate
measuring device itself but also from the area of engineering metrology, reading and
preparation of technical documentation, and ultimately, skills from the area of parametric
modelling in the CAD system CATIA. Correctness of the prepared measuring program
is verified in the PC-DMIS work environment by an off-line simulation, which gives
prerequisites for its non-problematic verification and the measuring itself on the coordinate
measuring machine DEA Global Performance 12.22.10.

Compared to basic construction elements of the coordinate measuring device, its
measuring and evaluating software becomes equally important, which also participates
on a large scale of all measuring activities administered. By measuring and evaluating
software of the coordinate measuring device DEA Global Performance, the PC-DMIS
CAD++ v4.3 is built based on additional program packages, which can be bought by each
user according to their needs. The stated software represents the highest available version
of the PC-DMIS, by which it is predestined to perform the most challenging applications
for scanning and touch measuring. The default work environment consists of a graphic
window, a command tree for a coordinate measuring device and several panels with
“tools” used for creation of the measuring program particle. The principle of work in the
work environment is similar, compared to other applications installed in the Windows OS
(Operating System).

PC-DMIS CAD++ v4.3 (hereinafter only PC-DMIS) as a measuring software of the
coordinate measuring device offers many various available functions, out of which at least
these basic ones need to be mentioned:

1. Defining a new scanning system and its calibration.
2. Programming of a measured task.
3. Using the data file obtained by measuring.
4. Logging of measurement results.

It is necessary to state that the following subchapters do not explain the basic principles
of calibration and measuring on the coordinates measuring devices but point to the most
important options of the measuring software PC-DMIS. During the development of a new
measuring program, the first step is choosing a suitable touch scanning system, which can
be done by:

• Defining a new configuration of elements of the touch scanning system, when the
individual elements are taken out of the database in such a sequence so that the
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scanning system is created in the measuring program as identical with the scanning
system attached in the endpoint of the coordinate measuring machine’s tailstock,

• Invoking an existing touch scanning system in the case in which we have already used
a scanning system with the required combination of elements in the past.

Every new configuration of the scanning system elements always has one pre-defined
orientation A = 0◦, B = 0◦, and in the case in which any other system orientation is necessary
for its measuring, it is necessary to define it. After the creation of a new touch scanning
system, its calibration follows in all necessary directions, during which the point of touch
of the scanning system comes into contact with the surface of a very accurate calibration
ball. The diameter and position of the calibration ball in the work environment of the
device are defined in the PC-DMIS in the calibration tools list.

PC-DMIS differentiates several regimes of calibration, derived from the following
basic regimes:

• Manual—during the whole calibration process, the movement of the scanning system
is operated by the operator through a manual operating unit.

• CNC—an operation unit of the machine based on the calibration algorithm operates
the whole calibration process. In the case in which the position of the calibration ball
in the work environment of the machine has changed since the last calibration, it is
necessary to scan the first point on its pole manually (Figure 1).
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As the measuring program includes a command file, based on which the device
performs a particular measuring task, under the phrase “programming of the measuring
task” we mean all activities leading to the creation of a functional measuring program of the
controlled part. Nowadays, construction and technological preparation of the production
is carried out by use of the software packages CAD/CAM (computer-aided manufacturing)
like NX, Creo Parametric, CATIA, etc. Pro. Therefore, a great advantage of the PC-DMIS
software is its ability to import a prepared parametric model of the measured part in
the CAD system, which can be used for the programming of the measuring task, as well
as for the presentation of the measured results. Measuring programs for the coordinate
measuring device DEA can be created in the programming environment of the PC-DMIS
by two means:

• On-line programming—During the on-line programming of the measuring task, the
computer with the installed measuring and evaluating software PC-DMIS is directly
connected with the coordinate measuring device. A so-called learning creates the
measuring program, when the user with the help of a manual operation unit esti-
mates entry-measuring points on the surface of the controlled part, necessary for the
identification of the position and type of the scanned geometric element. For the
required accuracy of the measurement to be the highest, the device then repeats the
strategy learnt in an automatic cycle and scans at least those same points, defined
by the user. An indispensable condition for programming of the measuring task
on-line is the presence of the controlled part in the work environment of the device,
whereas its imported parametric model can be used as well, depending on the need.
In the case of use of the imported parametric model, programming of the measuring
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task is carried out in a way so that the operator clicks on the required place on the
surface of the parametric model in the programming environment of the PC-DMIS.
The coordinates measuring device will realize the given task by scanning the point
on the surface of the real part in the same place the operator required. Considering
that during the programming it is not possible to administer any other measuring
activities on the device, the disadvantage of measuring programs created in this way
has mainly economic importance, particularly when the measuring device represents
large purchase costs.

• Off-line programming—The creation of the measuring program takes its course on a
remote computer with an installed measuring software PC-DMIS off-line, which is
not directly connected with the coordinate measuring device. Programming of the
measuring task always stems from the imported parametric model of the measured
part. Individual points needed for identification of the position and type of the
geometric unit are entered by clicking on the surface of the imported model, whereas
the value of the dimension of each geometric element represents a nominal value of
the dimension of the same element on the real part. A program created off-line can
be simulated in the programming environment of the PC-DMIS, which provides an
option to remove the created collision of the scanning system with the measured part
(Figure 2).
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Figure 2. Collision of the scanning system with the measured part found during the simulation in
the programming environment of the PC-DMIS.

A considerable advantage of the off-line programming of the measuring task is the
removal of auxiliary unproductive times of the device that originate in programs created
directly on the coordinate measuring device.

The next chapter will describe the procedure of component measurements with em-
phasis on compliance with the accuracy of measurement procedures.

2. Materials and Methods

PC-DMIS as a measuring and evaluating software of the coordinates measuring
device uses a data file acquired by measuring for calculation of parameters (distance,
shape deviation, position, rotational accuracy, etc.) describing production accuracy of
the measured part. With this, it is possible to stem directly from the measured geometric
elements and designed geometric elements, which the user can construct according to their
needs. PC-DMIS also enables exporting the data file acquired by measuring into formats
supported by leading CAD/CAM systems, which is applied mainly in the area of reverse
engineering, when the curves are transferred with the file of measured points with a goal
to reversely create a parametric model of the measured part.

The basic principle of the coordinate measuring arises from the assumption that “every
machine part consists of various geometric elements, such as plane, cone, cylinder, ball,
torus”. These elements are scanned on the coordinates measuring device in the coordinate
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system, whereas the position of each one of the elements is distinct in this system and the
goal is to estimate a shape deviation (circularity) on the coordinates measuring device by
touch measuring. It originates by a cross section of the plane α on a real cone, which means
that the given deviation will be investigated within the height of the cone equal to the value
x (Figure 3a). To determine the circularity of the investigated circle by touch measuring, we
will scan four points evenly placed around its perimeter (Figure 3b). Measuring software
will transfer a substitute geometric element with the scanned points and consequently, by
its evaluation, the expected shape deviation of the appropriate circle will be acquired.
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Figure 3. Estimation of circularity deviation on the coordinates measuring device. (a) Investigation
of the circularity deviation within the height of the cone equal to x, (b) error of estimating the shape
deviation, which the touch measuring cannot intercept, 1′—substitute geometric element in touch
measuring, 2′—real shape of the investigated circle.

It is necessary to measure the position of the point A placed on the plane ϕ by use of
the coordinate measuring device and touch, the point of which is a ball with radius r = 1
mm. In the first case (Figure 4a), the point A is scanned so that the scanning system moves
on the trajectory that is parallel with the axis x of the coordinate measuring device. Looking
at that trajectory, on which the scanning system moves, it contains an angle β = 30◦ with
the normal of the plane ϕ, the result of measuring is influenced by a gross error and the
position of the point determined by measuring will be moved by the value a, compared to
the set position. In the second case (Figure 4b), the point A is scanned so that the scanning
system moves on the trajectory that is parallel with the normal of the plane ϕ. As it results
from the above stated text, the result of measuring will not be influenced by the gross error
and the position of the point determined by measuring will respond to its set position.
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considerable parameter is the setting of correct depth of scanning hs, in this case equal
to zero, which means that the horizontal axis of the point (ball with radius r = 2 mm)
of the touch is equal to the plane of the moulded panel surface. We consider two cases
during measuring:

1. In the first case (Figure 5a), an ideal cylindrical opening is made, without deforma-
tion, the result of which is scanning of points placed on the real diameter of the
measured opening.

2. In the second case (Figure 5b), the opening is made with a deformation, which causes
the scanned points to not be situated on the real diameter of the scanned opening, but
their position is moved by the value a.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 22 
 

  
(a) (b) 

Figure 4. Trajectory of the movement of the scanning system. (a) Contains an angle β with the nor-
mal line of the plane, the result of measuring is influenced by a gross error; (b) is parallel with the 
normal line of the plane, the result of measuring is not influenced by a gross error, —directional 
vector of the plane, —direction of scanning. 

For an easier problem explanation, we will use a case of touch measuring of a cylin-
drical opening diameter of a moulded panel, the semi product of which is a plate with the 
thickness h = 1 mm. The measured cylindrical opening is made by perforation. A consid-
erable parameter is the setting of correct depth of scanning hs, in this case equal to zero, 
which means that the horizontal axis of the point (ball with radius r = 2 mm) of the touch 
is equal to the plane of the moulded panel surface. We consider two cases during meas-
uring: 
1. In the first case (Figure 5a), an ideal cylindrical opening is made, without defor-

mation, the result of which is scanning of points placed on the real diameter of the 
measured opening. 

2. In the second case (Figure 5b), the opening is made with a deformation, which causes 
the scanned points to not be situated on the real diameter of the scanned opening, 
but their position is moved by the value a. 
We will reach the correct result of the given measuring by setting a suitable depth of 

scanning (Figure 5c) that is in this case equal to half thickness of the material. It means 
that the scanning system will move in the direction of the axis until the horizontal axis of 
the touch point is not under the plane of the moulded panel surface. From the stated re-
sults, the set depth of scanning is hs = mm. 

   
(a) (b) (c) 

Figure 5. Setting of a suitable scanning depth (hs). (a) Result of measuring is not influenced by a gross error, hs = 0 mm; (b) 
result of measuring is influenced by a gross error, hs = 0 mm; (c) result of measuring is not influenced by a gross error, hs 
= h mm,  directional vector of the plane,  direction of scanning. 

We have expressively defined the position of the measured part in the work environ-
ment of the coordinates measuring device by removing degrees of freedom. Principle of 
levelling “3–2–1” is in Figure 6. 

Figure 5. Setting of a suitable scanning depth (hs). (a) Result of measuring is not influenced by a gross error, hs = 0 mm;
(b) result of measuring is influenced by a gross error, hs = 0 mm; (c) result of measuring is not influenced by a gross error,
hs = 1

2 h mm,

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 22 
 

  
(a) (b) 

Figure 4. Trajectory of the movement of the scanning system. (a) Contains an angle β with the nor-
mal line of the plane, the result of measuring is influenced by a gross error; (b) is parallel with the 
normal line of the plane, the result of measuring is not influenced by a gross error, —directional 
vector of the plane, —direction of scanning. 

For an easier problem explanation, we will use a case of touch measuring of a cylin-
drical opening diameter of a moulded panel, the semi product of which is a plate with the 
thickness h = 1 mm. The measured cylindrical opening is made by perforation. A consid-
erable parameter is the setting of correct depth of scanning hs, in this case equal to zero, 
which means that the horizontal axis of the point (ball with radius r = 2 mm) of the touch 
is equal to the plane of the moulded panel surface. We consider two cases during meas-
uring: 
1. In the first case (Figure 5a), an ideal cylindrical opening is made, without defor-

mation, the result of which is scanning of points placed on the real diameter of the 
measured opening. 

2. In the second case (Figure 5b), the opening is made with a deformation, which causes 
the scanned points to not be situated on the real diameter of the scanned opening, 
but their position is moved by the value a. 
We will reach the correct result of the given measuring by setting a suitable depth of 

scanning (Figure 5c) that is in this case equal to half thickness of the material. It means 
that the scanning system will move in the direction of the axis until the horizontal axis of 
the touch point is not under the plane of the moulded panel surface. From the stated re-
sults, the set depth of scanning is hs = mm. 

   
(a) (b) (c) 

Figure 5. Setting of a suitable scanning depth (hs). (a) Result of measuring is not influenced by a gross error, hs = 0 mm; (b) 
result of measuring is influenced by a gross error, hs = 0 mm; (c) result of measuring is not influenced by a gross error, hs 
= h mm,  directional vector of the plane,  direction of scanning. 

We have expressively defined the position of the measured part in the work environ-
ment of the coordinates measuring device by removing degrees of freedom. Principle of 
levelling “3–2–1” is in Figure 6. 

directional vector of the plane,

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 22 
 

  
(a) (b) 

Figure 4. Trajectory of the movement of the scanning system. (a) Contains an angle β with the nor-
mal line of the plane, the result of measuring is influenced by a gross error; (b) is parallel with the 
normal line of the plane, the result of measuring is not influenced by a gross error, —directional 
vector of the plane, —direction of scanning. 

For an easier problem explanation, we will use a case of touch measuring of a cylin-
drical opening diameter of a moulded panel, the semi product of which is a plate with the 
thickness h = 1 mm. The measured cylindrical opening is made by perforation. A consid-
erable parameter is the setting of correct depth of scanning hs, in this case equal to zero, 
which means that the horizontal axis of the point (ball with radius r = 2 mm) of the touch 
is equal to the plane of the moulded panel surface. We consider two cases during meas-
uring: 
1. In the first case (Figure 5a), an ideal cylindrical opening is made, without defor-

mation, the result of which is scanning of points placed on the real diameter of the 
measured opening. 

2. In the second case (Figure 5b), the opening is made with a deformation, which causes 
the scanned points to not be situated on the real diameter of the scanned opening, 
but their position is moved by the value a. 
We will reach the correct result of the given measuring by setting a suitable depth of 

scanning (Figure 5c) that is in this case equal to half thickness of the material. It means 
that the scanning system will move in the direction of the axis until the horizontal axis of 
the touch point is not under the plane of the moulded panel surface. From the stated re-
sults, the set depth of scanning is hs = mm. 

   
(a) (b) (c) 

Figure 5. Setting of a suitable scanning depth (hs). (a) Result of measuring is not influenced by a gross error, hs = 0 mm; (b) 
result of measuring is influenced by a gross error, hs = 0 mm; (c) result of measuring is not influenced by a gross error, hs 
= h mm,  directional vector of the plane,  direction of scanning. 

We have expressively defined the position of the measured part in the work environ-
ment of the coordinates measuring device by removing degrees of freedom. Principle of 
levelling “3–2–1” is in Figure 6. 

direction of scanning.

We will reach the correct result of the given measuring by setting a suitable depth of
scanning (Figure 5c) that is in this case equal to half thickness of the material. It means that
the scanning system will move in the direction of the axis until the horizontal axis of the
touch point is not under the plane of the moulded panel surface. From the stated results,
the set depth of scanning is hs = mm.

We have expressively defined the position of the measured part in the work environ-
ment of the coordinates measuring device by removing degrees of freedom. Principle of
levelling “3–2–1” is in Figure 6.
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3. Results

A measuring program was created by use of the imported parametric model of the
component, from which a directional vector of the plane, on which the particular point has
been scanned, is deducted for each scanned point. Coordinates of the position of individual
scanned points are up to the moment of levelling deducted in the coordinate system of the
device, and after levelling, these are in the coordinate system of the part. Nominal values of
observed geometric specifications are deducted by use of the imported parametric model
from this model; therefore, the parametric model of the measured part finds its justification
even in the stage of logging of the measured results. Position and orientation of axes +x,
+y, +z of the coordinate system of the part after fine levelling are in Figure 7.
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In the programming of the measured task with the usage of a parametric model of
the measured part, the first step is the import of this model into the prepared measuring
program. Convertor PC-DMIS transforms the output data of the CAD system into a format
supported by the particular measuring and evaluating software. Prior to levelling, the
position of the measured part in the work environment is unknown, from which stems
an incorrect display of the scanning system considering the position of the measured part
(Figure 8a). We can estimate by necessary adjustment of the display setting which axis of
the imported parametric model represents the axis of the coordinate measuring machine
pertaining to it (Figure 8b). Considering the placement of the measured part in the work
environment of the coordinates measuring device, the display settings are as follows:

• Axis +x on the parametric model corresponds to the axis +y on the device,
• Axis +y on the parametric model corresponds to the axis +x on the device,
• Axis +z on the parametric model corresponds to the axis +z on the device.

Considering the analysis of the measured part, for fine levelling (Figure 9) it is neces-
sary to scan the opening Ø32 H7 (CYL1), the line (LIN2) and the point (PNT4). Figure 9
does not show elements of the gross levelling for a more distinct clarity. The opening Ø32
H7 (mm) will be scanned by four circles CIR1, CIR2, CIR3, CIR4 in four cuts, by which
the designed geometric element will be transferred, cylinder CYL1. Every circle will be
scanned in the appropriate cut by eight points, and the selected work plane will be plane
yminus. Considering the length of touch of the scanning system used, it is necessary to
scan the first two circles CIR1, CIR2 in the orientation of the scanning system A = 90◦,
B = 0◦ and following two CIR3, CIR4 in the orientation A = 90◦, B = 180◦. For the direc-
tional vector of the designed cylinder (CYL1) to be oriented into the internal space of the
opening, it is necessary in its construction to choose individual circles CIR1 to CIR4 in
the order CIR3–CIR4–CIR2–CIR1, by which we will ensure the required orientation of the
directional vector.
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Compared to the gross levelling, a difference in the way of scanning the line LIN2 will
happen, which in this case represents the designed geometric element transferred by two
points PNT2 and PNT3. To secure the required orientation of its directional vector (stems
from the analysis of the measured part), it is necessary to first select PNT2 and only then
PNT3 in the construction of the line. Furthermore, one must not forget to select correct the
work plane, which in this case is the plane yminus, as by the line LIN2, we set the rotation
of the part in the work environment of the device in the plane xz. For simplicity, it will be
proper to summarize the fine levelling in the following steps:

• The axis +y of the designated coordinate system of the part will be levelled into the
axis of the cylinder CYL1,

• The axis +x of the coordinate system of the part will be rotated around the axis +y until
its direction is identical with the direction of the directional vector of the line LIN2,
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• The beginning of axes x and z will be transferred into the axis of the cylinder, and the
beginning of the axis y into the point PNT4.

During the programming of the measuring task in the work environment PC-DMIS,
for the part measured in the measuring position 1 and 2, the elements are defined by mea-
suring and as automatic elements. For the automatic element of the circle, the parameters
(Figure 10a) are defined in the measuring program, such as centre, number of touches,
angle of beginning and end of scanning (start and stop angle), direction of scanning (CW
and CCW) and incursion (departure). Prior to scanning the circle, the scanning system will
first move from any place to the point A and only then it will enter the opening on the
designated trajectory with the goal to scan the given number of touches (Figure 10b). This
applies analogically also to the departure parameter.
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Figure 10. Parameters of the automatic circle element. (a) Around the perimeter of the circle, the
number of touches is spread evenly; (b) parameter incursion (departure); 1—position, where the
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A—point of the incursion (departure).

An automatic element of the vector point (Figure 11) is used in the measuring program
for the measuring positions 1 and 2. In the measuring programs for both measuring posi-
tions 1 and 2 all parameters (position in the coordinate system of the part and directional
vector of the plane, which the point has been scanned from) of the surface point have been
deducted from the imported parametric model of the measured part.
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(b) parameters of the vector point.

The geometric cylinder element designed by construction (in the measuring program
CYL1) is necessary for defining the mutual position of the coordinate systems of the
measured part and the coordinates measuring device. It is necessary to state that the
direction of the directional vector of the cylinder is estimated by the order of selection of
the elements CIR1 to CIR4 measured directly (Figure 12).
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Figure 12. Geometric cylinder element designed by construction. A, B, C, D—order of selection
of the elements measured directly (first element is element A, last is the point D); E—designated
geometric element is represented by an axis and a directional vector, the direction of which stems
from the order of selection of elements measured directly.

4. Discussion

Before the direct running on the CMM, the measuring program has to be verified not
only in terms of the kinematics of the movements during the measurement but also in
terms of compliance with the correct technological procedure of the measurement.

Measuring and evaluating software PC-DMIS enables starting the prepared measuring
program in the off-line simulation regime, during which collisions of the scanning system
with the measured part, occasionally incorrectly placed contact places of the touch point
with its surface, are identified. Simulation off-line in the work environment PC-DMIS was
carried out for both prepared measuring programs (measuring program for measuring
position 1, also for the measuring position MP2). During their simulation, a detection
of collisions of the scanning system with the measured part was activated, which in the
case of any collision will stop the operation of the measuring program and mark the point
of its origin. Another function used not only during the off-line simulation but during
the programming of the measuring task itself is a graphic display of the trajectory of the
scanning system (Figure 13).

Activation of this function has enabled to visually check the presence of excessive
movements of the coordinate measuring machine based on the estimation, and the origin
of possible collisions of the scanning system with the worktable of the device or with
the measured part. Off-line simulation of the measuring program has pointed to the
need to tune the prepared measuring program for the measuring position 1 as well as for
the measuring position 2. On the basis of estimations, the coordinates of the position of
several positioning points have been adjusted, and for the reason of removing excessive
movements of the coordinate measuring device, the transfers of the coordinate system into
the package plane have been removed in the cases where there was no threat of collision of
the scanning system with the measured part. A debugged and collision-free measuring
program for verification of observed geometric specifications of the device part in the
measuring position 1 and 2 was verified on the coordinates measuring device DEA Global
Performance 12.22.10. It was done at a considerably lower speed, as is the set measuring
speed, and after confirmation of its faultlessness, a measuring in the measuring positions 1
and 2 was carried out on the stated coordinates measuring machine.
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The principle of coordinate measuring is based on this assumption: “Each machine
part consists of different geometric elements, such as e.g., plane, cone, cylinder, etc.” On
coordinate measuring machines, points whose position is unambiguous in the defined
coordinate system are sensed by contact of the touch tip of the sensing system with the
surface of the measured part. The read coordinates of each scanned point are sent in
real-time to the measuring and evaluation software. If the scanned points represent basic
geometric elements, they are replaced by a corresponding substitute geometric element.
To ensure the correctness of substitute geometric elements identification, it is necessary
to observe the minimum number of scanned points for each of them (e.g., circle 3, line 2,
etc.). As the number of scanned points increases, the substitute geometric element gets
closer to reality, which increases the accuracy of the measurement. On the other hand, the
measuring time increases, which causes an increase in the costs related to the measurement.
At the end of the measurement, the dimensions, shape deviations and positions of the
substitute geometric elements are compared with the nominal values of the dimensions,
shape deviations and positions of the scanned elements of the verified machine part.
Depending on the method of scanning of points on the surface of the verified machine part,
a tactile measurement on coordinate measuring machines can be divided into:
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• Discontinuous tactile measurement (Figure 14a)—scanning tactile system is moved
away from the surface of the component after scanning each point, and when scanning
the next point, it is moved to the surface again,

• Continuous touch measurement—scanning (Figure 14b)—we can speak about scan-
ning in connection with the measurement, when we investigate deviations in the
shape of a certain scanned surface and also in connection with reverse engineering,
in which we determine the shape of the unknown scanned surface with the goal of
creating its parametric model in reverse mode. In both cases, the touch tip of the
scanning system is in continuous contact with the surface of the verified machine part
during the point scanning.
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Figure 14. Methods of tactile measurement. (a) Discontinuous tactile measurement; (b) continuous
tactile measurement—scanning; 1—touch tip of the scanning system; 2—point of tip contact with the
surface of the measured part during discontinuous measurement and uninterrupted contact of touch
tip with the surface of the measured part during scanning.

In the presented paper, the verified machine part is the gearbox cover of the small
tractor (Figure 15), for which it is necessary to prepare a measuring program. The disad-
vantage is the lack of a parametric model, which does not allow the creation of a measuring
program by off-line programming and debugging by simulation.
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Since the number of elementary steps accompanies the creation of the repeatable and
collision-free measuring program, it is appropriate to create a decomposition of the mea-
suring task programming based on the analysis of the presented component (Figure 16).
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Figure 16. Measuring decomposition of the programming task.

The scanning system, of which the contact length and the tip diameter allows to
scan all necessary points for its verification on the surface of the part without collision, is
constructed based on the shape of the verified machine part and its monitored geometric
specifications. In order to achieve accurate measurement results, it is required to move the
scanning system to the point of tip contact with the surface of the measured object along
a path parallel to the normal of the surface on which the scanning points are located. In
order to be able to verify all geometrical specifications prescribed by the drawing while
complying with the requirement, a basic orientation of the scanning system is not sufficient.
At the beginning of the new measurement, the position of the verified part in the working
space of the coordinate measuring machine is not clearly defined. In order to create a
repeatable and collision-free measuring program and to achieve reliable measurement
results, it is necessary to define the mutual position of the coordinate systems of the part
and the coordinate measuring machine. The definition of the mutual position of coordinate
systems is called alignment.

a. Alignment 3–2–1.

“Alignment 3–2–1” can be included among the most basic and simplest ways of
aligning the coordinate systems of a coordinate measuring machine Om(xm, ym, zm) and
the measured part Ow(xw, yw, zw).

Our own alignment of the coordinate systems (Figure 17) consists in the scanning of six
points Pim

(
xPim , yPim , zPim

)
, i = 1, . . . , 6, which are on the surface of the measured part, while

all points are scanned in the coordinate system of the coordinate measuring machine. The
alignment points that form the coordinate system of the component have to be arranged
on its surface so that they are on the most accurate, contiguous perpendicular surfaces.
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The first three alignment points, P1m
(

xP1m , yP1m , zP1m

)
, P2m

(
xP2m , yP2m , zP2m

)
and

P3m
(

xP3m , yP3m , zP3m

)
, scanned on one surface of the measured part determine the plane

translation, which is the coordinate plane xwyw of the part coordinate system. The next
two points P4m

(
xP4m , yP4m , zP4m

)
and P5m

(
xP5m , yP5m , zP5m

)
are scanned on a surface perpen-

dicular to the previous part surface. The plane passing through the points P4m and P5m is
perpendicular to the previous plane and at the same time is the coordinate plane xwzw of
the part coordinate system. The plane perpendicular to the previous planes passes through
the last point P6m

(
xP6m , yP6m , zP6m

)
scanned on the surface perpendicular to the previous

two surfaces of the part, and this represents the plane ywzw of the coordinate system of
the part.

The coordinate system of the component (Ow, xw, yw, zw) is now mathematically
related to the coordinate system of the coordinate measuring machine (Om, xm, ym, zm).
For the transformation matrix T, which describes the translation and rotation between the
given coordinate systems, the following applies (1):

T =


axw ayw azw Oxw
bxw byw bzw Oyw
cxw cyw czw Ozw
0 0 0 1

 (1)

The direction vectors sxw, syw, szw of the individual coordinate axes xw, yw, zw of the
component coordinate system can be expressed as follows (2):

szw = (P1P2 x P1P3) = (P2 − P1) x (P3 − P1) = (szw1 , szw2 , szw3)
sxw = P4P5 = (P5 − P4) = (sxw1 , sxw2 , sxw3)

syw = (zw5 x xw) =
(
syw1 , syw2 , syw3

) (2)

where P1–P5—relevant alignment points.
For directional cosines of the coordinate axes xw, yw, zw of the coordinate system of the

component with respect to the coordinate system of the coordinate measuring machine (3):

cos αxw, yw, zw =
sxw1, yw1, zw1

|sxw, yw, zw|
cos βxw, yw, zw =

sxw2, yw2, zw2

|sxw, yw, zw|
cos γxw, yw, zw =

sxw3, yw3, zw3

|sxw, yw, zw|

(3)
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Until the mutual position of the coordinate systems is defined, the coordinates of
all scanned points are expressed in the machine coordinate system, and only then are all
scanned points expressed in the current coordinate system of the part.

b. Rough alignment.

During the rough alignment, the individual points are scanned in manual mode,
which means that the touch tip of the scanning system does not touch the surface of the
measured part with a constant force at all scanned points, and therefore, it is not possible
to speak about a sufficiently precise definition of the mutual position of coordinate systems.
The alignment ensures only the initial position determination of the verified machine part
in the working space of the coordinate measuring machine, which in the next steps allows
performing all working movements with the control unit in the CNC mode. For rough
alignment of coordinate systems, it is necessary to scan on the surface of the measured part
(Figure 18):

• Three points PNT1, PNT2, PNT3 to define the plane; subsequently, the z axis direction
from the coordinate system of the part is identified with the direction of the direction
vector by three points of the defined plane,

• The circles CIR1 and CIR2, where the order of their selection determines the direction
vector v; the coordinate system of the part is then rotated about the z-axis so that the
direction of the x-axis is identical with the direction of the direction vector v,

• The circle CIR3 as the available drawing documentation determines the position of
the origin of the part coordinate system at its prescribed zero point (Figure 18). This
requirement is met when the origin of the x-axis and also the origin of the y-axis are
shifted into the scanned circle CIR3. The last step is the movement of the origin of the
z axis to the plane scanned using points PNT1, PNT2 and PNT3.
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c. Fine alignment.

Compared to rough alignment, the basic difference between is the controlled move-
ments managed by the control unit of the coordinate measuring machine, which ensures
that all points required for alignment of the scanning system to the point of contact of the
contact tip with the surface of the part are scanned with constant force and constant ap-
proach speed. With the mentioned constant parameters, in addition to the points required
for fine alignment, all required elements of the verified machine part are scanned, which is
a basic prerequisite for achieving correct measurement results of precise machine parts. For
fine alignment of coordinate systems, the same elements are scanned on the surface of the
verified machine part as by rough alignment, while their replacement geometric elements
are determined from several scanned points.
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d. Scanning of elements necessary for evaluation of verified geometric specifications.

The technical documentation of the machine part clearly specifies which geometrical
specifications are necessary to be verified. Therefore, all necessary points are scanned
on their surface. Based on computational algorithms, they are translated with substitute
geometric elements representing the real elements on the part. As the scanning system
moves during scanning, it is necessary to avoid its collision with the measured part. In this
case, the usage of the so-called envelope plane is the most suitable way for elimination of
possible collisions (Figure 19).
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e. Definition of evaluation elements and generation of measurement protocol.

In the last phase of the measuring program preparation, an evaluation element is
assigned to each replacement geometric element, which relates to the nominal value read
from the technical documentation and the associated tolerance. Deviations in the size,
position and shape of the substitute geometric elements then represent deviations from
the nominal value of the dimension, position and shape of the actual element on the part.
The output phase of the measuring process becomes a measuring protocol, which gives
clear information on whether the verified machine part meets the given requirements
or becomes repairable or a not-reparable failure. In addition to the nominal value and
the associated tolerance, the measurement protocol also shows the measured value, its
deviation from the nominal value and from the tolerance band, which is expressed both
numerically and graphically.

4.1. Plan and Implementation of the Experiment

The design of the experiment is based on the approach of measuring a calibrated
work piece with the same sequence of measurements, in the same way, with the same
measuring device and under the same conditions as in real measurements in the production
plant. Based on the work piece measurement on a laboratory coordinate measuring
machine, a value estimate of the deviation of the surface parallelism and the associated
measurement uncertainty, which is the total standard uncertainty of the calibrated work
piece measurement, is obtained. Subsequently, the parallelism deviation of the surface of
the calibrated work piece is measured with the usage of the coordinate measuring machine
representing the measuring instrument. This simulates the measurement in the production
plant. For each measurement, a new coordinate system of the component is created, in
which the deviation of the surface parallelism is evaluated 30 times. The component
coordinate systems used in the individual measurements are formed with a mutually
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different distribution of the same number of points scanned on the same surfaces of the
calibrated work piece. The estimate of the extended measurement uncertainty of the surface
parallelism deviation is expressed for the coordinate measuring machine representing the
measuring instrument according to STN EN ISO 15530-3 as follows:

U = k·
√

u2
cal + u2

p + u2
w + |b| (4)

where ucal—standard measurement uncertainty of a calibrated work piece determined
by a laboratory coordinate measuring machine, up—standard measurement uncertainty
caused by the measuring process, uw—standard uncertainty of the production process,
|b|—systematic error, k—expansion coefficient.

The achieved measurement results of a calibrated work piece on a coordinate mea-
suring machine that represents the measuring instrument are in Figure 20. The graphical
representation shows the dependence of the estimated value of surface parallelism devi-
ation with expanded measurement uncertainty expressed for expansion coefficient k = 2
and the distribution of the alignment points of the coordinate systems used in the individ-
ual measurements.
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Figure 20. Dependence of the value estimation of surface parallelism deviation related to the base formed by the plane and
the distribution of points of the appropriate alignment of coordinate systems.

4.2. Conformity Assessment of the Produced Component with the Technical Documentation

In connection with the conformity assessment of geometric parameters of products
with the technical documentation, the meaning of the terms geometric parameter compliant
or non-compliant with the relevant technical documentation is complicated by the uncer-
tainty of measuring the assessed parameter, which plays an important role in determining
conformity. At present, the conformity assessment of the produced part with the technical
documentation is performed in accordance with the international standard STN EN ISO
14253-1, which changes the uniform demarcation of the lower and upper specification
limits to uncertainty intervals (Figure 21). It is clear that the range of values for which it
is possible to decide about the conformity of the produced component with the technical
documentation narrows with increasing measurement uncertainty, and thus, the number of
components whose conformity with the technical documentation is not uniform increases.
On the other side, the number of components that can be classified as compliant with
the technical documentation will decrease at the same production costs. The problem
of uniform determination of the conformity of the measured geometric parameter with
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the technical specification occurs when the measurement result is within the range of
uncertainty, when the conformity cannot be declared.
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Figure 21. Conformity assessment of produced components with technical specification according to
STN EN ISO 14253-1. LSL—lower specification limit, USL—upper specification limit, 1, 3—interval
of compliant values, 2, 4—interval of non-compliant values, 5—interval of values for which it is not
possible to decide about conformity, 6—direction of increasing uncertainty, S—specification phase,
V—verification phase.

In the case of evaluating the deviation of the surface parallelism relative to the base, in
which the coordinate plane of the part coordinate system is assigned as an integral element,
the uncertainty of this deviation is influenced by how the position of the coordinate systems
is defined, which ultimately affects the distribution of points scanned during alignment. If
the production process under the same conditions has to be the process without failures or
components whose conformity with the technical specification is not clear, the conformity
assessment process has to be taken into account at the design and development stage of
the product. At this stage, new specification limits are determined to take into account
not only the functionality of the produced component but also the expected measurement
uncertainties, the size of which is also affected by the definition of the relative position of
the coordinate systems.

At the workplace of one of the authors, similar control measurements of components
were performed, which were used for verification of the technological procedures of com-
ponents production, or correction of tools for machining on CNC machines. At the same
time, CMM serves as a part of the learning process in professional subjects at the faculty.

5. Conclusions

At present, the conformity of geometric parameters of products with the technical
documentation is assessed according to STN EN ISO 14253-1, which changes the uniformity
of the upper and lower tolerance limits for uncertainty intervals. When measuring on
coordinate measuring machines with a contact probe system, the result and uncertainty of
the measurement are influenced by a number of different factors. The paper analyses the
influence of defining the position of coordinate systems on the measurement uncertainty.
The paper is based on performed experiments. This article focuses on measuring with a
coordinate measuring machine DEA Global Performance 12.22.10, for which a measuring
program for the given device part has been developed in measuring and evaluating soft-
ware PC-DMIS CAD++ v4.3. Programming of the measuring task in the work environment
PC-DMIS stems from an analysis of the measured part performed in the CAD system CA-
TIA and from a measuring procedure prepared in advance. An off-line simulation verifies
the measuring program before the measuring on the coordinate measuring machine to
prove its flawlessness.

In the paper, the following issues were presented:

• Clarification of the principle of defining the mutual position of coordinate systems by
the alignment “3–2–1” and the problems arising from it.
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• Quantification of selected geometric deviations of ideal tolerated shapes related to the
bases resulting from the definition of the mutual position of coordinate systems by
the alignment “3–2–1”.

• Determination of the measurement uncertainty resulting from the definition of the
mutual position of the coordinate systems by the evaluation of selected geometric
deviations of the tolerated structures relative to the bases.

• Determination of the measurement uncertainty influence resulting from the definition
of the mutual position of coordinate systems by the evaluation of selected geometric
deviations of tolerated structures related to bases on the interval of satisfactory values
in accordance with the international standard STN EN ISO 14253-1.

• Objectification of position selection of points necessary for the alignment of coordinate
systems in a way to ensure the necessary repeatability of defining the mutual position
of coordinate systems.
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16. Gąska, P.; Gąska, A.; Gruza, M. Challenges for Modeling of Five-Axis Coordinate Measuring Systems. Appl. Sci. 2017, 7, 803.
[CrossRef]

17. Neamtu, C.; Hurgoiu, D.; Popescu, S.; Dragomir, M.; Osanna, H. Training in coordinate measurement using 3D virtual instruments.
Measurement 2012, 45, 2346–2358. [CrossRef]

18. Qu, Y.F.; Pu, Z.B.; Liu, G.D. Combination of a vision system and a coordinate measuring machine for rapid coordinate metrology.
In Optical Design And Testing, Proceedings of the SPIE, Shanghai, China, 15–18 October 2002; Spie-Int Soc Optical Engineering:
Bellingham, WA, USA, 2002.

19. Lin, Y.J.; Damodharan, K.; Shakarji, C. Standardised reference data sets generation for coordinate measuring machine (CMM)
software assessment. Int. J. Adv. Manuf. Tech. 2001, 18, 819–830. [CrossRef]

20. Lotze, W. ScanMax—A novel 3D coordinate measuring machine for the shopfloor environment. Measurement 1996, 18, 17–25.
[CrossRef]

21. Vermeulen, M.M.P.A.; Rosiele, P.C.J.N.; Schellekens, P.H.J. Design of a high-precision 3D-Coordinate Measuring Machine. In Cirp
Annals 1998-Manufacturing Technology, Proceedings of the 48th General Assembly of CIRP on Manufacturing Technology, Athens, Greece,
23–29 August 1998; Hallwag Publishers: Bern, Switzerland, 1998.

22. Cheng, Y.; Wang, Z.; Chen, X.; Li, Y.; Li, H.; Li, H.; Wang, H. Evaluation and Optimization of Task-oriented Measurement
Uncertainty for Coordinate Measuring Machines Based on Geometrical Product Specifications. Appl. Sci. 2019, 9, 6. [CrossRef]

23. Suzuki, S.; Akatsuka, Y.; Jiang, W.; Fujigaki, M.; Otsu, M. Development of Quick Three-Dimensional Shape Measurement
Projection Mapping System Using a Whole-Space Tabulation Method. Appl. Sci. 2019, 9, 4408. [CrossRef]

24. Shiou, F.J.; Chen, M.J. Intermittent process hybrid measurement system on the machining centre. Int. J. Prod. Res. 2003, 41,
4403–4427. [CrossRef]

25. Sladek, J.A. Analysis of the Accuracy of Coordinate Measuring Systems. In Coordinate Metrology: Accuracy of Systems and
Measurements, 1st ed.; Springer: Berlin, Germany, 2016; pp. 131–225.

26. Gaska, A.; Szewczyk, D.; Gaska, P.; Gruza, M.; Sladek, J. Usage of I plus plus Simulator to Program Coordinate Measuring
Machines when Common Programming Methods are difficult to apply. Meas. Sci. Rev. 2014, 14, 1. [CrossRef]

27. Jing, T.S. Hexagon Updates PC-DMIS Software. Manuf. Eng. 2019, 162, 30–32.

http://doi.org/10.1515/teme-2014-0034
http://doi.org/10.3390/app7080803
http://doi.org/10.1016/j.measurement.2011.09.026
http://doi.org/10.1007/s001700170007
http://doi.org/10.1016/0263-2241(96)00040-1
http://doi.org/10.3390/app9010006
http://doi.org/10.3390/app9204408
http://doi.org/10.1080/00207540310001595783
http://doi.org/10.2478/msr-2014-0001

	Introduction 
	The State-of-the-Art 
	Problem Description 

	Materials and Methods 
	Results 
	Discussion 
	Plan and Implementation of the Experiment 
	Conformity Assessment of the Produced Component with the Technical Documentation 

	Conclusions 
	References

