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EARLY DEFECT DETECTION USING CLUSTERING ALGORITHMS1
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Abstract
Product quality is a crucial issue for manufacturing companies, so it is essential to take note of any 
emerging product defects. In contrast to the use of traditional methods, the “modern” constantly 
evolving data mining methods are now being more frequently used. The main objective of this 
paper is to detect the potential cause or the area of the production process where the majority of 
product defects arise. The dataset from the semiconductor manufacturing process has been used 
for this purpose. First, it was necessary to address dataset quality. Significant multicollinearity was 
found in the data and to detect and delete the collinear variables, correlations and variance inflation 
factors have been used. The MICE-CART method has been used for the imputation because the 
original dataset contained more than 5% of random missing values. In further analysis, the K-means 
clustering method has been used to separate the failed products from the flawless ones. Following 
this, the hierarchical clustering method has been used for the failed product to create groups of 
product defects with similar properties. For the optimal number of clusters, the determination of 
the BIC method has been used. Five clusters of products have been made although only three can 
be classed as important for further analysis. These groups of products should be directly subjected 
to the analysis in the production process, which can assist in identifying the source of scarcity. 
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Introduction
The last decades have seen life undergoing a turbulent and fast-changing environment. 
Nowadays, due to rapid technological changes, automation, and robotics, a  new 
technological revolution is taking place. A new era of the phenomenon of Industry 4.0  
and smart factories is in progress and companies now face many challenges, such 
as short product life cycles, volatile demand and high customisation (Gaub, 2016).  
High-value manufacturing processes are increasingly moving towards flexible, intelligent 
production systems. To compete in future markets, manufacturing companies should be 
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able to produce small batch sizes of a product or even a single item in a timely and cost-
effective manner. They need to have sufficient functionality, scalability, and connectivity 
with customers and suppliers to meet these requirements (Schumacher et al., 2016).  
At the same time, to stay or strengthen the position of an organisation on the market, 
a  modern business needs to follow the principles of quality control in its actions.  
In addition, to meet such challenges, systems will become more complex and difficult 
to monitor and control (Mabkhot et al., 2018). It is now common manufacturing practice 
to reduce and minimise the number of defects and errors in a process and to do things 
precisely at the first attempt. The ultimate aim is to reduce the number of defective 
products (Wang, 2013).

In this research, we focus on defects detected in manufacturing companies, 
specifically in companies in the metalworking industry. This paper proposes a  data 
mining-based knowledge discovery approach using a sequence of two different types  
of clustering methods for detecting the major groups of products with a similar cause. 

1.	 Literature Review
Quality is a  term that is complex and difficult to specify. The word quality has many 
meanings, such as a degree of excellence, conformance with requirements, the totality of 
the characteristics of an entity that impact its ability to satisfy stated or implied needs, 
fitness for use, freedom from defects, imperfections or contamination and delighting 
customers (Hoyle, 1994). Various authors explain this notion differently. One of the “gurus” 
in quality control, William Edwards Deming (1982), defines quality as a  predictable 
degree of uniformity and dependability at low cost and suited to the market. According to  
the American Society for Quality and Goetsch and Davis (2010), quality denotes excellence 
in goods and services, especially to the degree that they conform to the requirements and 
satisfy customers. The definition of quality stated by the International Organisation for 
Standardization (ISO) is: “The totality of features and characteristics of a product or service 
that bear on its ability to satisfy stated or implied needs” (AS/NZS ISO, 1994, p. 7). Put more 
simply, one can say that a product has good quality when it complies with the requirements 
specified by the client (Knowles, 2011). In this research, we view quality as the compliance 
of product properties and dimensions with pre-specified company standards. Product quality 
is a crucial issue for manufacturing companies. It is essential for customer satisfaction, and 
so is directly connected with the company’s revenues and market share. Quality is also 
closely connected to company performance. Sadikoglu and Zehir (2010) stated that Quality 
Management (QM) is a systematic, proven approach to improvements in organisational 
performance. Numerous empirical studies have attempted to investigate the relationship 
between QM practices and company performance (Mehran and Mehran, 2013).

There are many traditional approaches to quality management although nowadays 
data mining methods have become more useful and successful in manufacturing 
companies. Traditional methods, such as Total Quality Management (TQM) focuses 
on quality for customer satisfaction and concurrently sustains a company’s competitive 
advantage in today’s challenging and dynamic business environment (Yin et al., 2018). 
Other methodology such as Lean Six Sigma combines the Six Sigma techniques, which 
enable companies to reduce manufacturing defects with the lean manufacturing principles 
to help companies benefit from faster processing for lower costs with superior quality 
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(Dragulanescu and Popescu, 2012). However, even traditional “Six-Sigma” approaches 
cannot eliminate all the defects in manufacturing, only a very small share, given their 
limitation in dealing with complex and dynamic datasets. The Zero Defects concept 
developed by Philip Crosby (1979) means flawless production. The concept consists 
of preventing the occurrence of defects and flaws in all production stages. Quality 
management tools must be used to achieve this (Wang, 2013). All these methods are 
powerful tools for quality improvement but now at the time of Industry 4.0 and smart 
factories, which already have highly elaborate quality control process, these methods are 
no longer appropriate to use. In smart factories, mass data collected from various sensors 
and critical manufacturing-related knowledge can be hidden in the data. An example of 
such knowledge can include rules or regulations for identifying defects to the quality of 
the products. Human operators may never find the rules through manual investigation. 
This means they may never discover such hidden knowledge from the data. Traditional 
data analysis methods are no longer the best alternative to be used (Wang et al., 2006).

Quality improvement (QI) of industrial products and processes requires collection 
and analyses of data to solve quality related manufacturing problems. Traditional 
statistical process control approaches are less effective than data mining, especially when 
dealing with multivariate and autocorrelated processes (Evans, 2015). With the continual 
increase in process complexity, this inefficiency is becoming more apparent. A special 
multivariate and autocorrelated process is a process occurring within a heterogeneous 
production environment (a variety of types of machines, pots, etc. used for the same task).  
This makes the quality control of such processes more difficult (Horvath and Vircikova, 
2012). Although traditional data analysis tools have been successfully used to improve  
the quality of products and processes, better tools now exist to mine massive data sets 
collected through computerised systems in the industry (Köksal et al., 2011). Data mining 
tools can be highly beneficial for discovering interesting and useful patterns, even in 
complicated manufacturing processes. However, data accumulated in manufacturing plants 
has unique characteristics, such as an unbalanced distribution of the target attribute, and 
a small training set relative to the number of input features. Thus, conventional methods 
are inaccurate in quality improvement cases (Choudhary et al., 2009). Data mining tools 
are useful in many areas of manufacturing such as defect analysis, yield improvement, 
quality monitoring, and process control, etc. (Rokach et al., 2008). Data mining tools can 
be used to extract knowledge from process data sets. The knowledge acquired can be used 
to minimise the number of defective products and to achieve the desired level of process 
performance and product quality (Ramana and Reddy, 2012).

2.	 Data Mining Application for Defect Detection
There are many data mining methods that are useful for application in manufacturing. 
Rough set theory or clustering analyses are frequently used to solve defect detection 
problems in manufacturing neural networks, association rules, and types of regression. 
For example, the journal paper, proposed by Bhuvaneswari and Sabarathinam (2013), 
examines the detection of defects in manufactured ceramic tiles to ensure high-density 
quality. The problem is concerned with the automatic inspection of ceramic tiles using  
an Artificial Neural Network (ANN). A detailed comparison between traditional statistical 
methods, the RST approach, and the extended RST approach is presented by Tseng, 
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Jothishankar and Tong (2004). The developed algorithm was applied to an industrial 
case study involving quality control of printed circuit boards (PCB), especially solder 
ball defects. The paper written by Sabet et al. (2017) presents a method for identifying 
unknown patterns between the manufacturing process parameters and the defects of 
the output products. The proposed method of fuzzy association rules also identifies  
the relationships between the defects.

Many articles on the implementation of clustering methods for defect detection in 
manufacturing have already been published, such as Defect Segmentation of Semiconductor 
Wafer Image Using k-Means Clustering by Saad et al. (2015). The K-means clustering 
partitional method used to identify and classify bearing defects was examined by 
Yiakopoulos et al. (2011). Another example of clustering use is the condition monitoring 
architecture of dynamical systems with unknown gradual faults using a dynamical clustering 
algorithm, which allows a continuous update of the operating modes of the system, was 
proposed by Chammas et al. (2014). The use of a combination of clustering algorithms with 
another method also became more frequent. The new method using the K-means clustering 
algorithm in combination with a self-organising map was used by Saludes-Rodil (2015) for 
the classification of surface defects in wire rod production. Yusof et al. (2018) in his research 
applied the principle component analysis (PCA) as a pre-processing method for hierarchical 
clustering analysis on the frequency spectrum of the vibration signal. 

According to the literature review, we conclude that application combinations of 
cluster analysis for defect detection problem solving are not as usual as the other data 
mining methods mentioned above or clustering analysis itself. The aim of this paper is  
to propose the combination of two different types of a  clustering algorithm for the 
detection of poor-quality products and the creation of groups of products with a similar 
cause of errors. To achieve the aim, we have formulated the following research question: 
Can we identify groups of poor-quality products with the same cause of error by using 
a sequence of two different clustering algorithms?

3.	 Dataset
The dataset used in this paper is from a complex modern semiconductor manufacturing 
SECOM process (McCann and Johnston, 2008). These are records of the monitoring of 
signals/variables collected from sensors and process measurement points. However, not all 
these signals are equally valuable in a specific monitoring system. The measured signals 
contain a combination of useful information plus irrelevant information as well as noise. 
Engineers typically have a much larger number of signals than are actually required.  
If we consider each type of signal as a feature, then the feature selection can be applied 
to identify the most relevant signals. The process engineers can then use these signals 
to determine key factors contributing to yield excursions downstream in the process. 
The dataset presented in this case is a selection of those features where each example 
represents a single production entity with associated measured features. 

There are 1567 examples taken from a wafer fabrication production line. There are 
both failed and passed products in the quality control system. For product quality, 
590 measuring sensors and process measurement points (variables) were used. In other 
words, each example is a vector of 590 sensor measurements. This results in a dataset 
of 924530 values measured during the production process. For such a  large volume of 
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measurement data, automatic fault detection technique is essential. The large amount of 
metrology data obtained from hundreds of sensors make this dataset difficult to accurately 
analyse. Thus, our main focus is to devise a method based on data mining techniques 
to build an accurate model for fault detection. There are also 5% of missing values and 
collinear variables in the data set, which is necessary to be resolved before the clustering. 

Various papers using this dataset have been already published, such as Feature 
Selection and Boosting Techniques to Improve Fault Detection Accuracy in 
the Semiconductor Manufacturing Process written by Kerdprasop and Kerdprasop (2011). 
In this paper, the authors investigate the application of data mining techniques such as 
decision tree induction, naïve Bayes analysis, logistic regression, and k-nearest neighbour 
classification to create an accurate model for fault case detection. Further research using 
the same data set is Quality prediction modelling for multistage manufacturing based on 
classification and association rule mining written by Kao et al. (2017) in which the authors 
introduce a framework for quality prediction modelling in a multistage manufacturing 
system (MMS) environment.

For cluster analysis implementation, R studio software has been used. First, we will 
make the data cleaning, deleting irrelevant variables and imputing the missing values. 
Then, using the K-means clustering method, we will split the monitored products into 
two groups: one group of failed products and one group of flawless products. The cluster 
analysis will then be applied only to the dataset of failed products. We will apply 
the hierarchical clustering method and will change the settings in the method.

4.	 Methodological Approach
First, it is necessary to prepare the data set for the following analysis. For this purpose, 
the method of data imputation will be chosen. Then we will apply different types of 
clustering methods on the data and make a comparison. Several variants of algorithm 
settings will be used.

4.1	 Preparing and Cleaning Data
The simplest solution for the missing values imputation problem is the reduction of 
the data set and the elimination of all missing values. This can be done by eliminating 
the samples (rows) with missing values (Kantardzic, 2003) or eliminating the attributes 
(columns) with missing values. Both approaches can be combined. Elimination of all 
samples is also known as complete case analysis (Kaiser, 2014). In this case, we will 
reduce the attributes because there are many constant attributes and collinear variables. 
We will use the Variance Influence Factor (VIF) method for multicollinearity reduction in 
the dataset (Paul, 2006). We can compute the VIF with the formula, where the symbol Ri

2
  

means the coefficient of determination and analyse the magnitude of multicollinearity by 
considering the size of VIFi. A rule of thumb is that if VIFi > 5 then multicollinearity is 
high (Kuther et al., 2005). Variables with a high VIF will be deleted. 
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After the reduction of the data set, we can proceed to the data imputation. 
There are two basic types of imputation: single and multiple. Single refers to a single 
estimate of the missing value and is popular because it is conceptually simple and 
because the resulting sample has the same number of observations as the full data set  
(D’ambrosio et al., 2012). Some imputation methods result in biased parameter estimates, 
such as means, correlations, and regression coefficients, unless the data is MCAR 
(Missing completely at random). The bias is often worse than with listwise deletion, the 
default in most software. An advantage of multiple imputations over single imputation 
and complete case methods is that multiple imputations are flexible and can be used in 
a wide variety of scenarios. Multiple imputations can be used in cases where the data is 
missing completely at random and even when the data is missing not at random. However, 
the primary method of multiple imputations is multiple imputations by chained equations 
(MICE). It is also known as “fully conditional specification” and, “sequential regression 
multiple imputations” (Wulff and Ejlskov, 2017).

MICE is a popular adaption of missing imputation and is available to the user through 
the most commonly used software packages.  MICE  changes the  imputation  problem 
to a  series of estimations where each variable takes its turn in being regressed  
on the other variables (Kaiser, 2014).  MICE  loops through the variables predicting 
each variable dependent on the others. This procedure provides excellent flexibility as 
each variable can be assigned a suitable distribution, e.g., poisson, linear or binomial 
(Wulff and Ejlskov, 2017).

Another notable local approach is the MICE-CART, which consists of multiple 
imputations by chained equations (MICE) and classification and regression trees 
(CART). It is a  nonparametric approach made to perform multiple imputations 
through chained equations using sequential regression trees as the conditional models  
(Moorthy et al., 2014). In CART methodology, the best split is found over all possible splits 
generated by all predictors, which minimises the impurity of the response variable within the two  
sub-nodes where the impurity is a  measure of deviance or variation for a  numerical 
response (in regression trees) and a measure of heterogeneity or entropy for a categorical 
response (in classification trees) (Edwards and Finch, 2018).

4.2	 Clustering
Clustering is an essential data mining tool for the analysis of Big Data and aims to 
consolidate the significant class data objects (clusters) so that objects grouped in the same 
cluster are similar and consistent according to specific parameters (Zerhani et al., 2015). 
The task is to arrange a  set of objects so that the objects in the identical group are 
more related to each other than to those in other groups (clusters). Clustering belongs 
to unsupervised learning. Clustering algorithms can be classified into partition-based 
algorithms, hierarchical-based algorithms, density-based algorithms and grid-based 
algorithms (Chitra and Maheswar, 2017). 

Hierarchical clustering

Hierarchical clustering is a recursive partitioning of a dataset into successively smaller 
clusters. The input is a weighted graph where the edge weights represent pairwise 
similarities or dissimilarities between data points (Tan et al., 2018). Hierarchical 
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clustering is represented by a rooted tree where each leaf represents a data point and 
each internal node represents a cluster containing its descendant leaves. Computing 
a hierarchical clustering is a  fundamental problem in data analysis; it is routinely 
used to analyse, classify, and pre-process large datasets (Cohen-Addad et al., 2018). 
There is extensive literature available on hierarchical clustering and its applications 
although it is impossible to discuss most of it in this paper. For some applications, 
the reader may refer to, e.g., (Hubert, 1977; Felsenstein, 2003; Castro et al., 2004).

Figure 1 | Hierarchical clustering

Source: Authors’ own processing

The key operation of this algorithm is the computation of the proximity between 
two clusters, and it is the definition of cluster proximity that differentiates the various 
agglomerative hierarchical techniques that we will discuss. Cluster proximity is typically 
defined with a  particular type of cluster in mind. Many agglomerative hierarchical 
clustering techniques come from a graph-based view of clusters (Rani and Rohil, 2013).

Determining the number of clusters

For determining the number of clusters, we will use the McClust method where the number 
of mixing components and the covariance parameterisation are selected using the Bayesian 
Information Criterion (BIC). In one dimension, there are just two models: E for equal 
variance and V for varying variance. In the multivariate setting, the volume, shape, and 
orientation of the covariances can be constrained to be equal or variable across groups. 
Thus, fourteen possible models can be specified (Scrucca et al., 2016).
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Figure 2 | BIC models

Model ∑k Distribution Volume Shape Orientation

EII λI Spherical Equal Equal –

VII λkI Spherical Variable Equal –

EEI λA Diagonal Equal Equal Coordinate axes

VEI λkA Diagonal Variable Equal Coordinate axes

EVI λAk Diagonal Equal Variable Coordinate axes

VVI λkAk Diagonal Variable Variable Coordinate axes

EEE λDADT Ellipsoidal Equal Equal Equal

EVE λDAkDT Ellipsoidal Equal Variable Equal

VEE λkDADT Ellipsoidal Variable Equal Equal

VVE λkDAkDT Ellipsoidal Variable Variable Equal

EEV λDkADT
k Ellipsoidal Equal Equal Variable

VEV λkDkADT
k Ellipsoidal Variable Equal Variable

EVV λDkAkDT
k Ellipsoidal Equal Variable Variable

VVV λkDkAkDT
k Ellipsoidal Variable Variable Variable

Source: Scrucca et al. (2016; edited)

Ward’s method

We can also take a prototype-based view, in which each cluster is represented by a centroid. 
The centroid method uses the centroid (centre of the group of cases) to determine 
the  average distance between clusters of cases. An alternative technique to the usual 
centroid method is Ward’s method. This method assumes that a cluster is represented by 
its centroid, but it measures the proximity between two clusters in terms of the increase 
in the SSE (squared error) that results from merging the two clusters. Similar to K-means, 
Ward’s method attempts to minimise the sum of the squared distances of points from their 
cluster centroids (Tan et al., 2018).

Partitional clustering

Partitional clustering is the most popular class of clustering algorithm and is also known as 
an iterative relocation algorithm. These algorithms minimise a given clustering criterion 
by iteratively relocating data points between clusters until an optimal partition is attained 
(Chitra and Maheswar, 2017). A partitioning clustering algorithm splits the data points 
into k division, where each division represents a cluster and , where n is the number of 
data points. Partitioning methods are based on the idea that a cluster can be represented 
by a centre point. The partition is based on a certain objective function. The clusters are 
formed to optimise an objective partitioning criterion, such as a dissimilarity function 
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based on distance, so that the objects within a cluster are “similar”, whereas the objects 
in different clusters are “dissimilar”. Partitioning clustering methods are useful for 
applications where a  fixed number of clusters are required. K-means, PAM (Partition 
around mediods) and CLARA are some of the partitioning clustering algorithms  
(Popat et al., 2014).

Figure 3 | Partitional clustering

Source: Authors' own processing

K-means clustering

K-means is one of the most popular partition-based methods and partitions the dataset into 
k disjoint subsets, where k is predetermined. The algorithm keeps adjusting the assignment 
of the objects to the closest current cluster mean until no new assignments of objects 
to clusters can be made (Elavarasi et al., 2011). One advantage of this algorithm is 
its simplicity. It also has several drawbacks. It is very difficult to specify the number 
of clusters in advance. Since it works with squared distances, it is also sensitive to 
outliers. Another drawback is that the centroids are not meaningful in most problems  
(Popat et al., 2014). In this algorithm, a cluster is represented by its centroid, which is 
a mean (average) of the points within a cluster. This only works efficiently with numerical 
attributes and can be negatively affected by a single outlier. The k-means algorithm is 
the most popular clustering tool that is used in scientific and industrial applications. 
The technique aims to partition n observations into k clusters in which every observation 
belongs to the cluster with the nearby mean (Chitra and Maheswar, 2017).

The K-means algorithm has several significant properties, such as high effectivity in 
dealing with huge data sets, and it only works with numeric values; the resulting clusters 
have convex shapes and this method frequently terminates at a local optimum, and not 
the global optimum, which is also one of the major disadvantages of this method. Another 
fact that can be considered as a disadvantage, namely that this algorithm can be used only 
when the mean of the data set is defined and requires specifying k, the number of clusters, 
in advance (Vijayalakshmi and Devi, 2012).
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For the K-means method, there are several specific types of functions for measuring 
the distance between clusters. The most common is a Euclidean distance, which computes 
the root of the square differences between the coordinates of a pair of objects, as follows: 

2

1
( ) .

m

X Y ik jk
k

D x x
=

= −∑
�

(2)

The Manhattan distance, or city block distance, represents the distance between 
points in a city road grid. It computes the absolute differences between the coordinates of 
a pair of objects (Grabusts, 2011). There are also other methods for distance measuring, 
such as the Minkowski, Cosine and Chebyshev functions (Bora and Gupta, 2014).

There are many articles concerning the K-means method application topic, such as 
Constrained K-means Clustering with Background Knowledge (Wagstaff et al., 2001), 
Improving the Accuracy and Efficiency of the K-means Clustering Algorithm (Nazeer and 
Sebastian, 2009) or An Algorithm for Online K-Means Clustering (Liberty et al., 2016) and 
many others. There is also an interesting option of Merging K-means with hierarchical 
clustering for identifying general shaped groups proposed by Peterson et al. (2018) 
although this is not our aim at this time.

5.	 Data Preparation
Almost 5% of the missing data points can be found in the dataset because some sensors 
did not work properly. First, it is necessary to choose a method and make an imputation of 
missing values to the dataset. During data imputation processing, multicollinearity in the 
dataset was found. For localisation and deleting the collinear variable, we used the VIF 
method. Fifty-nine variables were perfectly correlated, so they had to be deleted because 
they give the same information as the other variables present in the data file. In the table 
below (Table 1) are the basic statistics of the counted VIF for each variable. There is 
the lowest and highest value of VIF, median, average and quartiles.

Table 1 | Descriptive statistics of VIF

Minimum Maximum Median Average Q1 Q2 Q3

1.20 2106285000 3.25 1254 1.66 3.25 10.61

Source: Authors` own processing

All variables where VIF is greater than five can be explained by other variables, 
which means that they can be deleted. After this data cleaning process, we obtained 
the remaining 55 variables, which can be reasonably included in the model.

After deletion of collinear and constant variables, we can proceed to the missing 
values imputation. In our dataset is the random missing data, as you can be seen in 
Figure 4.
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Figure 4 | Missing data pattern
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Source: Authors’ own processing (RStudio)

For the missing data imputation, we have chosen the MICE-CART function, 
which is more accurate than the simple imputation of the mean, median or constant 
value. MICE-CART improves upon the standard MICE approach by automatically 
accounting for interaction effects among the variables for which imputation is needed  
(Moorthy et al., 2014). Now, there is the full dataset without collinear and constant 
variables, so the clustering analysis can begin.

6.	 Clustering Analysis
First, the clustering method is applied to the full dataset to recognise those products 
which passed quality control and the ones that failed. In this case, we want to have two 
clusters because we need to separate the products that passed from those that failed.  
The number of clusters intended is predetermined, so we will use the K-means method. 
After we determine the group of failed products, the hierarchical clustering method will 
be used for further analysis of the location of the origin of the defects.

6.1	 K-Means Clustering for All Products
Applying the K-means clustering method produces two significant clusters, as can be 
seen in Figure 5. The two components on the axes in the plot are the result of applying 
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the principal component analysis to the data. These are linear combinations of the input 
variables, which account for most of the variability of the observations. 

We assume that the smaller (black) one represents the group of failed products 
evaluated on the quality control station. The second (red) one represents the group of 
products that are correct. According to this model, there are 1486 flawless products and 
81 defective products. For the subsequent analysis, only the set of defective products will 
be used to identify groups of defect products with similar properties.

Figure 5 | K-means clustering for all products
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6.2	 Hierarchical Clustering for Failed Products
The set of failed products was determined from the previous analysis; now, we will identify 
the groups of products with similar parameters by analysing only the failed products in 
order to recognise which products have similar defects. Through consecutive analysis 
directly in the production process, the results can be used for easier detection of the point 
in the process where the defects or the potential causes of the defects occur. 

This time, we will use the hierarchical clustering analysis because we first need to 
determine the number of clusters that will be created.

In the following graph, we determine the optimal model and number of clusters 
according to the Bayesian Information Criterion for expectation-maximisation, initialised 
by hierarchical clustering for parameterised Gaussian mixture models. The plot showing 
the BIC traces (see Figure 6) for all the models is considered. We adjusted the range of 
the y-axis to remove those models with lower BIC values. There is a clear indication of 
the best option that is rendered by the EEI curve, according to the shape of which, we 
determine that the optimal number of clusters is five.
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Figure 6 | Number of clusters determining
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The hierarchical clustering method is now applied to five clusters using the Ward 
method and Euclidean distance measuring. The following dendrogram (Figure 7) 
shows the solution of this analysis where five clusters have been created. The products 
were grouped according to their parameters, the values which have been measured  
in the different stage of the production process. The smallest two clusters can only be 
inaccuracies in measuring or due to random employee mistakes. These defects will be 
difficult to analyse and will result in small costs for the company, so it is unnecessary  
to search now for their cause. 

The other 3 clusters are of more interest to us. The defects to the products in these 
clusters are probably caused by the same event in the production process. Such an event may 
be, for example, bad settings on the machine, human failure or defects in the material used. 
These errors in the production process can cause huge additional costs for the organisation 
or loss of profit or market position. To find the exact cause of these defects, it is necessary 
to analyse the production process and map the material and resources flow.

Three considerable clusters of defective products with similar features or parameters 
appeared. At this point, it would be necessary to conduct an analysis of the production 
process but as the dataset was created by someone else, it makes it impossible. For this 
reason, we can only estimate the cause of the defects that arise.

From the resulting graph (Figure 7) it appears that there could be a  connection 
between the products in the clusters due to their serial numbers. It is possible that a specific 
event in the production process can occur, such as machine failure, which could cause 
a few consecutive defect products. To determine particular causes, we would need more 
information about the production process, a record of machine failures, material quality 
review etc.
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Figure 7 | Hierarchical clustering for failed products
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7.	 Conclusion
In the presented paper, we analysed the data concerning the scrap in semiconductor 
manufacturing in order to identify the main types and causes of defects in manufactured 
products. For this task, we used VIF and MICE-CART methods for data pre-processing 
(deletion of factors causing multicollinearity, imputation) and cluster analysis (K-means, 
hierarchical clustering).

Using the above-mentioned approaches, we detected 81 defective products from 
the total of 1567 products examined. The defective products have been divided into 
five clusters according to their similar properties. From the results of the hierarchical 
clustering analysis, it is obvious that there are three substantial sources of defects in 
the production process. We assume that the products in these groups have the same or 
similar cause of error. For closer investigation of the cause, it will be necessary to analyse 
the  production process itself. We would need more information about the production 
process such as mapping of material and resources flows, records of machine failures or 
a material quality review. The other two clusters are insignificant because they are too 
small. These defects can be caused by a random event or human resource failure; the search 
for their cause would probably be more demanding than the potential cost savings made 
when implementing the corrective action. We have also proved that a combination of 
two different clustering algorithms in a sequence is possibly an effective and successful 
method of identifying and classifying the defects in the manufacturing process.

The limitations in this research are specifically the nature and the source of the data. 
In this case, the dataset came from the public source, so the supplementary information 
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about the production environment was very limited. Thus, the quality of the dataset 
can also be considered as a limitation. We had to perform data imputation and despite 
the  nontrivial method of data, the results of the analysis could have been influenced 
by this. For the  further improvement of accuracy of the research, it is theoretically 
possible to contact the authors of the dataset and obtain more details about the dataset, 
the manufacturing company involved and its processes.
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