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Abstract 
 
 Auctions are important market mechanisms for the allocation of goods and 
services. In the paper a complex trading model is proposed. The proposed mod-
el, called multidimensional auction, is a generalization of an LP model of stand-
ard single item English auction. Multidimensional auctions include the possibil-
ity of auction generalization for multi-item, multi-type, multi-round and multi-     
-criteria. The multi-item model for multi-type auction is modelled and solved by 
multi-round approach with multiple criteria. The proposed model illustrates the 
possibility to formulate and solve multidimensional auctions as mathematical 
programming problems. Allowing bidders more fully to express preferences 
leads to improved economic efficiency and greater auction revenue. 
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Introduction 
 
 Auctions are important market mechanisms for the allocation of goods and 
services. Auctions are preferred often to other common processes because they 
are open, quite fair, and easy to understand by participants, and lead to economi-
cally efficient outcomes. Many modern markets are organized as auctions. De-
sign of auctions is a multidisciplinary effort made of contributions from econom-
ics, operations research, informatics, and other disciplines. Auction theory has 
caught tremendous interest from both the economic side as well as the Internet 
industry. An auction is a competitive mechanism to allocate resources to buyers  
based on predefined rules. These rules define the bidding process, how the win-
ner is determined, and the final agreement.  
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 Classification of auctions is based on some specific characteristics as:  
• the numbers of sellers and buyers, 
• traded items (indivisible, divisible, pure commodities, structured commodities), 
• the number of items, 
• the number of units of items, 
• type of auctions (forward, reverse, double), 
• evaluating criteria,  
• preferences of the participants, 
• complexity of bids (simply, related bids), 
• organisation of auctions (single-round, multi-round, sequential, parallel, price 

schemes). 
 The literature concerning auctions is quite rich. The standard models are based 
on game theory (Klemperer, 2004; Krishna, 2002; Milgrom, 2004). The popularity 
of auctions and the requirements of e-business have led to growing interest in the 
development of complex trading models (see Bellosta et al., 2004; Bichler, 2000; 
Oliveira, Fonsesca and Steiger-Garao, 1999). Combinatorial auctions (see Cramton, 
Shoham and Steinberg, 2006; de Vries and Vohra, 2003) are those auctions in 
which bidders can place bids on combinations of items, so called bundles. The 
advantage of combinatorial auctions is that the bidder can more fully express his 
preferences (Sandholm and Boutilier, 2006). This is particular important when 
items are complements. The auction designer also derives value from combinato-
rial auctions. Allowing bidders more fully to express preferences often leads to 
improved economic efficiency and greater auction revenues. However, alongside 
their advantages, combinatorial auctions raise a host of questions and challenges.  
 The literature concerning applications of auctions is versatile. For example, 
auctions have been proposed for the distribution of airport arrival and departure 
time slots (Rassenti, Smith and Bulfin, 1982), have been used for allocating radio 
spectrums for wireless communications services (Cramton, 2002), truckload trans-
portation (Caplice and Sheffi, 2006), bus routes (Cantillon and Pesendorfer, 2006), 
and industrial procurement (Bichler et al., 2006). Also in the Czech and Slovak 
literature, it is possible to find articles with the applications of auctions, such 
(Fiala and Šauer, 2011; Šauer et al., 1998) dealing with the use of auctions for 
the selection of coalition projects for pollution reduction and the paper (Klátik, 
Sičáková-Beblavá and Beblavý, 2013) examines use e-auctions as an allocation 
mechanism in public procurement in Slovak public sector. 
 The main contribution of the paper is to propose a general model of auctions, 
covering all aspects of multidimensional auctions together, and a solution proce-
dure for this general model. This is based on several specific auction models that 
have only some of specific features of multidimensional auctions. These models 
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were modified and merged into the general model. The complex multidimen-
sional auction trading model is based on a linear programming (LP) model and 
its extensions. Iterative combinatorial multi-type auctions with multiple criteria 
are proposed in the paper. A solution procedure based on changes of criteria 
aspiration levels is proposed and presented.  
 The rest of the paper is organized as follows. Section 1 presents a LP model 
of single item auctions. Section 2 summarizes the extensions of the basic model 
as multidimensional auctions. In Section 3, a model of multi-item combinatorial 
auctions is formulated. A model of multi-type auctions is analysed in the Section 4. 
Multi-round auctions as a solution approach are presented in Section 5. Multi-cri-
teria auctions are formulated in Section 6 and last Section presents conclusions.  
 
 
1.  Modelling of Single item Auctions 
 
 The English auction is an open auction with rising prices. The auctioneer 
starts the auction with low price, which gradually increases. The auction ends 
when no buyer is willing to increase the offer. Buyer wins the auction with the 
highest bidder will pay the highest offer. The English auction is commonly used 
for selling goods, most prominently antiques and artwork. 
 The problem is formulated as follows: Suppose that the seller offers one ob-
ject to n potential buyers B1, B2, ..., Bn. Each buyer also has its own evaluation 
of the object vi, which is the maximum that the buyer is willing to pay for the 
item. The buyer prefers to pay less. The aim is for a given set of bids find 
an item allocation that maximizes seller’s revenue. Seller will not necessarily 
receive the maximal value vi. 
 The problem can be formulated as follows:  
 
 vi – the value of the item to the buyer i,  
 xi – a binary variable indicating whether the item is assigned to buyer i (xi = 1). 
 

i N∈
∑  vi xi → max 

subject to         
i N∈
∑  xi ≤  1   (1) 

xi ∈ {0, 1}, ∀ i, i ∈ N = {1, 2, …, n} 
 
 The objective function expresses the target, i. e. maximize the revenue of the 
seller. Constraint indicates that no more than one buyer receives the item.  
 Solving the problem (1) is one way of determining the winner, if the maximal 
values of the item for buyers are known.  
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 However, the buyers may prefer English auction with gradual increasing of 
prices because it allows them to get the item without paying the maximal value.  
 Consider the LP relaxation of the problem (1): 
 

i N∈
∑  vi xi → max 

subject to     
i N∈
∑ xi + y = 1            (2) 

xi ≤  1, ∀ i, i ∈ N = {1, 2, …, n} 
y ≥ 0, xi ≥ 0, ∀ i, i ∈ N = {1, 2, …, n} 

 
 In this formulation, a new variable y is added that represents the seller not 
assigning the item to any buyer. The constraints are dropped because the prob-
lem (2) has integer optimal solution.   
 The corresponding dual problem to the problem (2)  
 

p + 
i N∈
∑ ui → min 

subject to  p + ui ≥  vi ∀ i, i ∈ N = {1, 2, …, n}   (3) 
p ≥ 0, ui ≥ 0, ∀ i, i ∈ N = {1, 2, …, n} 

 
 The dual variable p can be interpreted as the selling price of the item, the dual 
variables ui represent utilities for buyers as difference of the evaluation and the 
price of the item  

ui = max [0, vi − p] 
 
 The primal solution (x, y) and the dual solution (p, u) are optimal for a pair of 
problems (2) and (3) if complementary slackness conditions hold:  
 

p > 0 ⇒ 
i N∈
∑ xi + y = 1                                         (4) 

 
ui > 0 ⇒ xi = 1 , ∀ i, i ∈ N = {1, 2, …, n}                        (5) 

 
 

xi > 0 ⇒ ui = vi − p, ∀ i, i ∈ N = {1, 2, …, n}                      (6) 
 

y > 0 ⇒ p = 0                                               (7) 
 
 The conditions are then interpreted as follows:  

• Someone gets the item if the price p is positive. It follows from the condi-
tions (4) and (7). 

• Any buyer not receiving the item must have utility ui = 0, i.e. the price p is 
greater than his valuation vi. It follows from the condition (5).  

• By the condition (6), if the buyer i gets the item, then the selling price p = vi − ui. 
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 Primal-dual simplex algorithm tries to achieve primal and dual admissibility 
by gradual elimination of violations of the complementary slackness conditions. 
This corresponds exactly to the English auction process. In this sense, the auc-
tion is nothing other than a LP solver. The dual variable p is interpreted as the 
current price of the item and the dual variables ui express the corresponding utili-
ties for buyers. The primal variable xi indicates provisional winner of the auction 
arbitrarily selected among buyers who are interested in the item at the price p. 
The primal variable y indicates if no buyer is interested in the object at the given 
price p. When the complementary slackness conditions hold, so the auction ends 
and an optimal solution is found. During the auction in each round, the condi-
tions (4), (6) and (7) hold. The condition (5) might not hold since there may be 
non-winners whose valuations are greater than the continuous price. Primal-dual 
algorithm works by increasing p until the condition (5) holds, i.e. to achieve 
a single winner of the auction. 
 
 
2.  Multidimensional Auctions 
 
 An auction provides a mechanism for negotiation between buyers and sellers. 
Multidimensional auctions are a generalization of single item auctions. These 
auctions can be classified: 

• multi-item auction,  
• multi-type auction,  
• multi-round auction,  
• multi-criteria auction.  

 Multi-item auctions can place bids on combinations of items, so called com-
binatorial auctions. There are several types of auctions (forward, reverse, and 
double). There is an effort to propose a general multi-type auction that covers all 
the types. In the iterative approach, there are multiple rounds of bidding and 
allocation and the problem is solved in an iterative and incremental way. Itera-
tive combinatorial auctions are attractive to bidders because they learn about 
their rivals’ valuations through the bidding process, which could help them to 
adjust their own bids.  
 Auctions with complex bid structures are also called multi-criteria auctions, 
since they address multiple attributes of the items (price, quality, quantity, etc.) 
in the negotiation space. Multi-criteria optimization can be helpful for detailed 
analysis of auctions.  
 There are possible combinations of the multidimensional characteristics. We 
propose a complex trading model based using of iterative process for multi-        
-criteria combinatorial multi-type auctions.  
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3.  Multi-item Auctions  
 
 There are many applications of combinatorial auctions. One of the most pop-
ular examples is using of combinatorial auctions for allocating radio spectrums 
for wireless communications services. Many types of combinatorial auctions can 
be formulated as mathematical programming problems. From different types of 
combinatorial auctions we present a forward auction of indivisible items with 
one seller and multiple buyers (Cramton, 2002; Sandholm, 2002). Let us suppose 
that one seller S offers a set R of r items, j = 1, 2, …, r, to n potential buyers B1, 
B2, ..., Bn. 
 Items are available in single units. A bid made by buyer Bi, i = 1, 2, …, n, is 
defined as  
 

bi = {C, pi(C)} 
 
where 
 C ⊆ R – a combination of items, 
 pi(C)  – the offered price by buyer Bi for the combination of items C. 
 
 The objective is to maximize the revenue of the seller given the bids made by 
buyers. Constraints establish that no single item is allocated to more than one 
buyer.  
 Binary variables are introduced for model formulation: 
 xi(C) is a binary variable specifying if the combination C is  assigned to buyer 
Bi (xi(C) = 1).  
 The forward auction can be formulated as follows 
 

i N∈
∑

C R⊆
∑ pi(C)  xi(C)   →      max 

subject to                           
i N∈
∑

C R⊆
∑  xi(C) ≦ 1, ∀ j ∊ R                                   (8) 

xi(C) ∊ {0, 1}, ∀  C ⊆ R, ∀ i,  i ∈ N = {1, 2, …, n} 
 
 The objective function expresses the revenue. The constraints ensure that over-
lapping sets of items are never assigned. The problem (8) is called the winner 
determination problem. 
 Complexity is a fundamental question in combinatorial auction design (Roth-
kopf et al., 1998). There are some types of complexity: 

• computational complexity, 
• valuation complexity, 
• strategic complexity, 
• communication complexity. 
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 Computational Complexity covers the expected computation amount of the 
mechanism to compute an outcome given the bid information of the bidders. 
This is an extremely important question because winner determination problem 
is an NP-complete optimization problem.  
 Valuation complexity deals with the required computation amount to provide 
preference information within a mechanism. Estimating every possible bundle 
of items requires exponential space and hence exponential time. Bidders need 
to determine valuations for 2m –1 possible bundle. 
 Strategic complexity concerns the best strategy for bidding. Which of the 2m –1 
bundles to bid on? Must bidders model behaviour of other bidders and solve 
problems to compute an optimal strategy?  
 Communication complexity concerns the required communication amount to 
exchange between bidders and auctioneer until an equilibrium price is reached. 
The problem of communication complexity can be addressed through the design 
of careful bidding languages that provide expressive but concise bids. Many 
researchers consider iterative auctions as an alternative. 
 
 
4.  Multi-type Auctions  
 
 An auction provides a mechanism for negotiation between buyers and sellers. 
In forward auctions a single seller sells resources to multiple buyers (model (8)). 
The forward auctions are typical for selling scarce or perishable items. In a re-
verse auctions, a single buyer attempts to source resources from multiple suppli-
ers, as is common in industrial procurement (Bichler et al., 2006). Auctions with 
multiple buyers and sellers are called double auctions. Auctions with multiple 
buyers and sellers are becoming increasing popular. There are numerous applica-
tions of double auctions in electronic commerce (Wurman, Walsh and Wellman, 
1998), including stock exchanges, business-to-business commerce, bandwidth 
allocation, etc. It is well known that double auctions in which both sides submit 
demand or supply bids are much more efficient than several one-sided auctions 
combined. Attention is devoted to double combinatorial auctions. Combinatorial 
double auctions can be transformed to combinatorial single-sided auctions and 
solved by methods for these auctions. Special case of double auction for one 
seller is the forward auction and special case of double auction for one buyer is 
the reverse auction. 
 We present a reverse auction of indivisible items with one buyer and several 
sellers. This type of auction is important for supplier selection problem. Let us 
suppose that m potential sellers S1, S2, ..., Sm offer a set R of r items, j = 1, 2, …, r, 
to one buyer B.  
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 A bid made by seller Sh, h = 1, 2, …, m, is defined as  
 

bh = {C, ch(C)} 
 
where 
 C ⊆ R – a combination of items, 
 ch(C) – the offered price by seller Sh for the combination of items C. 
 
 The objective is to minimize the cost of the buyer given the bids made by 
sellers. Constraints establish that the procurement provides at least set of all 
items.  
 Binary variables are introduced for model formulation: 
 yh(C) is a binary variable  specifying if the combination C is bought from 
seller Sh (yh(C) = 1).  
 The reverse auction can be formulated as follows 
 

h M∈
∑

C R⊆
∑ ch(C)  yh(C)   →      min 

subject to                         
h M∈
∑

C R⊆
∑  yh(C)   ≥ 1,  ∀ j ∊ R                                   (9) 

yh(C) ∊ {0, 1}, ∀  C  ⊆ R,  ∀ h, h ∈ M = {1, 2, …, m} 
 
 The objective function expresses the cost. The constraints ensure that the 
procurement provides at least set of all items.  
 Double auctions (auctions with multiple buyers and multiple sellers) are be-
coming increasing popular in electronic commerce. The numerous applications 
in electronic commerce, including stock exchanges, business-to-business com-
merce, bandwidth allocation, etc. have led to a great deal of interest in double 
auctions (see Bellosta et al., 2004).  
 For double auctions, the auctioneer is faced with the task of matching up 
a subset of the buyers with a subset of the sellers. The profit of the auctioneer is 
the difference between the prices paid by the buyers and the prices paid to the 
sellers. The objective is to maximize the profit of the auctioneer given the bids 
made by sellers and buyers. Constraints establish the same conditions as in sin-
gle-sided auctions. 
 We present a double auction problem of indivisible items with multiple 
sellers and multiple buyers (see Xia, Stallaert and Whinston, 2005). Let us sup-
pose that m potential sellers S1, S2, ..., Sm offer a set R of r items, j = 1, 2, …, r, 
to n potential buyers B1, B2, ..., Bn. 
 A bid made by seller Sh, h = 1, 2, …, m, is defined as bh = {C, ch(C)}, a bid 
made by buyer Bi, i = 1, 2, …, n, is defined as  bi = {C, pi(C)} 
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where 
 C ⊆ R – a combination of items, 
 ch(C)  – the offered price by seller Sh for the combination of items C, 
 pi(C)  – the offered price by buyer Bi for the combination of items C. 
 
 Binary variables are introduced for model formulation: 
 
 xi(C)  – a binary variable  specifying if the combination C is  assigned to buyer Bi 

(xi(C)  = 1),  
 yh(C)  – a binary variable  specifying if the combination C is bought from seller Sh 

(yh(C)  = 1).  
 

i N∈
∑

C R⊆
∑ pi(C) xi( – 

h M∈
∑

C R⊆
∑ ch(C)  yh(C)     →      max 

subject to              
i N∈
∑

C R⊆
∑  xi(C)  ≦ 

h M∈
∑

C R⊆
∑  yh(C), ∀ j   ∊ R                      (10) 

xi(C) ∊ {0, 1}, ∀  C  ⊆ R,  ∀ i,  i ∈ N = {1, 2, …, n} 
yh(C) ∊ {0, 1}, ∀  C  ⊆ R,  ∀ h,  h ∈ M  = {1, 2, …, m} 

 
 The objective function expresses the profit of the auctioneer. The constraints 
ensures for buyers to purchase a required item and that the item must be offered 
by sellers.  
 The formulated combinatorial double auction can be transformed to a combi-
natorial single-sided auction. Substituting yh(C) ,  h = 1, 2, …, m, with 1 – xi(C), 
i = n + 1, n + 2, …, n + m, and substituting ch(C),  h = 1, 2, …, m, with pi(C), 
i = n + 1, n + 2, …, n + m, we get a model of a combinatorial single-sided auction. 
 

i NM∈
∑

C R⊆
∑ pi(C)  xi(C) – 

i NM∈
∑

C R⊆
∑ pi(C)     →      max 

subject to                         
i NM∈
∑

C R⊆
∑  xi(C)  ≦ m, ∀ j   ∊ R                                 (11) 

xi(C) ∊ {0, 1}, ∀  C ⊆ R, ∀ i, i ∈ NM = {1, 2, …, n + m} 
 
 The model (11) can be solved by methods for single-sided combinatorial 
auctions. The specific forward or reverse auctions can be modelled as special 
cases of the model (11). 
 
 
5.  Multi-round Auctions 
 
 The key challenge in the iterative combinatorial auctions design is to provide 
information feedback to the bidders after each iteration (Pikovsky and Bichler, 
2005; Parkes, 2006). Pricing was adopted as the most intuitive mechanism of 
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providing feedback. Multi-round approaches are used in models for industrial 
procurement auctions (see Bichler et al., 2006). In contrast to the single-item 
single-unit auctions, pricing is not trivial for iterative combinatorial auctions. 
The main difference is the lack of the natural single-item prices. With bundle 
bids setting independent prices for individual items is not obvious and often 
even impossible. Different pricing schemes are introduced and discussed their 
impact on the auction outcome.  
 A set of prices pi(C), i = 1, 2, …, n, C ⊆  R is called: 
 

• linear, if ∀ i, C : pi(C) = 
j S∈
∑ pi(j) 

• anonymous, if ∀  k, l, C : pk(C) = pl(C)  
 
 Prices are linear if the price of a bundle is equal to the sum of the prices of its 
items, and anonymous if the prices of the same bundle are equal for every bidder. 
The simple pricing scheme with linear anonymous prices will be used. Linear 
anonymous prices are easily understandable and usually considered fair by the 
bidders. The communication costs are also minimized, because the amount of 
information to be transferred is linear in the number of items.  
 A set of prices pi(S) is called compatible with the allocation xi(C) and valua-
tions vi(C), if 
 

∀ i, C : xi(C) = 0 ⇔ pi(C) > vi(C) and xi(C) = 1⇔ pi(C) ≤ vi(C) 
 
 The set of prices is compatible with the given allocation at the given valuations 
if and only if all winning bids are higher than or equal to the prices and all loos-
ing bids are lower than the prices (assuming the bidders bid at their valuations).  
 Compatible prices explain the winners why they won and the losers, why 
they lost. In fact, informing the bidders about the allocation xi(C) is superfluous, 
if compatible prices are communicated. However, not every set of compatible 
prices provides the bidder with meaningful information for improving bids in 
the next auction iteration. Another important observation is the fact that linear 
compatible prices are harder and often even impossible to construct, when the 
bidder valuations are super- or sub-additive. 
 A set of prices pi(C) is in competitive equilibrium with the allocation xi(C) 
and valuations vi(C), if 
 1. The prices pi(C) are compatible with the allocation xi(C) and valuations vi(C). 
 2. Given the prices pi(C), there exists no allocation with larger total revenue 
than the revenue of the allocation xi(C). 
 The idea behind this concept is to define prices characterizing the optimal 
allocation. The prices may not be too low to violate the compatibility condition 1, 
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but they may not be too high to violate the condition 2. In general, one can show 
that the existence of competitive equilibrium prices implies optimality of the 
allocation.  
 
Primal-dual Algorithms 

 One way of reducing some of the computational burden in solving the winner 
determination problem is to set up a fictitious market that will determine an allo-
cation and prices in a decentralized way. In the iterative approach, there are mul-
tiple rounds of bidding and allocation and the problem is solved in an iterative 
and incremental way. Iterative combinatorial auctions are attractive to bidders 
because they learn about their rivals’ valuations through the bidding process, 
which could help them to adjust their own bids. 
 There is a connection between efficient auctions for many items, and duality 
theory. The Vickrey auction can be taken as an efficient pricing equilibrium, 
which corresponds to the optimal solution of a particular linear programming 
problem and its dual. The simplex algorithm can be taken as static approach to 
determining the Vickrey outcome. Alternatively, the primal-dual algorithm can 
be taken as a decentralized and dynamic method to determine the pricing equilib-
rium. A primal-dual algorithm usually maintains a feasible dual solution and 
tries to compute a primal solution that is both feasible and satisfies the comple-
mentary slackness conditions. If such a solution is found, the algorithm termi-
nates. Otherwise the dual solution is updated towards optimality and the algo-
rithm continues with the next iteration. The fundamental work (Bikhchandani 
and Ostroy, 2002) demonstrates a strong interrelationship between the iterative 
auctions and the primal-dual linear programming algorithms. A primal-dual line-
ar programming algorithm can be interpreted as an auction where the dual varia-
bles represent item prices. The algorithm maintains a feasible allocation and 
a price set, and it terminates as the efficient allocation and competitive equilibri-
um prices are found.  
 For the winner determination problem we will formulate the LP relaxation 
and its dual. Consider the LP relaxation of the winner determination problem (8): 
 

i N∈
∑

C R⊆
∑  vi(C)  xi(C)   →      max 

subject to                
C R⊆
∑ xi(C) ≤  1, ∀ i, i ∈ N = {1, 2, …, n} 

i N∈
∑

C R⊆
∑  xi(C)  ≤  1, ∀ j  ∈  R                                  (12) 

xi(C) ≥  0, ∀  C ⊆  R, ∀ i, i ∈ N = {1, 2, …, n} 
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 The corresponding dual to problem (12) 
 

i N∈
∑ p(i) +  

j C∈
∑ p(j) →      min 

subject to                         p(i) +  
j C∈
∑ p(j) ≥  vi(C) ∀ i, C                                  (13) 

p(i), p(j) ≥  0, ∀ i, j 
 

 The dual variables p(j) can be interpreted as anonymous linear prices of 

items, the term 
j S∈
∑ p(j) is then the price of the bundle C and p(i) = max

S
[vi(C) 

−
j S∈
∑ p(j)] is the maximal utility for the bidder i at the prices p(j). 

 Following two important properties can be proved for the problems (12) a (13): 
 1. The complementary-slackness conditions are satisfied if and only if the 
current allocation (primal solution) and the prices (dual solution) are in competi-
tive equilibrium. 
 2. The formulation (12) – (13) is weak. For the optimal allocation there no 
always exist anonymous linear competitive equilibrium prices.  
 
Auction Formats 

 Several auction formats based on the primal-dual approach have been pro-
posed in the literature. Though these auctions differ in several aspects, the gen-
eral scheme can be outlined as follows: 
 1. Choose minimal initial prices. 
 2. Announce current prices and collect bids. Bids have to be higher or equal 
than the prices. 
 3. Compute the current dual solution by interpreting the prices as dual varia-
bles. Try to find a feasible allocation, an integer primal solution that satisfies the 
stopping rule. If such solution is found, stop and use it as the final allocation. 
Otherwise update prices and go back to 2. 
 Concrete auction formats based on this scheme can be implemented in different 
ways. The most important design choices are the following: bid structure, pricing 
scheme, price update rule, bid validity, feedback, way of computing a feasible 
primal solution in each iteration, and stopping rule. 
 
 
6.  Multi-criteria Auctions 
 

 Multi-criteria auctions allow negotiation on multiple criteria, involving not 
only the price, but also other criteria such as quality, guarantee, delivery terms and 
conditions. Multi-criteria approaches are used in models for electronic auctions 



232 

(see Belosta et al., 2004). Multi-criteria auctions can be modelled as a multi-
objective linear programming model 
 

fj(x) = 
i N∈
∑

C R⊆
∑  vij(C)  xi(C)   →      max,     j = 1, 2, …., k 

subject to                      
C R⊆
∑ xi(C)  ≤  1, ∀ i, i = 1, 2, …, n 

i N∈
∑

C R⊆
∑  xi(C)  ≤  1, ∀ j  ∈  R                                 (14) 

xi(C) ≥  0, ∀  C ⊆  R, ∀ i,  i ∈ N = {1, 2, …, n} 
 
where  
 fj(x), j = 1, 2, …., k – objective functions,  
 x ∈ X  – a solution vector from the feasibility set X,  
 vij(C)  – the value of the criterion j for buyer Bi for the combination of items C.  
 
 The vector function of all objectives is denoted as F(x). 
 We propose to solve the problem (14) by multi-round ALOP (Aspiration 
Level Oriented Procedure) (see Fiala, 1997). People appear to satisfy rather than 
attempting to optimize. That means substituting goals of reaching specified aspi-
ration levels for goals of maximizing.  
 We denote y(t) the vector of aspiration levels of the objectives and ∆y(t) 
changes of aspiration levels in the round t. The problem (14) can be substitute by 
a general aspiration level formulation 
 

F(x) ≥ y(t)                                                 (15) 
x ∈ X 

 
 According to heuristic information from results of the condition (15) the 
agent changes the aspiration levels of objectives for the round t + 1: 
 

y(t + 1)= y(t) + ∆y(t)                                         (16) 
 
 There are three possibilities for aspiration levels y(t). The problem (15) can 
be feasible, infeasible or the problem has a unique non-dominated solution. We 
verify the three possibilities by solving the problem 
 

v(d+) →  min                                               (17) 
F(x) – d+ = y(t) 
x ∈ X , d+ ≥ 0 

 
where  
 d+  – a vector of positive deviation variables, 
 v(d+)  – an objective function of d+.  
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 The value of the objective function in the problem (17) can be interpreted as 
an increase of utility. 

 If it holds: 
• v > 0, then the problem is feasible and d+ are proposed changes ∆y(t) of 

aspiration levels which achieve a non-dominated solution in the next round; 
• v = 0, then we obtained a non-dominated solution; 
• the problem is infeasible, then we search the nearest solution to the aspira-

tion levels by solving the goal programming problem 
 

v(d+, d-) →  min                                             (18) 
F(x) – d+ + d- = y(t) 
x ∈ X, d+ ≥ 0, d- ≥ 0 

 
 The solution of the problem (18) is feasible with changes of aspiration levels 
∆y(t) = d+ – d-. For changes of non-dominated solutions the duality theory can 
be applied (see Fiala, 1981). Dual variables to objective constraints in the prob-
lem (18) are denoted ui, i ∈ K = {1, 2, …, k}. 

 If it holds 
 

 i K∈
∑ ( ) 0t

i iu y∆ =                                           (19) 
 
then for some changes ∆y(t) the value v = 0 is not changed and we obtain another 
non-dominated solution. The agent can state k-1 small changes of the aspiration 
levels ∆yi(t), i ∈ K = {1, 2, …, k}, i ≠ r, then the change of the aspiration level 
for criterion r is calculated from (19).  
 Results of the procedure ALOP are the path of tentative aspiration levels and 
the accepted non-dominated solutions. 
 
Illustrative Example  

 The procedure is illustrated by the following numerical example of a double 
auction problem. Consider a simple supply chain. Let us suppose that 3 potential 
sellers S1, S2, S3 offer a set R of 3 items {a, b, c} to 3 potential buyers B1, B2, B3. 
The auction is evaluated by two criteria.  
 First criterion is profit of the supply chain given as sum of differences be-
tween the offered prices by buyers and the offered prices by sellers.  
 Second criterion is delivery time for all 3 items { a, b, c} and it should be 
minimised. The delivery time for all 3 items is a sum of delivery times for se-
lected combinations of items. Offered prices for combinations of items are given 
in Table 1 and Table 2. Delivery times for combinations of items are given in 
Table 3. 
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T a b l e  1 

The Offered Prices by Sellers for Combinations of Items 

 a b c ab ac bc abc 

S1   5* 10 15  12▀ 19 24 29 
S2 6   9  12▀ 14 17   19* 26 
S3 7   8 16 14 22 23 30 

Source: Author. 
 
T a b l e  2 

The Offered Prices by Buyers for Combinations of Items 

 a b c ab ac bc abc 

B1 7   8 16 15 23 24 31 
B2 6 10  18▀ 16 24   28* 34 
B3   8*   9 15  17▀ 23 24 32 

Source: Author. 
 
T a b l e  3 

Delivery Times for Combinations of Items 

 a b c ab ac bc abc 

S1   8*   7   6    8▀ 11 13 20 
S2 8   7    8▀   8   9   10* 18 
S3 5 10 11 10 13 16 19 

Source: Author. 
 

 The problem was solved by the multi-round ALOP procedure. In the first 
round, the supply chain manager sets aspiration levels y(1) = (12, 15). There is 
no solution for these aspiration levels. In the second round, the aspiration levels 
were changed y(2) = (12, 18). The procedure found a solution (marked with as-
terisks * in Tables): 
 The seller S2 sells the items {b, c} to the buyer B2 and the seller S1 sells the 
item {a} to the buyer B3. The objective function values are 
 

f1(x) = (28 – 19) + (8 – 5) = 12 
f2(x) = 10 + 8 = 18 

 
 The supply chain manager is not satisfied with the delivery time. In the third 
round the aspiration levels were changed y(3) = (11, 16). The procedure found 
a solution (marked with squares ▀ in Tables): 
 The seller S1 sells the items {a, b} to the buyer B3 and the seller S2 sells the 
item {c} to the buyer B2. The objective function values are 
 

f1(x) = (17 – 12) + (18 – 12) = 11 
f2(x) = 8 + 8 = 16 

 
 The supply chain manager is satisfied with the objective function values and 
the procedure stops. 
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Conclusions 
 
 Auctions are the important subject of an intensive economic research. The 
paper proposes a complex trading multi-type model based on multi-criteria itera-
tive combinatorial auctions. A possible flexible approach for modelling and solv-
ing such auctions is presented. It is a combination of auction models – multi-       
-item, multi-type, multi-round, multi-criteria. Individual auction models help the 
bidders express their preferences. Allowing bidders more fully to express prefer-
ences often leads to improved economic efficiency and greater auction revenue. 
The combination of such models can give more complex views on auctions.  
 The proposed model is general, including all components of multidimensional 
auctions together. The specific models with only some characteristics of multi-
dimensional auctions can be simply derived from this general model. These spe-
cific models have many real applications.  
 The proposed solution procedure is possible to use for solving the general 
model. The procedure is oriented on changes of aspiration levels of objective 
function values, what is a natural approach to solving such problems. This ap-
proach is friendly and easy to understand for users. A simple illustrative example 
of the general model solved by the procedure was presented. 
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