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A B S T R A C T   

High-frequency data tend to be costly, subject to microstructure noise, difficult to manage, and 
lead to high computational costs. Is it always worth the extra effort? We compare the forecasting 
accuracy of low- and high-frequency volatility models on the market of six major foreign ex
change market (FX) pairs. Our results indicate that for short-forecast horizons, high-frequency 
models dominate their low-frequency counterparts, particularly in periods of increased vola
tility. With an increased forecast horizon, low-frequency volatility models become competitive, 
suggesting that if high-frequency data are not available, low-frequency data can be used to es
timate and predict long-term volatility in FX markets.   

1. Introduction 

The outburst of the global financial markets in 2008, the European debt crisis, (geo)political uncertainties, oil-price wars in 2019 
and 2020, and the outbreak of COVID-19 in 2020 have resulted in a surge in volatility in financial markets worldwide. For example, 
investors use volatility estimates for pricing financial derivatives. Fund managers might set specific risk levels that are, in turn, 
influenced by the predicted level of volatility. Risk levels are also targeted by banks to fulfill specific Basel criteria. Volatility might 
even be traded (using options or artificial indices linked to market volatility Poon and Granger, 2003). Times of extreme volatility also 
create pressure to rebalance portfolios, and the likelihood of contagion between markets also increases (Kodres and Pritsker, 2002). 
Market participants are thus interested in measuring, managing, and forecasting market volatility to determine the value of their 
investments and to prepare and communicate their planned market decisions. 

The literature on volatility forecasting is rich and unfolds around available volatility estimators. Initially, volatility was calculated 
from low-frequency, daily data. The first generation of generalized autoregressive conditional heteroscedasticity (GARCH) models 
(Bollerslev, 1986) emerged in the 1990s and early 2000s and is represented by numerous variations using low-frequency data, e.g., 
EGARCH, GJR-GARCH, AP-ARCH, N-GARCH, NA-GARCH, I-GARCH, and FIGARCH (for an earlier review, see Poon and Granger, 
2003). The GARCH class of models offers competitive forecasts and can capture many stylized facts about volatility, particularly the 
volatility clustering effect. With the greater availability of high-frequency data in the late 2000s, the research shifted toward 
high-frequency (intraday) volatility estimators and models. 

The heterogeneous autoregressive (HAR) models of Corsi (2009) utilized high-frequency data and the realized volatility estimator 
of Andersen and Bollerslev (1998) and Andersen et al. (2001). The empirical evidence suggests that models of volatility based on 
high-frequency estimators provide superior forecasts to models based on low-frequency data (e.g., Andersen et al., 2007; Koopman 
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et al., 2005; Corsi et al., 2010; Busch et al., 2011; Horpestad et al., 2019). Although the basic HAR model of Corsi (2009) is appealingly 
simple and appears to capture the short- and long-term dependency of the volatility process adequately (e.g., Andersen et al., 2007; 
Vortelinos, 2017), the literature has raised several issues related to the effect of microstructure noise.1 Previously, Andersen et al. 
(2001) acknowledged that for realized volatility (high-frequency estimator of daily volatility) to be more efficient and unbiased, one 
needs high-quality data from actively traded assets. As a response, alternative estimators have emerged (e.g., Ait-Sahalia et al., 2005; 
Bandi and Russell, 2008; Barndorff-Nielsen et al., 2008; Andersen et al., 2011; Liu et al., 2015a). 

The second generation of GARCH models bridges these two strands of the literature by relying on the latent volatility model (the 
GARCH concepts) while also using high-frequency data. The key ideas of the realized-GARCH model were presented by Hansen et al. 
(2012), and several alternative models emerged thereafter (e.g., Wu and Xie, 2019; Xie and Yu, 2019). 

Despite the wide interest of academia, the existing literature provides evidence only that (i) volatility estimators based on high- 
frequency data are theoretically preferred (Andersen et al., 2001) and (ii) in the day-ahead predictive setting, models using 
high-frequency data provide superior performance (e.g., Andersen et al., 2007; Koopman et al., 2005; Corsi et al., 2010; Busch et al., 
2011; Horpestad et al., 2019). Over longer horizons, averaging daily low-frequency volatility estimators across multiple days should 
reduce the effect of noise. Intuitively, intraday price fluctuations should not greatly contribute to month-ahead volatility forecasts. 
Therefore, with increasing forecast horizon, the difference in using high- or low-frequency volatility estimators should decrease, at 
which point low-frequency volatility models should tend to provide similarly accurate forecasts to high-frequency volatility models. 
Evidence on the relative (un)importance of low-frequency volatility models for multiple-day-ahead forecasts is lacking, which is 
intriguing, given that the heterogeneity of market participants has increased (with different needs and investment horizons, Wool
dridge, 2019) and in many real-world scenarios, market participants are more interested in long-term forecasts, e.g., derivative traders. 
We fill this gap in the literature. In a recent study, Ma et al. (2018) showed that when low- and high-frequency volatility forecasts are 
combined appropriately, the accuracy increases for the Shanghai Stock Exchange Composite Index and S&P 500 index. Therefore, 
low-frequency data could provide additional information complementary to the available high-frequency data. Nevertheless, the study 
of Ma et al. (2018) is centered around day-ahead forecasts, where high-frequency volatility models should have the edge. 

In this study, we present the results from a volatility forecasting modeling framework that compares the forecasting accuracy of 
several low- and high-frequency volatility models as a function of the forecast horizon. Our market of interest is represented by six 
major currency pairs.2 

For some, the implications of our research could be substantial. If low-frequency volatility models provide competitive perfor
mance, one could argue that high-frequency data are not always worth the much higher costs. Daily foreign exchange data are freely 
available from various sources,3 but availability of high-frequency foreign exchange data depends on the policy of the given broker or 
bank, and data are not always free.4 Even if data are available5 for free, they are subject to various constraints, e.g., have limited 
licensing (e.g., can be used only for academic purposes) or are available only for short time periods or for a specific time frequency. 
Moreover, the use of high-frequency data raises other issues, most notably, working with high-frequency data requires appropriate 
cleaning and processing of the data. For example, the approximate sizes of the daily EUR/USD data from 2005 to 2019 is 120 kB, 5- 
second data is 350 MB, and tick-by-tick data is 15 GB. Processing daily data and estimating the models is overall much faster than 
processing and estimating models that use high-frequency data, where one needs to clean and prepare each line of the 15 GB of data.6 

Therefore, the processing, data management, and computational intensity demands are much higher for high-frequency data and 
might not be worth the greater effort. Our results illustrate the dominance of high-frequency estimators for forecasting one-day-ahead 
volatility. Models that utilize high-frequency data or their combinations provide superior results. However, for longer forecast hori
zons, the combination of low-frequency volatility models provides forecasts statistically comparable to those of high-frequency 
volatility models and their combinations. Our results suggest that for most foreign exchange market (FX) pairs, low-frequency data 
represent a sufficient replacement for high-frequency data for forecast horizons of 5 or more days. Our study might therefore provide 
practitioners and policymakers with evidence supporting the use of high- or low-frequency volatility models in a particular setting. 

1 The basic specification of the HAR model has also been enhanced, e.g., by the inclusion of semivariances (Patton and Sheppard, 2015), the 
disentanglement of the realized volatility into continuous and jump components (e.g., Andersen et al., 2012), the introduction of the measurement 
error of the realized volatility into the HAR model as in Bollerslev et al. (2016), the inclusion of nontrading volatility components (Lyócsa and 
Molnár, 2017; Lyócsa and Todorova, 2020), and the use of hidden Markov chains (Luo et al., 2019).  

2 Equities and commodities are addressed in a separate study and show qualitatively similar results.  
3 e.g., finance.yahoo.com, investing.com.  
4 For example, the well-known provider of high-frequency data, Tick Data (www.tickdata.com), provides tick-by-tick quote data (bid and ask 

prices) that are already cleaned and processed. Moreover, these data are from more contributors (banks and other market participants). The dataset 
that we used in our paper would cost approximately 8 100 USD after all discounts (July 2020).  

5 e.g., Oanda, dukascopy.  
6 One needs to do this only once, but we want to stress that different types of skills and experience are also required to work with high-frequency 

data. 
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2. Methodology 

2.1. Volatility estimators 

2.1.1. High-frequency estimator 
Given 5-minute intraday continuous returns rt,j for day t = 1,2,…,T and intraday period j = 1,2,…,N, the usual realized variance 

estimator7 (e.g., Andersen and Bollerslev, 1998; Andersen et al., 2001) is defined as: 

RVt =
∑N

j=1
r2

t,j (1)  

Many alternative estimators of quadratic variation to address the inherent microstructure noise exist (e.g., Zhang et al., 2006; Jacod 
et al., 2009; Andersen et al., 2012). Our choice to use the 5-minute realized variance estimators is motivated by Liu et al. (2015b), who 
compared the empirical accuracy of several estimators across many assets8. They found that consistently outperforming the simple 
5-minute realized variance is difficult. 

2.1.2. Low-frequency estimators 
As an alternative low-frequency estimator, we use range-based estimators that are more efficient than the usual daily squared 

return (e.g., Molnár, 2012). Motivated by Patton and Sheppard (2009), we increase the efficiency of the estimation process by 
combining three range-based estimators via a simple average. Specifically, given the natural logarithm of opening (Ot), high (Ht), low 
(Lt), and closing (Ct) prices on day t, the Parkinson (1980) estimator is: 

PKt =
(Ht − Lt)

2

4 × ln2
(2)  

The Garman and Klass (1980) estimator is: 

GKt = 0.511(Ht − Lt)
2
− 0.019

(
Ct(Ht + Lt)

2
− 2HtLt

)
− 0.383(Ct − Ot)

2 (3)  

Both estimators assume that the price follows driftless geometric Brownian motion. Allowing for arbitrary drift, Rogers and Satchell 
(1991) derived the following estimator: 

RSt = Ht(Ht − Ct) + Lt(Lt − Ct) (4)  

The range-based estimator used in our empirical setting is the average (following Patton and Sheppard, 2009) of the above three 
estimators: 

RBt = (PKt +GKt +RSt)/3 (5) 

The motivation behind using the (naive) equally weighted average is based on the assumption that we have no prior information on 
which estimator might be more accurate for a given trading day.9 Should this simplified approach lead to competitive multiple-day- 
ahead volatility forecasts, it follows that a more sophisticated combination of low-frequency estimators might make the results even 
stronger. 

2.2. Volatility models 

In this section, we describe what we refer to as high- and low-frequency volatility models. As the name suggests, high-frequency 
volatility models utilize realized variance as the estimator of volatility, whereas low-frequency models use the range-based estimator. 
We use three classes of models: the heterogeneous autoregressive model (HAR) of Corsi (2009), the autoregressive fractionally in
tegrated model (ARFIMA), and the realized generalized autoregressive conditional heteroscedasticity (realized-GARCH) of Hansen 
et al. (2012). These models were selected because they can use either high- or low-frequency volatility estimators in a straightforward 
manner. Moreover, all these models have been proven to be capable of replicating long memory and volatility clustering effects. 

2.2.1. HAR class volatility models 
In the past decade, the simple HAR model proposed by Corsi (2009) has gained popularity since it is easy to estimate and tends to 

perform better than competing first-generation GARCH models (Horpestad et al., 2019). Let RVt+1,t+h be the daily average realized 
variance calculated over the next h days. In this study, we are especially interested in the role of low-frequency estimators for 

7 In the following text, we use the terms variance and volatility interchangeably.  
8 Their comparison also included foreign exchange market futures.  
9 The development and statistical verification of a method that continuously updates weights is left for further research. However, motivated by 

reviewer insights, we run our analysis and compare the results with low-frequency volatility models that use each of the three range-based esti
mators separately. A short discussion is presented in Section ’4.3. Individual range-based low-frequency volatility forecasts’. 
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multiple-day-ahead volatility forecasts. 
We employ 1-to-66 trading day-ahead forecasts. According to the recent Bank for International Settlements (BIS) survey, in 2019, 

78% of the over-the-counter (OTC) foreign exchange derivatives had a maturity of less than one year.10 For the low-frequency 
volatility models to be useful for a wide array of participants, they should produce competitive forecasts up to a forecast horizon of 
one year or less. As our analysis shows that after a few weeks, the low-frequency volatility models tend to provide competitive forecasts 
across all FX pairs, we have used 66 trading days (three months) as a compromise between a few weeks and one year. 

Our baseline HAR model is therefore specified as: 

RVt+1,t+h = β1 + β2RVt + β3RVt,t− 4 + β4RVt,t− 21 + β5RVt,t− 65 + ϵt (6)  

RVt is the realized variance, and RVt,t− 4,RVt,t− 21, andRt,t− 65 are average realized variances calculated over the past 5, 22 and 66 days, 
respectively. 

The multiple-component volatility structure in (6) is motivated by the heterogeneous market hypothesis of Müller et al. (1997), 
according to which different market participants have various trading frequencies and time horizons, presumably because of different 
risk aversions, transaction costs, available information, and other constraints. Specifically, Corsi (2009, Section 2.2) argues for three 
volatility components: (i) short-term daily (1 day), (ii) medium-term weekly (5 days), and (iv) long-term corresponding to one (22 
days) or more (e.g., 66 days) months. We follow the work of Corsi (2009) and use the daily, weekly and monthly volatility components. 
From the existing studies on foreign exchange market volatility forecasting (e.g., Bubák et al., 2011; Vortelinos, 2017), our specifi
cation differs only in that in addition to the one-month, we also incorporate the three-month volatility component, which is motivated 
by the fact that we are also predicting three-month (66-day) ahead volatility. The model is denoted RV-HAR, and the corresponding 
low-frequency, range-based version is denoted RB-HAR. 

We consider two other popular versions of the HAR model that aim to model the asymmetric volatility observed in financial 
markets. Let NSVt and PSVt, respectively, denote the negative and positive semivariances of (e.g., Barndorff-Neilsen et al., 2010; Patton 
and Sheppard, 2015): 

NSVt =
∑N

j=2
r2

t,jI
[
rt,j < 0

]
, PSVt =

∑N

j=2
r2

t,jI
[
rt,j > 0

]
, (7)  

I represents an indicator function that returns one if the condition in square brackets holds and zero otherwise. The HAR model is then 
defined as: 

RVt+1,t+h = β1 + β2NSVt + β3PSVt + β4RVt,t− 4 + β5RVt,t− 21 + β6RVt,t− 65 + ϵt (8)  

We use only one-day lags of NSVt and PSVt to mitigate the number of estimated parameters, which might deteriorate the forecasting 
performance in an out-of-sample context. Such simplified models were also considered by Patton and Sheppard (2015) and Bollerslev 
et al. (2016). This model is denoted SV-RV-HAR. As a low-frequency range-based counterpart, we use the following specification: 

RBt+1,t+h = β1 + β2RBt + β3RBt × I[Rt < 0] + β4RBt,t− 4 + β5RBt,t− 21 + β6RBt,t− 65 + ϵt (9)  

Rt is the daily return, and β3RBt × I[Rt < 0] captures the asymmetric volatility response. The model is denoted ARB-RB-HAR. 
The final two specifications are also motivated by the asymmetric volatility literature, namely, Corsi and Reno (2009) and Hor

pestad et al. (2019): 

RVt+1,t+h = β1 + β2RVt + β3|Rt|+β4|Rt| × I[Rt < 0] + β5RVt,t− 4 + β6RVt,t− 21 + β7RVt,t− 65 + ϵt (10)  

The coefficient β4 captures the asymmetric effect, and β3 controls for the size effect. As argued by Horpestad et al. (2019), if absolute 
returns are correlated with variance (which is likely), one should also include |Rt| in the equation. This model is denoted L-RV-HAR, 
and the range-based counterpart is denoted L-RB-HAR. All HAR models are estimated via weighted least squares, where the weights are 
reciprocal values of the dependent variable (see Clements and Preve, 2019 for a discussion of estimating HAR models). 

2.2.2. ARFIMA-GARCH-class volatility model 
We next use an ARFIMA-GARCH model, for which the mean equation models variance: 

RVt = α + ut (11)  

(

1 −
∑p

i=1
ϕiLi

)

(1 − L)dut =

(

1+
∑q

j=1
θjLj

)

εt (12)  

εt = vtηt, where ηt ∼ iid(0, 1) (13)  

10 BIS OTC derivative statistics are available at https://stats.bis.org/statx/srs/table/d9?f=pdf 
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where d is the differencing parameter (e.g., Granger and Joyeux, 1980), vt is the time-varying volatility11 and ηt is an iid variable 
following a flexible distribution (Johnson, 1949b; 1949a). The variance equation is the exponential GARCH model of Nelson (1991): 

lnv2
t = ω + αzt− 1 + γ(|zt− 1| − E|zt− 1|) + βlnv2

t− 1 (14)  

The sign and the size effects are captured by α and γ, and zt is the standardized innovation. The high-frequency volatility model 
employs the realized variance and is denoted RV-ARFIMA-GARCH, and the range-based estimator is denoted RB-ARFIMA-GARCH. 

2.2.3. Measurement equation GARCH volatility model 
Finally, due to their popularity and the development of more sophisticated second-generation GARCH models, we use the realized- 

GARCH model of Hansen et al. (2012), which can be adjusted to work with high- or low-frequency volatility estimators. The mean 
equation models daily returns: 

Rt = κ + ut (15)  

(

1 −
∑p

i=1
ϕiL

i

)

(1 − L)dut =

(

1+
∑q

j=1
θjLj

)

εt (16)  

εt = vtηt, where ηt ∼ iid(0, 1) (17)  

The variance and the measurement equations are: 

lnv2
t = ω + αlnRVt− 1 + βlnv2

t− 1 (18)  

lnRVt = ξ + δlnv2
t + λ1zt + λ2

(
z2

t − 1
)
+ wt, wt ∼ N(0, θ) (19)  

Originally, Hansen et al. (2012) used realized variance, in which case we denote the model as realized-GARCH. If the range-based 
estimator is used instead, the model is called range-GARCH. 

2.3. Forecasting procedure 

The forecasting procedure uses a rolling-window framework. The algorithm is as follows:  

1. Select observations from t = 1,2,…,Te.  
2. Estimate volatility models.  
3. Using estimated parameters and observations, predict volatility at Te + 1. For HAR models, multiple-day-ahead forecasts are 

predicted directly, while for ARFIMA-GARCH and real-GARCH models, multiple-day-ahead forecasts are calculated recursively.  
4. Shift the estimation window by using observations t = 2, 3,…,Te + 1 and repeat steps 2 to 4 until the end of the sample. 

The estimation window size is set to Te = 1000. 

2.4. Combinations of forecasts: discounted forecast errors 

We draw on the ideas of Bates and Granger (1969) and use simple combination techniques to mitigate model uncertainty (Tim
mermann, 2006). Forecasts are combined across all high-frequency volatility models, all low-frequency volatility models, and all ten 
high- and low-frequency volatility models. To combine forecasts, we use weighted averages, where the weights are given by the 
discounted forecast error. 

Let Fm
t and Ft denote the forecasts from model m and the corresponding proxy, the realized variance RVt. Our first combination is a 

simple average across all forecasts: 

CAve
H = M− 1

∑M

m=1
Fm

t (20)  

Here, the subscript H means that we averaged across high-frequency models. For low-frequency models, we use the subscript L, and for 
a combination across both classes of forecasts, we use HL. The loss (to be defined in the next section) is Lt(Fm

t , Ft) and for simplicity is 
denoted as Lt. We use the discounted forecast error to weight each loss value such that recent losses have higher weight than losses in 
the past, and we calculate the average loss over a time period of T (out-of-sample) observations: 

11 In this case, it is the time-varying volatility of variance. 
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L =
∑T

t

δT − t+1

∑T
k δT− k+1Lt (21)  

where δ is the weighting parameter. With δ = 1, all losses have equal weights. The lower δ is, the higher the relative weight of the most 
recent losses. We choose δ = 0.975 and observe almost no qualitative change in results for δ = 0.950 or δ = 0.900. The weighted losses 
are calculated from the most recent 200 predictions, which we refer to as the size of the calibration sample. Thus, the first combination 
forecast is available for the 1201st observation of the initial sample (Estimation window + calibration sample + 1). Our second 
combination is formed as the weighted trimmed mean: 

CTrim
H =

∑M− 1

(m)=2

L(m),∗F(m)
t (22)  

Here, F(m)
t represents the ordered forecasts, i.e., the lowest and the highest are excluded, and L(m),∗ are the corresponding losses that are 

rescaled to sum to one. The final combination is a weighted average across the three best performing models and is denoted CTop
H . 

2.5. Volatility forecast evaluation 

As noted in the previous section, our proxy is the realized variance, RVt, which in the subsequent equations is denoted Ft. This 
approach clearly places low-frequency models at a disadvantage, but we argue that this is the only meaningful way to test whether low- 
frequency models can achieve comparable performance to that of high-frequency models. 

We evaluate the forecasts of our model specification using two statistical loss functions and the model confidence set (MCS). 
According to Patton (2011), the mean square error (MSE) and quasi-likelihood (QLIKE) loss functions provide a consistent ranking of 
forecasts, even if the proxy of the underlying latent volatility is measured with noise. 

LQLIKE
t =

Ft

Fm
t
− ln

Ft

Fm
t
− 1 (23)  

LMSE
t =

(
Fm

t − Ft
)2 (24)  

As the QLIKE loss function is less sensitive to extreme values and penalizes underestimation of volatility more strongly, we use it to 
present our key results.12 

Statistical evaluation is conducted based on the MCS proposed by Hansen et al. (2011). This algorithm is suitable when models are 
nested, when a benchmark model is not specified, and when multiple models are evaluated, i.e., it controls for data-snooping bias. The 
MCS algorithm finds the ’superior set of models’, which represents models with the same predictive ability at the selected confidence 
level. 

3. Data 

We study the market with the largest turnover in the world (approximately 6.59 trillion per day in April 2019, on average), the 
foreign exchange market, specifically, the six most liquid currency pairs, namely, AUD/USD, EUR/USD, GBP/USD, USD/CAD, USD/ 
CHF, and USD/JPY. Our selected currency pairs represent approximately 30% of the entire market turnover.13 Our sample covers 
fifteen years of data, covering the 5th of May 2005 to the 24th of September 2019. 

We collect data from OANDA using a 5-minute calendar sampling scheme over a 24-hour trading window that starts at 22:00 UTC 
(end of the New York session). Due to low liquidity, weekends are removed from the analysis to avoid estimation bias, as is standard in 
the literature (e.g., Dacorogna et al., 2001; Andersen et al., 2007; Aloud et al., 2013; Gau and Wu, 2017). 

The descriptive statistics for our daily volatility measures and returns are presented in Table 1. We note several interesting dif
ferences between high- and low-frequency variance estimates. First, the distribution of the low-frequency variance estimates shows a 
higher spread of values, which we would expect from a noisier estimate. Specifically, the low-frequency variance estimate has an 
approximately 30% larger standard deviation with more skew and higher kurtosis. Second, on average, the low-frequency estimator is 
slightly smaller than its high-frequency counterpart.14 Third, the persistence of the high-frequency estimators is higher and shows 
longer memory. This characteristic might prove to be useful in HAR models, which specifically exploit this persistence. Fourth, the 
correlation between daily high- and low-frequency variance estimators is 0.90 (AUD/USD), 0.86 (EUR/USD), 0.96 (GBP/USD), 0.83 
(USD/CAD), 0.88 (USD/CHF), and 0.89 (USD/JPY). Given that these correlations are based on daily estimates, we consider these 
values to be sufficiently high to warrant a meaningful volatility comparison, which is the subject of this study. 

12 Qualitatively, we do not obtain different conclusions when interpreting the results using MSE. The results are available as supplementary 
electronic material.  
13 See https://www.bis.org/statistics/rpfx19_fx.pdf  
14 Subtracting the two estimators and regressing against the constant shows that this difference is statistically significant for AUD/USD and USD/ 

CAD at the 0.01 level, for GBP/USD and USD/JPY at the 0.05 level, and not significant for EUR/USD and USD/CHF. 
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4. Results 

4.1. Comparing high- and low-frequency volatility forecasts 

For illustration purposes, Figs. 1 and 2 plot the daily realized variance for the six FX pairs and corresponding day-ahead forecasts 
from ARFIMA-GARCH models, which tend to produce the most accurate day-ahead forecasts for both high- and low-frequency 
volatility models. The forecasts tend to follow realized variances but are unable to replicate sudden spikes in volatility, a phenome
non also visible in other forecasting studies. 

Our key results visualized in Fig. 3 (QLIKE losses) show the lowest forecast error that can be achieved within either high-frequency 
(black line) or low-frequency (red line) forecasting models as a function of the forecast horizon.15 A dot on the line highlights that the 
given model belongs to the set of superior models. These figures illustrate our key observation that for short-forecast horizons, high- 
frequency models tend to be superior in terms of mean forecast errors, but this advantage disappears for longer forecast horizons, 
where the forecasts errors are statistically indistinguishable. 

Specific numerical results are presented in Tables 2–5. These tables contain the average of the QLIKE loss function for 1-, 5-, 22-, 
and 66-day-ahead forecast horizons. The values in bold and with the dagger symbol represent the models that belong to the MCS, i.e., 
the predictive abilities of the models in bold are considered to be equally good. For example, the best models for forecasting one-day 
volatility for EUR/USD (second column in Table 2) are CAve

H and CTrim
H , which combine the results from high-frequency models (Panel 

C). 
For weekly volatility forecasts (see Table 3), the combinations of low-frequency volatility models in Panel D provide competitive 

forecasts to those of the high-frequency models for three FX pairs, GBP/USD, USD/CHF and USD/JPY. For monthly and quarterly 
volatility forecasts (Table 4) we find suitable low-frequency alternatives to high-frequency models for all FX pairs except USD/CAD. 
The difficulty in finding competitive low-frequency volatility models for USD/CAD is not surprising given that for USD/CAD, the low- 
frequency estimators had the lowest correlation with their high-frequency counterparts. 

Combining individual forecasts proves to be beneficial for all forecast horizons. However, for monthly and quarterly forecast 
horizons, several individual low-frequency forecasting models show good performance that is statistically indistinguishable from that 
of the high-frequency models (Panel D in Tables 2–5). The results for the MSE loss function lead to similar conclusions.16 An exception 
is that the low-frequency volatility models are also competitive for the USD/CAD FX pair for monthly and quarterly volatility forecasts. 

With respect to individual models, we find that for short-term forecasts, the HAR-based models tend to underperform the ARFIMA- 
GARCH and realized-GARCH models. As the forecasting horizon increases, the accuracy of the HAR models also increases, which 
demonstrates how ignoring model uncertainty can influence the conclusions from such studies. Following the earlier work of Ma et al. 
(2018), we also study whether combining high- and low-frequency volatility models can further improve the accuracy of forecasting 
models, but we were unable to confirm this hypothesis (see the results in Panel E, Tables 2–5). 

In summary, as we increase the forecasting horizon, distinguishing between high- and low-frequency volatility models becomes 
more difficult. This finding can be generalized for all FX pairs and for both loss functions. Moreover, while combining high- and low- 
frequency volatility forecasts has not proven to be particularly useful, combining forecasts only from high-frequency volatility models 
or only from low-frequency volatility models is a good strategy regardless of the forecasting horizon and volatility estimator employed. 

Table 1 
Descriptive statistics of the variance estimators and daily returns of FX rates.  

FX pair Mean SD Skew. Kurt. ρ(1) ρ(5) ρ(22) ρ(66) 

Realized variance (annualized) 
AUD/USD 175.716 359.817 11.465 207.707 0.777 0.623 0.429 0.200 
EUR/USD 91.211 100.924 5.075 46.771 0.696 0.553 0.437 0.332 
GBP/USD 99.987 226.420 27.277 1015.974 0.292 0.215 0.159 0.131 
USD/CAD 98.820 111.833 4.747 39.784 0.779 0.689 0.574 0.372 
USD/CHF 110.333 219.861 24.140 807.654 0.402 0.189 0.122 0.077 
USD/JPY 109.210 187.484 11.675 218.589 0.453 0.244 0.164 0.102 
Range-based variance (annualized) 
AUD/USD 164.898 391.774 13.081 253.819 0.607 0.463 0.314 0.151 
EUR/USD 90.188 126.985 6.376 66.144 0.435 0.339 0.274 0.198 
GBP/USD 96.890 289.675 28.858 1066.861 0.188 0.111 0.102 0.091 
USD/CAD 90.024 138.368 10.080 192.082 0.481 0.387 0.284 0.208 
USD/CHF 107.714 346.444 41.415 2139.290 0.190 0.078 0.040 0.028 
USD/JPY 105.514 222.498 13.503 276.415 0.291 0.144 0.093 0.053 

Note: ρ(.) is the value of the auto-correlation coefficient at the given lag. The SD is the standard deviation. The correlation between high- and low- 
frequency variance estimators is 0.90, 0.86, 0.96, 0.83, 0.88, and 0.89 for AUD/USD, EUR/USD, GBP/USD, USD/CAD, USD/CHF, USD/JPY. 

15 To facilitate a better comparison, both figures present forecast errors from only the best performing high- and low-frequency volatility models, i. 
e., from the top performers. Note that the top-performing models are not visible in these figures and that they might change with the forecast 
horizon.  
16 see the Electronic supplementary material for the corresponding figures and tables. 

Š. Lyócsa et al.                                                                                                                                                                                                         



FinanceResearchLetters40(2021)101776

8

Fig. 1. Comparison of the RV-ARFIMA-GARCH and RB-ARFIMA-GARCH models with realized variance.  
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Fig. 2. Comparison of the RV-ARFIMA-GARCH and RB-ARFIMA-GARCH models with realized variance.  
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Fig. 3. High- and low-frequency volatility forecast QLIKE loss functions for different forecasting horizons.  
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Table 2 
Average QLIKE loss function for 1-day-ahead forecasts.  

FX pair AUD/USD EUR/USD GBP/USD USD/CAD USD/CHF USD/JPY 

Panel A: Individual high-frequency volatility model forecasts 
RV-HAR 0.337 0.060 0.121 7.691 0.095 0.258 
SV-RV-HAR 1.958 0.060 0.112 2.260 0.081y 0.244 
L-RV-HAR 0.318 0.060 0.125 1.283 0.091 0.318 
RV-ARFIMA-GARCH 0.065 0.073 0.059y 0.075y 0.088 0.142 
realized-GARCH 0.067 0.081 0.072 0.090 0.085 0.084y
Panel B: Individual low-frequency volatility model forecasts 
RB-HAR 0.257 0.225 0.922 0.248 0.287 0.323 
ARB-RB-HAR 0.254 0.236 0.824 0.253 0.278 0.302 
L-RB-HAR 0.261 0.222 1.521 0.244 0.293 0.305 
RB-ARFIMA-GARCH 0.092 0.148 0.096 0.105 0.138 0.198 
range-GARCH 0.082 0.115 0.098 0.105 0.127 0.109 
Panel C: Combining high-frequency volatility forecasts 
CAve

H  0.077 0.052y 0.071 0.123 0.072y 0.094 

CTrim
H  0.058y 0.052y 0.068 0.082 0.072y 0.084y

CTop
H  

0.058y 0.054 0.059y 0.083 0.068y 0.082y

Panel D: Combining low-frequency volatility forecasts 
CAve

L  0.112 0.115 0.187 0.135 0.142 0.129 

CTrim
L  0.085 0.100 0.092 0.112 0.113 0.118 

CTop
L  

0.086 0.105 0.109 0.116 0.119 0.110 

Panel E: Combining high- and low-frequency volatility forecasts 
CAve

HL  0.084 0.072 0.103 0.108 0.092 0.104 

CTrim
HL  0.067 0.062 0.080 0.093 0.084 0.094 

CTop
HL  

0.062 0.055 0.062y 0.074y 0.068y 0.089 

Notes: The values in bold and with † symbol denote model confidence set for given currency pair. In other words, we can not reject the hypothesis that 
these models have the same predictive performance at the level of α = 0.15. All models and forecast combinations are described in Section 2. 

Table 3 
Average QLIKE loss function for 5-day-ahead forecasts.  

FX pair AUD/USD EUR/USD GBP/USD USD/CAD USD/CHF USD/JPY 

Panel A: Individual high-frequency volatility model forecasts 
RV-HAR 0.066y 0.065y 0.098y 0.043y 0.101 0.180 
SV-RV-HAR 0.066y 0.065y 0.098y 0.044y 0.096y 0.177 
L-RV-HAR 0.066y 0.064y 0.094y 0.042y 0.100y 0.171 
RV-ARFIMA-GARCH 0.065y 0.068y 0.076y 0.044y 0.096y 0.167 
realized-GARCH 0.075y 0.078 0.081y 0.067 0.098y 0.122y
Panel B: Individual low-frequency volatility model forecasts 
RB-HAR 0.094 0.087 0.139 0.078 0.127 0.200 
ARB-RB-HAR 0.094 0.086 0.137 0.078 0.124 0.191 
L-RB-HAR 0.094 0.086 0.136 0.077 0.128 0.191 
RB-ARFIMA-GARCH 0.072 0.088 0.100 0.062 0.116 0.190 
range-GARCH 0.074 0.083 0.105y 0.064 0.125 0.123y
Panel C: Combining high-frequency volatility forecasts 
CAve

H  0.061y 0.059y 0.080y 0.041y 0.087y 0.139y

CTrim
H  0.062y 0.060y 0.083y 0.042y 0.090y 0.141y

CTop
H  

0.061y 0.061y 0.081y 0.041y 0.087y 0.142y

Panel D: Combining low-frequency volatility forecasts 
CAve

L  0.074 0.072 0.105 0.061 0.099y 0.142y

CTrim
L  0.069 0.072 0.097y 0.059 0.090y 0.138y

CTop
L  

0.070 0.073 0.102y 0.062 0.093y 0.146y

Panel E: Combining high- and low-frequency volatility forecasts 
CAve

HL  0.064y 0.063y 0.089y 0.047 0.090y 0.140y

CTrim
HL  0.064y 0.063y 0.092y 0.046 0.092y 0.143 

CTop
HL  

0.061y 0.062y 0.083y 0.042y 0.090y 0.137y

Notes: The values in bold and with † symbol denote model confidence set for given currency pair. In other words, we can not reject the hypothesis that 
these models have the same predictive performance at the level of α = 0.15. All models and forecast combinations are described in Section 2. 
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Table 4 
Average QLIKE loss function for 22-day-ahead forecasts.  

FX pair AUD/USD EUR/USD GBP/USD USD/CAD USD/CHF USD/JPY 

Panel A: Individual high-frequency volatility model forecasts 
RV-HAR 0.070y 0.063y 0.104y 0.043y 0.129y 0.156y
SV-RV-HAR 0.069y 0.063y 0.102y 0.043y 0.129y 0.156y
L-RV-HAR 0.069y 0.062y 0.102y 0.043y 0.130y 0.155y
RV-ARFIMA-GARCH 0.071y 0.072y 0.105y 0.048y 0.140y 0.168y
realized-GARCH 0.088y 0.086 0.112y 0.071 0.150y 0.134y
Panel B: Individual low-frequency volatility model forecasts 
RB-HAR 0.084 0.075 0.124 0.060 0.140y 0.161y
ARB-RB-HAR 0.083 0.075 0.126 0.060 0.137y 0.158y
L-RB-HAR 0.083 0.073y 0.120 0.059 0.141y 0.159y
RB-ARFIMA-GARCH 0.072y 0.090 0.117y 0.063 0.144y 0.170y
range-GARCH 0.085 0.080 0.127y 0.069 0.160 0.132y
Panel C: Combining high-frequency volatility forecasts 
CAve

H  0.067y 0.060y 0.099y 0.042y 0.125y 0.139y

CTrim
H  0.067y 0.061y 0.101y 0.043y 0.126y 0.143y

CTop
H  

0.069y 0.061y 0.102y 0.042y 0.126y 0.147y

Panel D: Combining low-frequency volatility forecasts 
CAve

L  0.073y 0.067y 0.112y 0.054 0.124y 0.138y

CTrim
L  0.072y 0.072 0.112y 0.057 0.125y 0.144y

CTop
L  

0.076y 0.072y 0.117 0.057 0.123y 0.147y

Panel E: Combining high- and low-frequency volatility forecasts 
CAve

HL  0.068y 0.062y 0.103y 0.045y 0.123y 0.138y

CTrim
HL  0.068y 0.063y 0.105y 0.045y 0.126y 0.143y

CTop
HL  

0.069y 0.062y 0.104y 0.047y 0.131y 0.146y

Notes: The values in bold and with † symbol denote model confidence set for given currency pair. In other words, we can not reject the hypothesis that 
these models have the same predictive performance at the level of α = 0.15. All models and forecast combinations are described in Section 2. 

Table 5 
Average QLIKE loss function for 66-day-ahead forecasts.  

FX pair AUD/USD EUR/USD GBP/USD USD/CAD USD/CHF USD/JPY 

Panel A: Individual high-frequency volatility model forecasts 
RV-HAR 0.078y 0.070y 0.092y 0.061y 0.151y 0.132y
SV-RV-HAR 0.078y 0.070y 0.091y 0.061y 0.150y 0.131y
L-RV-HAR 0.078y 0.068y 0.091y 0.061y 0.150y 0.132y
RV-ARFIMA-GARCH 0.077y 0.083y 0.103y 0.066y 0.165 0.138y
realized-GARCH 0.102 0.092 0.110y 0.082 0.153y 0.126y
Panel B: Individual low-frequency volatility model forecasts 
RB-HAR 0.087y 0.076y 0.100y 0.075 0.154y 0.127y
ARB-RB-HAR 0.087y 0.076y 0.101y 0.075 0.154y 0.125y
L-RB-HAR 0.087y 0.074y 0.101y 0.075 0.154y 0.127y
RB-ARFIMA-GARCH 0.077y 0.089 0.109y 0.080 0.157y 0.134y
range-GARCH 0.099 0.079y 0.112y 0.084 0.163y 0.123y
Panel C: Combining high-frequency volatility forecasts 
CAve

H  0.077y 0.071y 0.091y 0.061y 0.148y 0.122y

CTrim
H  0.078y 0.069y 0.093y 0.061y 0.149y 0.124y

CTop
H  

0.078y 0.067y 0.093y 0.061y 0.148y 0.125y

Panel D: Combining low-frequency volatility forecasts 
CAve

L  0.080y 0.072y 0.096y 0.071 0.142y 0.116y

CTrim
L  0.081y 0.069y 0.096y 0.075 0.136y 0.116y

CTop
L  

0.084y 0.069y 0.097y 0.074 0.149y 0.121y

Panel E: Combining high- and low-frequency volatility forecasts 
CAve

HL  0.077y 0.072y 0.092y 0.063y 0.143y 0.119y

CTrim
HL  0.078y 0.068y 0.093y 0.064y 0.148y 0.121y

CTop
HL  

0.079y 0.062y 0.092y 0.067y 0.149y 0.121y

Notes: The values in bold and with † symbol denote model confidence set for given currency pair. In other words, we can not reject the hypothesis that 
these models have the same predictive performance at the level of α = 0.15. All models and forecast combinations are described in Section 2. 
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4.2. Dissecting good and bad volatility performance 

In this section, we explore differences in forecasting performance. First, note that the results in Table 1 show that the low-frequency 
variance estimates are somewhat lower. Thus, the forecasts from low-frequency volatility models might be (downward) biased. 
Therefore, we conduct the (Mincer and Zarnowitz, 1969) test. Specifically, we estimate a regression model of the form: 

Ft = β0 + β1 F̂ t + ut (25)  

and conduct a joint test17 of β0 = 0 , β1 = 1. The rejection of the test suggests biased forecasts. 
For short-forecast horizons, the ARFIMA-GARCH and realized-GARCH models do not produce biased forecasts, while the HAR 

models do. As the forecast horizon increases, the HAR models become less biased. The combination forecasts appear to be biased most 
of the time for most forecast horizons, which is interesting because the theoretical superiority of combination forecasts is derived from 
uncorrelated and unbiased forecasts being combined (averaged). The results from the Mincer and Zarnowitz (1969) tests show that 
combination forecasts appear to be biased most of the time for most forecast horizons. As bias is deemed a negative feature of forecasts, 
it is surprising to observe that combination forecasts actually lead to more accurate forecasts (see Panels C and D in Tables 2–5). These 
results are similar for both high- and low-frequency volatility models, although for shorter forecast horizons, low-frequency models 
tend to be more biased, which suggests why high-frequency models tend to be more accurate for shorter forecast horizons. Intuitively, 
in the MSE framework, such a result is possible if the increased bias is compensated by lower variance of forecasts. This results also 
suggests that resolving the bias might lead to further improvements in the forecasting accuracy.18 

Finally, we study how the difference between the accuracy of high- and low-volatility forecasting models changes over time and in 
high-/low-volatility periods. For this analysis, we compare the accuracy of forecasts generated from the CTrim combination forecasts, 
which generally lead to the most competitive forecasts for both high- and low-frequency volatility models. The results are based on the 
QLIKE loss function. We run the following regression: 

LCTrim
L

t − LCTrim
H

t = LDCTrim

t = β0 + β1RVt− 1 + β2t + ut (26)  

The larger the loss differential LDCTrim

t is, the more accurate the high-frequency forecast CTrim
H . If β0 is positive, then the high-frequency 

model tends to be systematically more accurate. If β1 is positive, then the accuracy of the high-frequency models is higher during 
periods of higher volatility, while a nonzero β2 coefficient suggests that the accuracy changes systematically over time. 

The estimated coefficients reported in Table 6 show that over time, high-frequency models tend to produce more precise forecasts 
for the AUD/USD, EUR/USD, GBP/USD, and USD/CAN FX pairs, while the accuracy is also increased during more volatile periods. The 
opposite is true for USD/JPY, and the results are nonsignificant for USD/CHF. These results suggest that more accurate forecasting 
models could be designed with a conditional combination that would exploit the level of market volatility. 

4.3. Individual range-based low-frequency volatility forecasts 

Up to now, for our low-frequency volatility models, we have assumed that we do not have any ex ante information about which of 
the range-based estimators leads to more accurate volatility forecasts. Here, we discuss the results from low-frequency volatility 
models estimated separately for the Garman and Klass (1980), Parkinson (1980) and Rogers and Satchell (1991) estimators. Detailed 
tabulated results are available upon request. 

Our general observation does not change. Increasing the forecast horizon leads to more competitive forecasts from low-frequency 
volatility models regardless of the range-based estimator employed. Among the individual range-based estimators, the Garman and 
Klass (1980) estimator leads to lower forecast errors compared to the forecast errors generated from volatility models based on the 
equally weighted average of the range-based estimators. 

However, this does not mean that one should blindly prefer the Garman and Klass (1980) estimator, as there are two caveats. First, 
using only one range-based estimators has occasionally led to very inaccurate forecasts, which could successfully be avoided by using 
the average of the three range-based estimators. For example, in a day-ahead setting for the GBP/USD and USD/CAD pairs, the forecast 
errors from the RB-HAR models with the Garman and Klass (1980) estimator lead to 1.231 and 7.325 average QLIKE losses, in contrast 
to 0.922 and 0.248 when employing the average. Second, the results considerably differ across FX pairs and forecast horizons. For 
example, in 1- and 5-day-ahead settings, the use of the Garman and Klass (1980) estimator leads to worse forecasts for the USD/JPY 
pair but to more accurate forecasts for 22- and 66-day-ahead settings. For EUR/USD, the trend is reversed, with Garman and Klass 
(1980) being more accurate for 1- and 5-day-ahead settings and worse for 22- and 66-day-ahead forecasts. 

These examples suggest that in many practical scenarios, using the average across estimators should be preferred to using indi
vidual estimators. 

17 The significance of the test is based on a variance-covariance matrix estimated with a quadratic spectral weighting scheme and the automatic 
bandwidth selection of (Newey and West, 1994).  
18 We leave this option for future research and do not explore it further here. 
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5. Conclusion 

As many subjects interact with the FX market, predicting the market’s uncertainty is crucial for improved risk management. While 
high-frequency data lead to superior volatility estimates, the acquisition, data management and computational costs associated with 
such data cannot be covered by all market participants. Moreover, low-frequency data are publicly available and are much easier to 
work with. This leads to our question from the title ’Can we use low-frequency data?’. 

In this paper, we compare the forecasting performance of several volatility models that use either low- or high-frequency volatility 
estimates or both. On the basis of a sample of six major currency pairs, our results suggest that for short-forecast horizons (from 1 to 5 
days), high-frequency models dominate their low-frequency counterparts. As the forecast horizon increases, the advantage of the high- 
frequency models disappears, and low- and high-frequency forecasts become statistically comparable. The answer to the question 
proposed in the title is ’if high-frequency data are not available, then low-frequency data can be used to estimate and predict long-term market 
volatility’. 

Moreover, regardless of whether one relies on high- or low-frequency volatility models, one should utilize combination forecasts. 
The Mincer and Zarnowitz (1969) tests further suggest that at least part of the inaccuracy of low-frequency volatility forecasts is due to 
bias. Finally, we find that high-frequency models tend to be more superior during periods of increased volatility. 

These results have implications for researchers and investors alike, as they demonstrate that low-frequency volatility models can 
provide competitive performance to that of high-frequency models under some circumstances. Our study notes that high-frequency 
data might not always be worth the much higher acquisition, data management and processing costs, especially if the forecast ho
rizon of interest is sufficiently long. 
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Table 6 
Conditions under which high-frequency models tend to outperform low-frequency models.   

AUD/USD EUR/USD GBP/USD USD/CAD USD/CHF USD/JPY  

Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig. 

Panel A: day-ahead forecasts 
Constant 163.44 ** 478.3 *** 121.1  − 60.6  217.37 *** 653.83 *** 
RVt− 1  0.13  0.71  ¡0.2 * 0.82  0.97 *** − 0.32  
Trend 0.12  − 0.02  0.09 * 0.25 *** 0.1  ¡0.2 *** 
R2 0.11%  0.08%  0.15%  0.87%  1.00%  0.53%  
Panel B: five-day-ahead forecasts 
Constant − 188.86  − 262.14  ¡999.88 * ¡174.02 ** 756.46  728.71 * 
RVt− 1  1.82 ** 3.28 ** 12.73 ** 3.63 *** − 4.19  − 4.91  
Trend 0.02  0.1  0.1  0.06 * − 0.28  ¡0.28 ** 
R2 4.83%  5.92%  31.05%  7.70%  4.95%  6.33%  
Panel C: twenty-two-day-ahead forecasts 
Constant ¡345.06 *** − 161.76  ¡726.59 *** ¡344.13 *** 1291.06  582.29 *** 
RVt− 1  2.82 *** 1.96 ** 9.29 *** 4.16 *** − 7.76  ¡4 *** 
Trend 0.04  0.08 * 0.07  0.11 *** − 0.46  ¡0.18 *** 
R2 12.32%  2.08%  33.03%  10.03%  13.55%  12.06%  
Panel D: sixty-six-day-ahead forecasts 
Constant ¡226.72 *** 237.04  − 145.54  ¡228.85 ** 950.82  507.08 *** 
RVt− 1  1.94 *** − 0.64  1.58  3.51 *** − 4.66  ¡4.2 *** 
Trend 0.01  0.01  0.06 ** 0.08 ** − 0.26  ¡0.17 *** 
R2 6.96%  0.04%  1.71%  6.13%  2.31%  10.92%  

Note: The results correspond to the modelling of the loss differential between CTrim
H and CTrim

L forecasting models by the means of lagged realized 
variance and trend variable. All coefficients are multiplied by 104. Significances are based on the variance-covariance matrix estimated using a 
quadratic spectracl weighting scheme and Newey and West automatic bandwidth selection. */**/*** correspond to 10%, 5% and 1% significance 
levels. 

Š. Lyócsa et al.                                                                                                                                                                                                         



Finance Research Letters 40 (2021) 101776

15

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.frl.2020.101776 

References 

Ait-Sahalia, Y., Mykland, P.A., Zhang, L., 2005. How often to sample a continuous-time process in the presence of market microstructure noise. Rev. Financ. Stud. 18 
(2), 351–416. 

Aloud, M., Fasli, M., Tsang, E., Dupuis, R., Olsen, R., 2013. Stylized facts of trading activity in the high frequency FX market: an empirical study. J. Finance Invest. 
Anal. 2 (4), 145–183. 

Andersen, T., Bollerslev, T., Diebold, F., Ebens, H., 2001. The distribution of realized stock return volatility. J. Financ. Econ. 61 (1), 43–76. 
Andersen, T.G., Bollerslev, T., 1998. Answering the skeptics: yes, standard volatility models do provide accurate forecasts. Int. Econ. Rev. 885–905. 
Andersen, T.G., Bollerslev, T., Diebold, F.X., 2007. Roughing it up: including jump components in the measurement, modeling, and forecasting of return volatility. 

Rev. Econ. Stat. 89 (4), 701–720. 
Andersen, T.G., Bollerslev, T., Meddahi, N., 2011. Realized volatility forecasting and market microstructure noise. J. Econom. 160 (1), 220–234. 
Andersen, T.G., Dobrev, D., Schaumburg, E., 2012. Jump-robust volatility estimation using nearest neighbor truncation. J. Econom. 169 (1), 75–93. 
Bandi, F.M., Russell, J.R., 2008. Microstructure noise, realized variance, and optimal sampling. Rev. Econ. Stud. 75 (2), 339–369. 
Barndorff-Neilsen, O.E., Kinnebrouk, S., Shephard, N., 2010. In: Bollerslev, T., Russell, J., Watson, M. (Eds.). Measuring Downside Risk: Realised Semivariance. Oxford 

University Press, pp. 117–136. 
Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., Shephard, N., 2008. Designing realized kernels to measure the ex post variation of equity prices in the presence of 

noise. Econometrica 76 (6), 1481–1536. 
Bates, J.M., Granger, C.W., 1969. The combination of forecasts. J. Oper. Res. Soc. 20 (4), 451–468. 
Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. J. Econom. 31 (3), 307–327. 
Bollerslev, T., Patton, A.J., Quaedvlieg, R., 2016. Exploiting the errors: a simple approach for improved volatility forecasting. J. Econom. 192 (1), 1–18. 
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