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Modelling and Solving of Multidimensional Auctions®

Petr FIALA

Abstract

Auctions are important market mechanisms for thecation of goods and
services. In the paper a complex trading moder@ppsed. The proposed mod-
el, called multidimensional auction, is a generatian of an LP model of stand-
ard single item English auction. Multidimensionaictions include the possibil-
ity of auction generalization for multi-item, mutyipe, multi-round and multi-
-criteria. The multi-item model for multi-type aiget is modelled and solved by
multi-round approach with multiple criteria. Theqposed model illustrates the
possibility to formulate and solve multidimensiomaictions as mathematical
programming problems. Allowing bidders more fulty éxpress preferences
leads to improved economic efficiency and greatetian revenue.

Keywords: auctions, combinatorial auctions, iterative methadsiltiple criteria
JEL Classification: D44, C61

Introduction

Auctions are important market mechanisms for thecation of goods and
services. Auctions are preferred often to other mom processes because they
are open, quite fair, and easy to understand kjcjpants, and lead to economi-
cally efficient outcomes. Many modern markets aiganized as auctions. De-
sign of auctions is a multidisciplinary effort maaliecontributions from econom-
ics, operations research, informatics, and othsciglines. Auction theory has
caught tremendous interest from both the econoidie @& well as the Internet
industry. An auction is a competitive mechanisraltocate resources to buyers
based on predefined rules. These rules defineititénly process, how the win-
ner is determined, and the final agreement.
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Classification of auctions is based on some sjpedifaracteristics as:

- the numbers of sellers and buyers,

- traded items (indivisible, divisible, pure commaatit structured commaodities),

« the number of items,

« the number of units of items,

- type of auctions (forward, reverse, double),

- evaluating criteria,

« preferences of the participants,

« complexity of bids (simply, related bids),

« organisation of auctions (single-round, multi-rouselquential, parallel, price

schemes).

The literature concerning auctions is quite rithe standard models are based
on game theory (Klemperer, 2004; Krishna, 2002ghiin, 2004). The popularity
of auctions and the requirements of e-business leavt® growing interest in the
development of complex trading models (see Bellest., 2004; Bichler, 2000;
Oliveira, Fonsesca and Steiger-Garao, 1999). Caturial auctions (see Cramton,
Shoham and Steinberg, 2006; de Vries and Vohra3)28fe those auctions in
which bidders can place bids on combinations oh$teso called bundles. The
advantage of combinatorial auctions is that thedyidan more fully express his
preferences (Sandholm and Boutilier, 2006). Thipagicular important when
items are complements. The auction designer alseedevalue from combinato-
rial auctions. Allowing bidders more fully to exgsepreferences often leads to
improved economic efficiency and greater auctioieneies. However, alongside
their advantages, combinatorial auctions raisesa dfoquestions and challenges.

The literature concerning applications of auctimsersatile. For example,
auctions have been proposed for the distributioairiort arrival and departure
time slots (Rassenti, Smith and Bulfin, 1982), hbgen used for allocating radio
spectrums for wireless communications servicesng@@ma, 2002), truckload trans-
portation (Caplice and Sheffi, 2006), bus routeanfilon and Pesendorfer, 2006),
and industrial procurement (Bichler et al., 2008€s0 in the Czech and Slovak
literature, it is possible to find articles withettapplications of auctions, such
(Fiala and Sauer, 2011; Sauer et al., 1998) dealitiythe use of auctions for
the selection of coalition projects for pollutioeduction and the paper (Klatik,
Sicakova-Beblava and Beblavy, 2013) examines use &@oagcas an allocation
mechanism in public procurement in Slovak publictiee

The main contribution of the paper is to propogeeral model of auctions,
covering all aspects of multidimensional auctiorgether, and a solution proce-
dure for this general model. This is based on sg¢wgrecific auction models that
have only some of specific features of multidimenai auctions. These models
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were modified and merged into the general modeé ¢bmplex multidimen-
sional auction trading model is based on a lineag@amming (LP) model and
its extensions. Iterative combinatorial multi-typections with multiple criteria
are proposed in the paper. A solution proceduredam changes of criteria
aspiration levels is proposed and presented.

The rest of the paper is organized as followsti&ed presents a LP model
of single item auctions. Section 2 summarizes #iensions of the basic model
as multidimensional auctions. In Section 3, a madehulti-item combinatorial
auctions is formulated. A model of multi-type aaos is analysed in the Section 4.
Multi-round auctions as a solution approach aregmted in Section 5. Multi-cri-
teria auctions are formulated in Section 6 and3asttion presents conclusions.

1. Modelling of Single item Auctions

The English auction is an open auction with risprgces. The auctioneer
starts the auction with low price, which gradualigreases. The auction ends
when no buyer is willing to increase the offer. Buyvins the auction with the
highest bidder will pay the highest offer. The Esiglauction is commonly used
for selling goods, most prominently antiques arid/ank.

The problem is formulated as follows: Suppose thatseller offers one ob-
ject ton potential buyer®,, B, ..., B,. Each buyer also has its own evaluation
of the objectv;, which is the maximum that the buyer is willinggay for the
item. The buyer prefers to pay less. The aim isaagiven set of bids find
an item allocation that maximizes seller's reven8eller will not necessarily
receive the maximal valug

The problem can be formulated as follows:

v; — the value of the item to the buyer
X — a binary variable indicating whether the iteragsigned to buyern(x = 1).

D> VX - max
iON

subject to > ox<1 (1)
iON

x U{0,1}, Oi,iUN={1,2,...n}

The objective function expresses the target, maximize the revenue of the
seller. Constraint indicates that no more thantmneer receives the item.

Solving the problem (1) is one way of determinihg winner, if the maximal
values of the item for buyers are known.
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However, the buyers may prefer English auctiorhwitadual increasing of
prices because it allows them to get the item witlpaying the maximal value.
Consider the LP relaxation of the problem (1):

D ViX - max

iON
subject to > ox+y=1 )
iON
x <1, U iUN={1,2, ..,n
y>0,%>0,Ui,i UN={1,2, ...,n}

In this formulation, a new variableis added that represents the seller not
assigning the item to any buyer. The constraintsosopped because the prob-
lem (2) has integer optimal solution.

The corresponding dual problem to the problem (2)

p+> U - min

iON
subject to p+u=viUi,iUN={1,2 ....n} (3)
p>0,u>0 Ui iUN={1,2, ...,n}

The dual variablg can be interpreted as the selling price of tha,itde dual
variablesu; represent utilities for buyers as difference @& #@valuation and the
price of the item

u =max [0V —p]

The primal solutionx, y) and the dual solutiorp(u) are optimal for a pair of
problems (2) and (3) if complementary slacknesglitimms hold:

p>0= > x+y=1 4
iON
u>0=>x=1,U0,iUN={1,2 ...,n} (5)
x>0=>u=vi-p Ui, iUN={1,2, ...,n (6)
y>0=p=0 (7)

The conditions are then interpreted as follows:

« Someone gets the item if the priges positive. It follows from the condi-
tions (4) and (7).

« Any buyer not receiving the item must have utility= 0, i.e. the price is
greater than his valuation It follows from the condition (5).

« By the condition (6), if the buyegets the item, then the selling pnre v; — u.



224

Primal-dual simplex algorithm tries to achievenpal and dual admissibility
by gradual elimination of violations of the complemary slackness conditions.
This corresponds exactly to the English auctiorcess. In this sense, the auc-
tion is nothing other than a LP solver. The dualalde p is interpreted as the
current price of the item and the dual variahiesxpress the corresponding utili-
ties for buyers. The primal variabtgindicates provisional winner of the auction
arbitrarily selected among buyers who are intetesiethe item at the pricp.
The primal variable indicates if no buyer is interested in the obgdhe given
price p. When the complementary slackness conditions lsoldhe auction ends
and an optimal solution is found. During the auttio each round, the condi-
tions (4), (6) and (7) hold. The condition (5) ntigiot hold since there may be
non-winners whose valuations are greater thanah&rwuous price. Primal-dual
algorithm works by increasing until the condition (5) holds, i.e. to achieve
a single winner of the auction.

2. Multidimensional Auctions

An auction provides a mechanism for negotiatiofivben buyers and sellers.
Multidimensional auctions are a generalization iofyke item auctions. These
auctions can be classified:

« multi-item auction,

« multi-type auction,

» multi-round auction,

 multi-criteria auction.

Multi-item auctions can place bids on combinatioh#tems, so called com-
binatorial auctions. There are several types ofiang (forward, reverse, and
double). There is an effort to propose a generdli+type auction that covers all
the types. In the iterative approach, there aretiphelrounds of bidding and
allocation and the problem is solved in an iteet@nd incremental way. Itera-
tive combinatorial auctions are attractive to biddbecause they learn about
their rivals’ valuations through the bidding prosewhich could help them to
adjust their own bids.

Auctions with complex bid structures are alsoemhlinulti-criteria auctions,
since they address multiple attributes of the it¢pmce, quality, quantity, etc.)
in the negotiation space. Multi-criteria optimizatican be helpful for detailed
analysis of auctions.

There are possible combinations of the multidimered characteristics. We
propose a complex trading model based using oatiter process for multi-
-criteria combinatorial multi-type auctions.
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3. Multi-item Auctions

There are many applications of combinatorial aunsi One of the most pop-
ular examples is using of combinatorial auctionsditocating radio spectrums
for wireless communications services. Many typesashbinatorial auctions can
be formulated as mathematical programming probldémmn different types of
combinatorial auctions we present a forward auctbmndivisible items with
one seller and multiple buyers (Cramton, 2002; Salm, 2002). Let us suppose
that one sellet offers a seR of r items,j = 1, 2, ...,r, ton potential buyer$;,
B,, ..., B.

Items are available in single units. A bid madebbyerB;, i =1, 2, ...,n, is
defined as
b ={C, p(C)}
where

C c R —a combination of items,
pi(C) - the offered price by buy& for the combination of item&.

The objective is to maximize the revenue of tHeesgiven the bids made by
buyers. Constraints establish that no single iterallocated to more than one
buyer.

Binary variables are introduced for model formialiat

x(C) is a binary variable specifying if the combinati® is assigned to buyer
Bi (x(C) = 1).

The forward auction can be formulated as follows

z z Pi(C) x(C) - max

iON COR
subject to > > x(©=1UjeR (8)
iON COR

x(C)e{0,1}, UCcR Ui, iUN={1,2,..,n

The objective function expresses the revenue.cbhstraints ensure that over-
lapping sets of items are never assigned. The gmolf8) is called the winner
determination problem.

Complexity is a fundamental question in combinatauction design (Roth-
kopf et al., 1998). There are some types of coniigtex

- computational complexity,

- valuation complexity,

« strategic complexity,

« communication complexity.
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Computational Complexity covers the expected computation amount of the
mechanism to compute an outcome given the bid nmition of the bidders.
This is an extremely important question becausen&rimetermination problem
is an NP-complete optimization problem.

Valuation complexity deals with the required computation amount to gevi
preference information within a mechanism. Estinatevery possible bundle
of items requires exponential space and hence expiah time. Bidders need
to determine valuations fof"2-1 possible bundle.

Strategic complexity concerns the best strategy for bidding. Whicthef4" -1
bundles to bid on? Must bidders model behaviouotber bidders and solve
problems to compute an optimal strategy?

Communication complexity concerns the required communication amount to
exchange between bidders and auctioneer until aititkgtum price is reached.
The problem of communication complexity can be adsded through the design
of careful bidding languages that provide expresdmut concise bids. Many
researchers consider iterative auctions as amattee.

4. Multi-type Auctions

An auction provides a mechanism for negotiatiorvben buyers and sellers.
In forward auctions a single seller sells resoutoanultiple buyers (model (8)).
The forward auctions are typical for selling scanceperishable items. In a re-
verse auctions, a single buyer attempts to so@s®urces from multiple suppli-
ers, as is common in industrial procurement (Bichteal., 2006). Auctions with
multiple buyers and sellers are called double aosti Auctions with multiple
buyers and sellers are becoming increasing poplLitere are numerous applica-
tions of double auctions in electronic commerce (Wan, Walsh and Wellman,
1998), including stock exchanges, business-to-legsircommerce, bandwidth
allocation, etc. It is well known that double aoat in which both sides submit
demand or supply bids are much more efficient thereral one-sided auctions
combined. Attention is devoted to double combiniat@uctions. Combinatorial
double auctions can be transformed to combinatsitale-sided auctions and
solved by methods for these auctions. Special ohsuble auction for one
seller is the forward auction and special caseoobte auction for one buyer is
the reverse auction.

We present aeverse auction of indivisible items with one buyer and several
sellers. This type of auction is important for sigipselection problem. Let us
suppose than potential seller§,, S, ..., S, offer a seR of r items,j =1, 2, ... r,
to one buyeB.



227

A bid made by selleg, h=1, 2, ... m,is defined as
b = {C, &(C)}

where
C c R —a combination of items,
¢(C) — the offered price by sell&, for the combination of itemS.

The objective is to minimize the cost of the bugaren the bids made by
sellers. Constraints establish that the procurerpentides at least set of all
items.

Binary variables are introduced for model formialiat

Vn(C) is a binary variable specifying if the combiatiC is bought from
sellers, (yy(C) = 1).

The reverse auction can be formulated as follows

> Y aOWwo -~ min

hOM COR
subject to > > w©O =21, UjeR (9)
hOM COR

vW(CQef{0,1}, UCcR UhhUM={1,2, ...m

The objective function expresses the cost. Thestcaimts ensure that the
procurement provides at least set of all items.

Double auctions (auctions with multiple buyers amaltiple sellers) are be-
coming increasing popular in electronic commerdae fiumerous applications
in electronic commerce, including stock exchandesiness-to-business com-
merce, bandwidth allocation, etc. have led to atgdeal of interest in double
auctions (see Bellosta et al., 2004).

For double auctions, the auctioneer is faced whth task of matching up
a subset of the buyers with a subset of the sellérs profit of the auctioneer is
the difference between the prices paid by the suged the prices paid to the
sellers. The objective is to maximize the profittioé auctioneer given the bids
made by sellers and buyers. Constraints estaliislsame conditions as in sin-
gle-sided auctions.

We present a double auction problem of indivisilieans with multiple
sellers and multiple buyers (see Xia, Stallaert @fidnston, 2005). Let us sup-
pose tham potential sellers, S, ..., S, offer a selR of r items,j = 1, 2, ....r,
to n potential buyer8,, B,, ..., B.

A bid made by selleg, h =1, 2, ...,m,is defined ad, = {C, c,(C)}, a bid
made by buyeB;,i =1, 2, ... n,is defined asb, = {C, p(C)}
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where
C c R —a combination of items,
¢(C) - the offered price by sell&; for the combination of itemG,
pi(C) - the offered price by buy& for the combination of item§.

Binary variables are introduced for model formialiat

x(C) — a binary variable specifying if the combioatiC is assigned to buyeb

x(C) =1),
yo(C) — a binary variable specifying if the combinatC is bought from selles,
n(C) = 1).
> > pOX(=-2 D aOwC - max
iON COR hOM COR
subject to XY x(©=> > w©),UjeRr (10)
iON COR hOM COR

x(C)e{0,1}, UccRr Ui, iUN={1,2, ...n}
yo(C)e{0,1}, HC cR Uh, hUM ={1,2,...,m}

The objective function expresses the profit of dlnetioneer. The constraints
ensures for buyers to purchase a required itenttatdhe item must be offered
by sellers.

The formulated combinatorial double auction canrbesformed to a combi-
natorial single-sided auction. SubstitutgC) , h=1, 2, ....m, with 1 —x;(C),
i=n+1,n+ 2, ...,n+ m and substituting,(C) h=1, 2, ....m, with p(C),
i=n+1,n+2,...,n+m we get a model of a combinatorial single-sidectian.

> > pOxO©-3 > pC - max

iONM  COR iONM  COR

subject to > > x(©)=mUjeRr (11)

iONM  COR

x(C)e{0,1}, UceRrR Ui, iUNM={1,2, ....,n+m}

The model (11) can be solved by methods for sisigled combinatorial
auctions. The specific forward or reverse aucticas be modelled as special
cases of the model (11).

5. Multi-round Auctions

The key challenge in the iterative combinatoriadteéons design is to provide
information feedback to the bidders after eachatten (Pikovsky and Bichler,
2005; Parkes, 2006). Pricing was adopted as th¢ mingtive mechanism of
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providing feedback. Multi-round approaches are usednodels for industrial
procurement auctions (see Bichler et al., 2006)cdntrast to the single-item
single-unit auctions, pricing is not trivial forerative combinatorial auctions.
The main difference is the lack of the natural Brtem prices. With bundle
bids setting independent prices for individual iseim not obvious and often
even impossible. Different pricing schemes areothiced and discussed their

impact on the auction outcome.
A set of pricegi(C),i =1, 2, ....n,C LI Ris called:

«linear, if Ji,C:p(0) = p)

i0s

« anonymous, if U k, I, C: p(C) =p/(C)

Prices are linear if the price of a bundle is ¢fpghe sum of the prices of its
items, and anonymous if the prices of the samelbwaré equal for every bidder.
The simple pricing scheme with linear anonymousqxiwill be used. Linear
anonymous prices are easily understandable andlysoasidered fair by the
bidders. The communication costs are also minimibetause the amount of
information to be transferred is linear in the nemof items.

A set of pricegi(9 is calledcompatible with the allocationx(C) and valua-
tionsv;(C), if

Ui, C:x(C) =0 = p(C) >W(C) andx(C) = 1= p(C) <w(C)

The set of prices is compatible with the giveoadtion at the given valuations
if and only if all winning bids are higher than@gqual to the prices and all loos-
ing bids are lower than the prices (assuming thddas bid at their valuations).

Compatible prices explain the winners why they veord the losers, why
they lost. In fact, informing the bidders about #tlecationx(C) is superfluous,
if compatible prices are communicated. However, engiry set of compatible
prices provides the bidder with meaningful inforimatfor improving bids in
the next auction iteration. Another important olgation is the fact that linear
compatible prices are harder and often even implessd construct, when the
bidder valuations are super- or sub-additive.

A set of priceq(C) is in competitive equilibrium with the allocationy(C)
and valuations;(C), if

1. The priceg(C) are compatible with the allocatigC) and valuations;(C).

2. Given the pricep(C), there exists no allocation with larger total revenu
than the revenue of the allocatig(C).

The idea behind this concept is to define pridearacterizing the optimal
allocation. The prices may not be too low to vieldte compatibility condition 1,
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but they may not be too high to violate the coodit?2. In general, one can show
that the existence of competitive equilibrium psidenplies optimality of the
allocation.

Primal-dual Algorithms

One way of reducing some of the computational &urid solving the winner
determination problem is to set up a fictitious kearthat will determine an allo-
cation and prices in a decentralized way. In teeattve approach, there are mul-
tiple rounds of bidding and allocation and the peobis solved in an iterative
and incremental way. lterative combinatorial autdi@re attractive to bidders
because they learn about their rivals’ valuatidmn®ugh the bidding process,
which could help them to adjust their own bids.

There is a connection between efficient auctiamsrfany items, and duality
theory. The Vickrey auction can be taken as arciefit pricing equilibrium,
which corresponds to the optimal solution of a ipatar linear programming
problem and its dual. The simplex algorithm cantdden as static approach to
determining the Vickrey outcome. Alternatively, themal-dual algorithm can
be taken as a decentralized and dynamic methoet¢ordine the pricing equilib-
rium. A primal-dual algorithm usually maintains easible dual solution and
tries to compute a primal solution that is bothsfele and satisfies the comple-
mentary slackness conditions. If such a solutiofoisd, the algorithm termi-
nates. Otherwise the dual solution is updated tdsvaptimality and the algo-
rithm continues with the next iteration. The fundantal work (Bikhchandani
and Ostroy, 2002) demonstrates a strong interoaiship between the iterative
auctions and the primal-dual linear programmingpathms. A primal-dual line-
ar programming algorithm can be interpreted asuatian where the dual varia-
bles represent item prices. The algorithm maintaineasible allocation and
a price set, and it terminates as the efficiemtcallion and competitive equilibri-
um prices are found.

For the winner determination problem we will forame the LP relaxation
and its dual. Consider the LP relaxation of thengindetermination problem (8):

> > WOX©) - max

iON COR
subject to Z x(C) <1, UiiUN={1,2,...n}
COR
> > x(©=1UUR (12)
iON COR

x(C)200cURDOIUN={L2 ....n
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The corresponding dual to problem (12)

> P+ pG) - min

subject to p(i) + Z p() 2 v(C) Ui, C (13)
p(), pG) = 0, Ui, j

The dual variablep(j) can be interpreted as anonymous linear prices of

items, the termz p(j) is then the price of the bund®andp(i) = msax[vi(C)
jos
—Z p(j)] is the maximal utility for the bidderat the priceg(j).
j0s

Following two important properties can be provedthe problems (12) a (13):

1. The complementary-slackness conditions arefetiif and only if the
current allocation (primal solution) and the pri¢deal solution) are in competi-
tive equilibrium.

2. The formulation (12) — (13) is weak. For thdimgal allocation there no
always exist anonymous linear competitive equilibriprices.

Auction Formats

Several auction formats based on the primal-dpptaach have been pro-
posed in the literature. Though these auction®diff several aspects, the gen-
eral scheme can be outlined as follows:

1. Choose minimal initial prices.

2. Announce current prices and collect bids. Bidge to be higher or equal
than the prices.

3. Compute the current dual solution by intermgetihe prices as dual varia-
bles. Try to find a feasible allocation, an integemal solution that satisfies the
stopping rule. If such solution is found, stop ars# it as the final allocation.
Otherwise update prices and go back to 2.

Concrete auction formats based on this schembeanplemented in different
ways. The most important design choices are thewolg: bid structure, pricing
scheme, price update rule, bid validity, feedbae&y of computing a feasible
primal solution in each iteration, and stoppingerul

6. Multi-criteria Auctions

Multi-criteria auctions allow negotiation on muple criteria, involving not
only the price, but also other criteria such adityyguarantee, delivery terms and
conditions. Multi-criteria approaches are used wdels for electronic auctions
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(see Belosta et al., 2004). Multi-criteria auctiaa be modelled as a multi-
objective linear programming model

i)0=> > vOCx(C) - max, j=1,2, ..k

iON COR
subject to Z x(C) < 1,Ui,i=1,2,...n
COR
> > x(©=1Uj0R (14)
iON COR

x(©200cURDOLiON={12 ...n

where
fix),j=1,2, ... k — objective functions,
x [0 X — a solution vector from the feasibility sét
Vj(C) - the value of the criterigrfor buyerB; for the combination of item€.

The vector function of all objectives is denoted-&).

We propose to solve the problem (14) by multi-buklLOP (Aspiration
Level Oriented Procedure) (see Fiala, 1997). Pempbear to satisfy rather than
attempting to optimize. That means substitutinggoareaching specified aspi-
ration levels for goals of maximizing.

We denotey(t) the vector of aspiration levels of the objectiasd Ay(t)
changes of aspiration levels in the roan@he problem (14) can be substitute by
a general aspiration level formulation

F(x) = y(t) 15{
x X

According to heuristic information from results tife condition (15) the
agent changes the aspiration levels of objectiwethe round t + 1:

y(t+1)=y(@® +Ay() (16)

There are three possibilities for aspiration lewgt). The problem (15) can
be feasible, infeasible or the problem has a unitpredominated solution. We
verify the three possibilities by solving the preiol

v(d") = min a7
F(x) —d" =y(t)
xOX,d"=0
where
d* — a vector of positive deviation variables,

v(d") — an objective function af".
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The value of the objective function in the problélid) can be interpreted as
an increase of utility.

If it holds:

» v > 0, then the problem is feasible amidare proposed changag(t) of
aspiration levels which achieve a non-dominatedtswl in the next round;

» v =0, then we obtained a non-dominated solution;

* the problem is infeasible, then we search the seamdution to the aspira-
tion levels by solving the goal programming problem

v(d*, d) = min 81
F(x)—d" +d =y(1)
xOX,d =20,d=0

The solution of the problem (18) is feasible watianges of aspiration levels
Ay(t) =d" —d. For changes of non-dominated solutions the dudii¢éory can
be applied (see Fiala, 1981). Dual variables teahje constraints in the prob-
lem (18) are denoted, i U K={1, 2, ...,k}.

If it holds

2 yay =0

(19)

then for some changéy(t) the valuev = 0 is not changed and we obtain another
non-dominated solution. The agent can skatesmall changes of the aspiration
levelsAyi(t), i L' K={1, 2, ...,K}, i #r, then the change of the aspiration level
for criterionr is calculated from (19).

Results of the procedure ALOP are the path ofitamt aspiration levels and
the accepted non-dominated solutions.

[ustrative Example

The procedure is illustrated by the following nuital example of a double
auction problem. Consider a simple supply chain.usesuppose thattential
sellersS,, S, S;offer a seR of 3 items 4, b, ¢} to 3 potential buyers;, B,, Bs.
The auction is evaluated by two criteria.

First criterion is profit of the supply chain giveas sum of differences be-
tween the offered prices by buyers and the offerazs by sellers.

Second criterion is delivery time for all 3 itefis, b, ¢} and it should be
minimised. The delivery time for all 3 items is ans of delivery times for se-
lected combinations of items. Offered prices fanbiations of items are given
in Table 1 and Table 2. Delivery times for combimias$ of items are given in
Table 3.
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Table 1
The Offered Prices by Sellers for Combinations oftems
a b c ab ac bc abc
S 5* 10 15 12 19 24 29
S 6 9 12 14 17 19* 26
S 7 8 16 14 22 23 30
Source:Author.
Table 2
The Offered Prices by Buyers for Combinations of ikms
a b c ab ac bc abc
B, 7 8 16 15 23 24 31
B; 6 10 18 16 24 28* 34
Bs 8* 9 15 17 23 24 32
Source:Author.
Table 3
Delivery Times for Combinations of Items
a b c ab ac bc abc
S 8* 7 6 8 11 13 20
S 8 7 8 8 9 10* 18
S 5 10 11 10 13 16 19
Source:Author.

The problem was solved by the multi-round ALOP gedure. In the first
round, the supply chain manager sets aspiratiogldgyl) = (12, 15). There is
no solution for these aspiration levels. In theoselcround, the aspiration levels
were changed(2) = (12, 18). The procedure found a solution (m@drwith as-
terisks * in Tables):

The sellerS; sells the itemsH, c} to the buyerB, and the sellef, sells the
item {a} to the buyerB; The objective function values are

f1(x) = (28 — 19) + (8 — 5) = 12
fA(x) =10 + 8 = 18

The supply chain manager is not satisfied withdelkevery time. In the third
round the aspiration levels were changé¢8) = (11, 16). The procedure found
a solution (marked with squar%si;n Tables):

The sellerS; sells the itemsd, b} to the buyerB; and the selle; sells the
item {c} to the buyerB, The objective function values are

f1(x) = (17 — 12) + (18 — 12) = 11
fi(x) =8 + 8 = 16

The supply chain manager is satisfied with theectbje function values and
the procedure stops.
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Conclusions

Auctions are the important subject of an intensgegenomic research. The
paper proposes a complex trading multi-type modekl on multi-criteria itera-
tive combinatorial auctions. A possible flexiblgoapach for modelling and solv-
ing such auctions is presented. It is a combinatibauction models — multi-
-item, multi-type, multi-round, multi-criteria. Imddual auction models help the
bidders express their preferences. Allowing bidaeose fully to express prefer-
ences often leads to improved economic efficiemay greater auction revenue.
The combination of such models can give more coxnalavs on auctions.

The proposed model is general, including all congmts of multidimensional
auctions together. The specific models with onlgneccharacteristics of multi-
dimensional auctions can be simply derived frore tféneral model. These spe-
cific models have many real applications.

The proposed solution procedure is possible tofoseolving the general
model. The procedure is oriented on changes ofasm levels of objective
function values, what is a natural approach toisghsuch problems. This ap-
proach is friendly and easy to understand for ugesimple illustrative example
of the general model solved by the procedure wasgnited.
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