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Abstract: The aim of the paper is to propose, and give an example of, a strategy for managing
insurance risk in continuous time to protect a portfolio of non-life insurance contracts against
unwelcome surplus fluctuations. The strategy combines the characteristics of the ruin probability
and the values VaR and CVaR. It also proposes an approach for reducing the required initial reserves
by means of capital injections when the surplus is tending towards negative values, which, if used,
would protect a portfolio of insurance contracts against unwelcome fluctuations of that surplus. The
proposed approach enables the insurer to analyse the surplus by developing a number of scenarios for
the progress of the surplus for a given reinsurance protection over a particular time period. It allows
one to observe the differences in the reduction of risk obtained with different types of reinsurance
chains. In addition, one can compare the differences with the results obtained, using optimally
chosen parameters for each type of proportional reinsurance making up the reinsurance chain.

Keywords: compound Poisson process; surplus process; Brownian motion; inverse Gaussian
distribution; ruin probability; conditional value at risk; reinsurance chain; optimisation criteria;
reserves

1. Introduction

The role of Solvency II is to create, via capital adequacy, a unified regulatory frame-
work with the aim of protecting European Union policyholders in accordance with consis-
tent rules for managing risk. The aim of IFRS is to create a unified framework for financial
reporting by means of transparent and comparable accounting statements. These funda-
mental changes to external reporting increase even more the opportunity for an insurer
to make use of the information gained in the effective management of the company. The
aim of this paper is to present a particular mathematical approach to setting the reserves
required by an insurer in order to maintain solvency with a specified probability. The
approach allows us to analyse a portfolio of non-life insurance contracts, using a combi-
nation of the properties of the ruin probability and a relevant conditional value at risk
CVaR. Based on a combination of the properties of these two risk measures, we propose a
strategy for protecting the portfolio against undesirable surplus fluctuations. The approach
is complemented by the possibility to reduce the required initial reserves by increasing the
amount of capital at times when the surplus is tending to a negative value. It also permits
the creation of a number of scenarios for the development of the surplus, allowing for a
given reinsurance cover. Using these scenarios, one can not only analyse a portfolio based
on a specified structure of reinsurance protection with given parameters, but also to set
these optimally.

Our starting point is the well-known definitions of the basic terms and so the contri-
bution of the paper should be the approach shown for the concurrent use of risk measures
in combination with a plan of reinsurance. It should be noted that although we use chains
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made up of proportional reinsurance covers in our example, the approach can also be used
with non-proportional covers, including the application of reinsurers’ limits.

Generalisation of the basic collective model can be used to follow the development
of the surplus in continuous time. Amongst the authors who have grappled with and
enhanced the topic of the collective risk model in a single time period, we can mention
Bowers, Gerber, Hickman, Jones, Nesbitt [1], Bühlmann [2], Cipra [3] Daykin, Pentikäinen,
Pesonen [4], Dickson, Waters [5], Gerber [6], Heilmann [7], Heilmann, Schröter [8], Hogg,
Klugman [9], Hossack, Pollard, Zehnwirth [10], Kass, Goovaerts, Dhaene [11], Klugman,
Panjer, Willmot [12], Pacáková [13], Panjer, and Willmot [14].

The definition of the collective risk model for a single time period is the basic building
block which we use to illustrate our submitted approach for managing insurance risk.
This is closely linked to the ruin probability, i.e., the quantification of the situation where
the insurer is unable to meet its liabilities. Those of note in the field of ruin theory, who
have expanded the theoretical results from Lundberg’s era, are Asmussen [15], Picard,
Lèfevre [16], Grimmett, Welsh [17], Dickson [18] and Schmidli [19].

Dickson [20], Hossack, Pollard, Zehnwirth [10] and Panjer [21] have dealt with rein-
surance at the theoretical level. Analysis of the capital strategy whereby capital is increased
when surplus becomes negative was dealt with, for example, by Dickson and Waters [22].
Hindley [23] has dealt with the whole problem of reserves.

Using the above literature, the text Teória rizika v poistení (Risk theory in insurance)
by Horáková, Páleš and Slaninka [24] was published. It unifies and adapts the notation
in this field and amplifies the proofs of the assertions needed for the desired analyses.
This forms the basis for combining a generalisation of the collective risk model for longer
time periods and the ruin probability with a framework for optimising reinsurance chains
containing both proportional and non-proportional reinsurance cover. In accordance with
the requirements of the Slovak Society of Actuaries, a complex model was created, based
on which it is possible to analyse risk in non-life insurance from various points of view.
This mathematical framework forms the starting point for this paper in which we modify
it to cover the idea of revising the capital needed to cover the risks taken on.

Formulation of the solution to the problem: The insurer’s aim is to have sufficient
reserves to cover its accepted liabilities. Our aim is to illustrate the possibility of setting an
optimal level of initial reserves together with reinsurance, where we allow for the injection
of further capital at times when the insurer’s surplus is tending towards negative values.
The results will provide the insurer with additional information based on which it will
maintain or even change its chosen risk management path.

We follow the insurer’s surplus over time given a specified probability that the insurer
is unable to cover the risks it has taken on and that the insurer has reduced its risk, using a
given type of reinsurance. We use a compound process for the total claims to determine
the risk measures, namely, the ruin probability and the value CVaR in various time periods.
We incorporate into our approach types of reinsurance based on a proportional split of the
risk between the insurer and the reinsurer or reinsurers. We make use of the optimisation
criteria for minimising the ruin probability and minimising the variance given the expected
surplus. Based on the obtained results, we proceed to an analysis of the followed risk
resulting in a proposed approach for reducing the initial reserves required to cover the risk
with an adequate predetermined probability.

We present a set of mathematical methods and approaches, which we use to obtain
the results in the application part of this paper. The generalised collective model is used
to follow the development of the surplus in continuous time. Analyses of strategies for
increasing the insurer’s capital in the literature relating to insurance risk models, e.g.,
Dickson and Waters [5], usually assume that whenever the surplus falls into the negative
territory, an adequate amount of capital will be injected so that the company can continue
reliably to operate.

The timing of the capital injections and their amount can be modelled by means
of our proposed approach, using a compound Poisson process and its approximation by
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Brownian motion in association with the inverse Gaussian distribution. Using a generalised
basic collective risk model in continuous time, we determine the ruin probability for a
given initial level of the reserves and we use the fact that the random time to the point of
ruin, in the case that this occurs, has an inverse Gaussian distribution. We determine the
conditional value at risk of this random variable, given that it belongs to the exponential
reproductive dispersion class of distributions. Using the results obtained, we can determine
the time period in which we need to apply an algorithm to estimate the additional capital
required at that time so that the surplus returns to an acceptable level. The approach is
illustrated using the mathematical framework set out in Horákova, Slaninka, Páleš [24]
whereby, as already stated, this publication arose as a specific mathematical base precisely
for use in studying the impact of risk on an insurer’s results.

2. Mathematical Framework for Following an Insurer’s Surplus over Time

Given the goal we have set, we use the advantages of the risk measures—ruin proba-
bility and the relevant VaR and CVaR—whereby when comparing the results from these
measures, we develop scenarios for how the insurer deals with the risk investigated. We
therefore set out, in brief, the essential assertions, facts and tools needed to achieve the
approach proposed for reducing the initial capital requirement.

We make use of the distribution laws of the random variable representing the total
claim amounts at a particular time, its characteristics, including the value-at-risk (VaR) and
the conditional-value-at-Risk (CVaR). VaRp is the 100p percentile of the distribution of the
total claim amounts and CVaRp is the expected loss, given that the loss exceeds the 100p
percentile of the distribution of the total claim amounts.

2.1. Collective Risk Model for Longer Time Periods

The continuous time ruin theory deals with collective risk models for longer time
periods, with the help of which it is possible to analyse the progress of the surplus over
a period of years. The insurer’s surplus Ut at time t is determined by the initial reserves,
i.e., the amount of the surplus U0 at time t = 0, by the amount of the premiums accepted up
to time t and by the amount of the claims paid up to that time, whereby the expenses of
meeting the claims are a random variable. In order to describe the model mathematically,
we introduce the following notation.

Let {Nt}t≥0 be a Poisson process with parameter λ, and let {Xi}∞
i=1 be a series of

independent identically distributed random variables independent of the Nt for t ≥ 0, with
the identical distribution function FX(x). We can then define the process {St}t≥0 as follows:

St = X1 + X2 + . . . + XNt =
Nt

∑
i=1

Xi (1)

By analogy with the compound distribution for one time period, we assume that the
level of an individual claim is a positive valued random variable. {St}t≥0 is a compound
Poisson process with parameter λ. For t > 0, the random variable St has a compound distri-
bution with Poisson parameter λ · t, with the probability laws and properties applicable in
the collective risk model. In the context of the compound Poisson distribution, we denote
the appropriate surplus process as {Ut}t≥0 for which we have the following:

Ut = U0 + c · t− St, t ≥ 0 (2)

where U0 is the value of the insurer’s reserves at the start of the investigated time period
and c is the constant intensity of receipt of premiums in a unit time interval. The total
premiums received up to time t can then be expressed as c · t for t > 0. The surplus increases
continuously as premiums are received and is subject to decrements as claims arise with
individual claim amounts {X1, X2, . . .} at random times {T1, T2, . . .}. We assume that in
each unit time interval the premiums received exceed the expected claim amounts in that
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interval, so for example, in the case of the compound Poisson distribution and calculation
of the premium using the mean value principle, we have the following:

c = λ · (1 + θ) · ν1(X) (3)

where θ is the risk margin and ν1(X) is the initial first order moment of the individual
claim amount, which we assume exists and is finite in which case Ut is the random variable
describing the insurer’s surplus at the end of the time period [0; t].

We will denote by Ψ(U0; τ) the ruin probability in the bounded continuous time period
[0; τ]—the continuous time finite horizon ruin probability—which we define as follows:

Ψ(U0; τ) = P(Ut < 0 for some t ≤ τ|U0 ) (4)

So Ψ(U0; τ) represents the probability that the insurer’s surplus falls below zero at
some point in the time period and is dependent on the initial surplus U0. The time of
ruin T(U0) dependent on the level of the initial reserves is defined in continuous time
as follows:

T(U0) = min{t ≥ 0 : Ut < 0} (5)

For given initial reserves U0 we denote by Ψ(U0) the probability of ruin at a distant
point in the future (the continuous time infinite horizon ruin probability). The insurer’s
surplus, at that time, becomes negative. We can also express this by means of the random
variable T representing the time to ruin:

Ψ(U0) = P(T < ∞)
Ψ(U0) = 1− P(Ut ≥ 0; ∀t ≥ 0|U0 )

(6)

Equation (6) thus expresses the probability that the claim amounts paid will at some
time in the distant future exceed the initial reserves plus the received premiums calculated
according to the mean value principle up to that time. We can estimate the ruin probability
Ψ(U0), using Lundberg’s inequality using knowledge of the adjustment coefficient [25].
The adjustment coefficient R expresses the level of risk of the surplus process. This is
dependent on two factors, namely, the total claim amounts and the received premiums.
If the aggregate claims represent a Poisson process, the adjustment coefficient is defined
using the Poisson parameter λ, the moment generating function of the individual claims
mX(z) and the amount of the premiums received in unit time. We can express it in the case
of both discrete and continuous individual claim amounts. In the classical risk process,
coefficient R is defined as the sole positive root of the following equation:

mS1−c(r) = 1 (7)

based on the moment generating function of the compound Poisson distribution for
t = 1. Given that derivation of the coefficient R is not always possible, its accurate value
can be replaced by upper and lower limits. Using the Taylor expansion, we have the
following [24,26]:

ln(1 + θ)

M
≤ R ≤ 2θ

E(X)

E(X2)
(8)

where ν1(X) = E(X) and ν2(X) = E
(
X2) are the moments of the random variable rep-

resenting an individual claim amount, θ is the risk addition and M is the upper limit of
an individual claim amount. The coefficient R, despite being defined in relation to the
expected number of claims in one time period, is finally expressed as not dependent on the
parameter λ.



Mathematics 2021, 9, 1350 5 of 20

2.2. Brownian Motion with Drift and the Ruin Probability

We use Brownian motion to approximate the surplus process {Ut}t≥0, which is related
to the compound Poisson process. Based on the definition given in [12], the stochastic
process {Wt}t≥0 is an example of Brownian motion (see Figure 1), if the following is true:

1. W0 = 0;
2. {Wt}t≥0 has stationary and independent increments;
3. For each time t > 0, Wt has a normal distribution with mean 0 and variance σ2t.
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A continuous time stochastic process {Wt}t≥0 is called Brownian motion with drift if
it meets the requirements for Brownian motion; Wt has mean µt rather than 0, for some
µ > 0. We use this definition to investigate the profit process {Zt}t≥0, using a compound
Poisson risk process meeting the requirements of {Wt}t≥0, as also in this case, we consider
the number of jumps which increases with time whilst at the same time their size decreases.
For more details, see, for example, [12,27].

Here, we assume that the amounts of the individual claims {X1, X2, . . .} are inde-
pendent, positive-valued random variables. The surplus process, therefore, increases in
continuous time, as premiums are paid in each unit time period and has consecutive
decrements due to the individual claims {X1, X2, . . .} at the random times {T1, T2, . . .}.

Let
Zt = Ut −U0 = c · t− St, t ≥ 0 (9)

then Z0 = 0. As St has a compound distribution the process, Zt has mean and variance
according to the basic relationships valid in the collective risk model for long time periods.
We express the mean and variance of Z1 as follows:

E(Z1) = µ, Var(Z1) = σ2 (10)

{St}t≥0 is a continuous time process with stationary independent increments and this
also applies to the processes {Ut}t≥0 and {Zt}t≥0. Given that the number of increments
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increases, the process followed cannot be differentiated but the paths of the Brownian mo-
tion are continuous functions of the variable t. We can justify continuity, as the increments
are small, and if we denote the total distance of a path by the random variable D in the
interval (0; t) of the process Ut, then the following is true:

D = ct + St = c · t + X1 + . . . + XNt (11)

and the mean value of D is unbounded.
In order to use this fact together with the process Zt to justify replacing the process

by Brownian motion, we let, in accordance with [12], the random variable X = αY, with
fixed mean and variance of the random variable Y. Then, D is a function of Y and α, and
we have the following:

λ =
σ2

E(Y2)
· 1

α2 (12)

and the following:

c = µ + σ2 E(Y)
E(Y2)

· 1
α

(13)

In order for λ→ ∞ we need to have from (12) that α→ 0 . The expected value of the
random variable D, given (12) and (13), is as follows:

E(D) = t · (c + λE(X)) = t ·
(

µ + 2σ2 E(Y)
E(Y2)

· 1
α

)
(14)

and therefore, the following is true:

lim
α→0

E(D) = ∞ (15)

This means that the expected value of the distance D in a finite time interval is infinitely
large. Via the moment generating function Zt we get the following:

lim
α→0

mZt(z) = e(z·µ·t+
z
2 σ2·t). (16)

For every time t > 0, Zt has, therefore, in the limit a normal distribution with mean
µ · t and variance σ2 · t. Since Zt = Ut − U0, given the equality of the means, we can
approximate the process {Zt}t≥0 by a Brownian motion with drift. The approximation
becomes more precise as the expected number of claims increases and the size of the jumps
decreases. If {Wt}t≥0 is a Brownian motion with drift with mean m > t and variance s2 > t,
and Ut = U0 +Wt is a Brownian motion with drift, then the ruin probability in a finite time
interval (0; τ) can be expressed as follows:

Ψ(U0; τ) = P(T < τ) = P

 min
0<t<τ

Ut < 0

 ≈ P

 min
0<t<τ

Wt < −U0

 (17)

This approximates the ruin probability for the surplus process since it includes all the
cash flows, i.e., the resulting positive as well as negative values of the surplus. The ruin
probability in some time interval (0, t) is the sum of the probabilities of all such possibilities.
Therefore, the final expression for the ruin probability immediately before time τ, given
the characteristics of the random variable Z1 and Equations (4), (6) and (8) is the following:

P(Zτ < −U0) + P(Zτ > U0)e−R·U0 = Φ
(
−U0 − µτ√

σ2τ

)
+ 1−Φ

(
U0 − µτ√

σ2τ

)
· e−

2θµλ

σ2λ
U0 .
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Hence, the following is true:

Ψ(U0; τ) = Φ
(
−U0 + µτ√

σ2τ

)
+ e−

2µ

σ2 U0 ·Φ
(
−U − µτ√

σ2τ

)
(18)

where Φ(.) is the distribution function of the normalised normal distribution.
We can replace the process {Zt}t≥0 by the process {Wt}t≥0, where E(Zt) = µt and

Var(Zt) = σ2t. Ruin may occur in a short period of time, which we express in the first
term on the right-hand side of Equation (18). Alternatively, it can occur ultimately, which
we express as a product in the second term on the right-hand side of Equation (18). The
probability of ultimate ruin is expressed by means of Lundberg’s inequality and the
correction coefficient derived with the help of a Taylor series.

Equation (17) does not, however, represent the probability law of the time to ruin.
We obtain this distribution by making an adjustment with respect to the ultimate ruin
probability. This means that the distribution of the time until ruin, given that ruin oc-
curs P(T < τ|T < ∞), can be expressed by the following equation which is important in
what follows:

Ψ(U0; τ)

Ψ(U0)
= e

2·µ
σ2 U0 Φ

(
−U0 + µτ√

σ2τ

)
+ Φ

(
−U0 − µτ√

σ2τ

)
, τ > 0. (19)

We also make use of this in the numerical example in the second part of this paper
in connection with the inverse Gaussian distribution to estimate the ruin probability in
the case of a particular reinsurance cover. Equation (19) is connected closely with the
distribution function of the inverse Gaussian distribution. Random variables with this
distribution belong to the reproductive exponential dispersion family, which allows us in a
simple way to express the CVaR of the inverse Gaussian distribution [28]. Since we use
this connection in the application part, we now look briefly at the distribution laws of a
random variable with this distribution and show the relationship with the derivation of
the risk measures.

2.3. Inverse Gaussian Distribution

For the distribution function of the inverse Gaussian distribution, X ∼ IG(m; δ) with
probability density function in the following form:

fX(x) =


√

δ
2πx3 · e

− δ(x−m)2

2m2x x > 0
0 x ≤ 0

(20)

We have the following:

FX(x) =


0 x ≤ 0

x∫
0

√
δ

2πz3 · e
− δ(z−m)2

2m2z dz x > 0 (21)

Differentiating Equation (19), with respect to τ, we get the density function of the

inverse Gaussian distribution T ∼ IG
(

U0
µ ; U0

2

σ2

)
in the following form:

fT(τ) =
U0√
2πσ2

τ−
3
2 · e(−

(U0−µτ)2

2σ2τ
), τ > 0 (22)

The random variable T expresses the time to ruin in the case where this occurs with
the following mean:

E(T) =
U0

µ
=

U0

λθ · E(X)
(23)
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For any process based on the compound Poisson process, we can easily get a simple
numerical approximation. The accuracy of this approximation for the expected time to
ruin is dependent on the relative sizes of the appropriate quantities, i.e., of the parameters
of the individual distributions.

Since we also use in our analysis the conditional value at risk, we give, for the value
xp = VaRp(X) of the random variable with inverse Gaussian distribution X ∼ IG(m; δ)
defined by Equation (20), an explicit expression for the value CVaRp(X). We obtain this by
expressing this probability law as a two-parameter Tweedy distribution:

fXREDF (x; θ; λ) = eλ(θx+
√
−2θ) · q(x; λ) (24)

The Tweedy distribution is a special case of the exponential dispersion models, which,
on the one hand, generalise the normal distribution and make use of some of its important
properties whilst also having the properties of a right-skewed distribution. The density
of the inverse Gaussian distribution as expressed in Equation (20) can also be expressed
in the form shown in Equation (24), which conforms to a distribution belonging to the
reproductive exponential dispersion family. Given this form of the density, we can express
relatively simply the CVaR also with the help of the original parameters of the inverse
Gaussian distribution:

X ∼ IG(m; δ)

By means of this, we can express the conditional value at risk, thus the following
is true:

CVaRp(X) = m +
m/δ

FX
(
xp, m, δ

) ·

·
{√

δ · xp · ϕ
(

1
m

√
δ · xp −

√
δ

xp

)
+ e

2δ
m

[
2δ ·Φ

(
− 1

m

√
δ · xp −

√
δ

xp

)
−
√

δxp · ϕ
(
− 1

m

√
δ · xp −

√
δ

xp

)]}
. (25)

This is covered in more detail in, for example, [29].

2.4. Optimal Reinsurance

The main reasons why an insurer buys reinsurance as a means of risk transfer are
the following:

• To stabilise its financial results.
• To reduce its required capital.
• To increase its underwriting capacity.
• To gain access to the advantages from bigger funds.
• To diversify and reduce the probability of making a loss with which an insurer can,

only with difficulty, come to terms.

Hence, the final tool which we use in our analysis of a particular risk is a mathematical
description of a reinsurance chain and the criteria for the optimal setting of the relevant
parameters of the reinsurance protection. By the reinsurance chain, we mean, in general, a
reinsurance cover made up of two or more types of reinsurance, for example, quota-surplus,
surplus-quota, quota-excess of loss and quota-excess of loss with a reinsurer’s limit. The
composition of the chain needs to allow for the requirements of the particular proportional
and non-proportional reinsurance and the order in which they are to be applied. At the end
of the day, the criteria, making use of the relevant input data, are mutually substitutable.
The choice of criteria depends on what we want to achieve. In general, we have at our
disposal these four basic criteria.

1. Minimisation of the VaR or CVaR.
2. Maximisation of the total surplus, given a constant variance of the surplus.
3. Minimisation of the variance of the surplus, given a constant surplus.
4. Minimisation of the ruin probability, given a constant surplus.
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Given the mathematical framework we have presented, we can use all these optimi-
sation criteria and calculate the premium using various principles. In order to show a
particular approach to reducing the risk, we use a premium calculated by using the mean
value principle, RPθ , and the variances, RPη , expressed by the following equations:

RPθ = (1 + θ) · E
(

Scol
)

, θ > 0 (26)

RPη = E
(

Scol
)
+ θ ·Var

(
Scol
)

, θ > 0 (27)

where E
(

Scol
)
= E(S1) is the mean of the total claim amounts and Var

(
Scol
)
= Var(S1)

is their variance. The approach to calculate the premium, which we introduce in the
application part of this paper, can also be applied if we calculate the premium, using, for
example, the Esscher principle or the exponential zero utility principle.

For example, the third criterion focuses on ensuring a specified surplus. Given the
required surplus, it allows the insurer to set optimal protection by seeking to minimize the
variance of the total claim amounts. This criterion provides the possibility of protecting
the portfolio for a level of surplus, which the insurer would achieve without the costs of
reinsuring, by means of an optimal distribution of the risk between the insurer and the
reinsurer. This means that for the same ruin probability, one can, by means of an optimal
choice of reinsurance parameters, reduce the required initial reserves.

The optimisation process, using one of the above criteria, assumes that we know the
nature of the original risk and of the risk after reinsurance is allowed for.

An optimal structure of chains of reinsurance protection can help the insurer avoid
taking on excessive risk, whilst keeping for itself an adequate retention, which should have
a positive effect on the price of its offered products. Such an optimal structure for a given
portfolio of insurance contracts can be set mathematically, using the general properties of
the mean value and the variance, the derived properties of the compound distribution and
the proposed split of the risk between the cedant and the reinsurer.

To use fully our knowledge of reinsurance also implies using a method for determining
an optimal chain of reinsurance protection. We derive this in the conditions of the collective
model, which are modified to allow for the requirements of the individual reinsurance
protections and their composition. For both quota share and surplus reinsurance, the
insured amount S, the claim amount X and the premium P are split between the insurer
and the reinsurer in an agreed way. For quota share, there is an agreed proportion q,
0 < q < 1, where q is the insurer’s retention.

In the case of surplus reinsurance, the reinsurer takes, in respect of each insured
sum, the amount which is in excess of an agreed sum known as the retention, which then
represents the amount of risk retained by the insurer α > 0. In this case, for an insured
amount S, premium P and claim amount X, we have the following, from the point of view
of the reinsurer:

ZSα
=

{
0 S ≤ α

(S− α) S > α
(28)

The effect of this from the point of view of the insurer and the reinsurer is illustrated
in Figure 2.
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In practice, surplus reinsurance is often used, as it leaves the insurer with greater
freedom to choose their own reinsurance protection strategy. So, in the case that the
insured sum is greater than the insurer’s retention, the same equations, with regard to
characteristics and distribution laws, apply regarding quota share but with the difference
that here, instead of a quota, we consider the ratio of the retention to the total insured sum,
namely q = α

S .
The process of optimisation is based on knowledge of the characteristics of the risk.

For example, for a proportional split of the risk, we have, for the characteristics of the
total claim amount of the insurer and the reinsurer in the case of quota share reinsurance
followed by surplus reinsurance with S > α, the following:

E
(

PScol
q,α

)
= E(N) · E

(
PXq,α

)
= q · α

S
· E
(

Scol
)

(29)

E
(

Z1 Scol
q

)
= E(N) · E

(
Z1 X

)
= (1− q) · E

(
Scol
)

(30)

E
(

Z2 Scol
q,α

)
= E(N) · E

(
Z2 Xq,α

)
= q ·

(
1− α

S

)
· E
(

Scol
)

(31)

Similarly, for the variances, we have the following:

Var
(

PSq,α

)
= Var

(
q · α

S
· Scol

)
= q2 ·

( α

S

)2
·Var

(
Scol
)

(32)

Var
(

Z1 Scol
q

)
= Var

(
(1− q) · Scol

)
= (1− q)2 ·Var

(
Scol
)

(33)

Var
(

Z2 Scol
q,α

)
= Var

(
q ·
(

1− α

S

)
· Scol

)
= q2 ·

(
1− α

S

)2
·Var

(
Scol
)

(34)

where Var
(

Scol
)
= E(N) ·Var(X) + E2(X) ·Var(N).

3. The Surplus Process for a Given Portfolio of Non-Life Insurance Contracts—A
Numerical Example

To illustrate the analysis of the risk taken on by an insurer, based on actual claim
numbers and claim amounts over a particular period, it is necessary first to introduce briefly
the required mathematical tools and their mutual relationships. Based on the mathematical
framework presented, we set out some of the possible results that can be obtained with an
appropriate commentary on the approach to their determination, as well as an in-depth
interpretation and mutual comparison.

We assume, given the data we have for the portfolio, that the number of claims has a
Poisson distribution with parameter λ = 77 and the amount of an individual claim can be
described by the lognormal distribution X ∼ LN

(
6; 0.92). For given risk adjustments, as

well as optimally set up reinsurance protections, we determine the necessary reserves to
cover these liabilities in continuous time. We apply the proposed approach to the injection
of capital at suitable times so as to save on capital resources whilst maintaining a given
level of security. To get to the final results, we make use of the following partial results,
without reinsurance and with consideration of proportional reinsurance cover. These are
as follows:

• Setting the ruin probability at a particular time t—setting the level of initial reserves
such that there is a 0.99 probability of ensuring solvency.

• Setting the ruin probability by approximating the Poisson process using Brownian
motion with a drift to time τ—setting the level of initial reserves such that there is a
0.99 probability of ensuring solvency.

• Estimation of the value CVaR0.99(T) of the distribution of the random variable of the
time to ruin T and use of the value for setting the time period in which fluctuations in
the portfolio are followed.
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• Setting up an algorithm for the injection of capital before time τ, while economising
on resources.

3.1. Ruin Probability over Time

Given the distribution of the number of claims our starting point is the compound
Poisson process {St}t≥0, where according to (1), the following is true:

St = X1 + X2 + . . . + XNt =
Nt

∑
i=1

Xi

for given values t > 0. The random variable St has a compound distribution with Pois-
son parameter λ · t, St ∼ CoPo

(
λ · t; X ∼ LN

(
6; 0.92)) with the distribution laws and

characteristics expressed according to the collective risk model equations. We work with
an expected total claim amount E

(
Skol

)
= 46574.36 and variance Var

(
Skol

)
= 7957.762.

According to (2), we can express the ruin probability at a particular point of time t for the
reserves needed to cover the claims up to time t. We express the risk premium according
to the mean value principle with a risk addition θ = 0.16 and according to the variance
principle for calculating the risk premium with an addition θ = 0.00012. We can estimate
the ruin probability in continuous time at time t using the following equation:

Ψ(U0; t) = P(T ≤ t) = P(Ut < 0), for 0 ≤ t ≤ s

where Ψ(U0; t) represents the probability that the insurer’s surplus falls below zero in the
finite time interval. Note that all the results shown in the following tables were obtained
using numerical approximations based on Equations (17)–(19).

Column 1 of Table 1 shows the initial reserves U0 needed so that at time t, they are
adequate to ensure solvency with a 99% probability. The non-highlighted ruin probabilities
for these initial reserves depend on six different random variables by which the variance
and mean increase with the expected number of claims arising to time t. For example, for
S6 ∼ CoPo

(
6λ; X ∼ LN

(
6; 0.92)), the initial reserves required to cover the claims with a

99% probability are lower than those for the total claims S1 ∼ CoPo
(

λ; X ∼ LN
(
6; 0.92)).

Figure 3 shows why this is so. For this comparison, we also have that with increasing
reserves the ruin probability at time t reduces.

Table 1. Probability of ruin at time t = 1, 2, 3, . . . , 6 for a given level of initial reserves.

U0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

11,060.62 0.01 0.010524 0.007666 0.006569 0.005117 0.002110
11,276.85 0.009298 0.01 0.007342 0.004919 0.003189 0.002037
9708.93 0.015523 0.014370 0.01 0.006516 0.004151 0.002620
7217.44 0.032635 0.024670 0.015953 0.01 0.006218 0.003860
4135.76 0.072676 0.045341 0.027303 0.016474 0.01 0.006106
634.84 0.154765 0.083682 0.047657 0.027890 0.016602 0.01

It is clear from the above that when considering the reserves over time, one must
consider all cash flows together. To this end, a Brownian motion process serves as an
approximation for the compound Poisson process.
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3.2. Calculation of the Increase in the Reserves at the End of the Followed Period by Approximating
the Compound Poisson Process by a Brownian Motion

In connection with the compound Poisson process, we first express the corresponding
surplus process {Ut}t≥0 for which we have the following:

Ut = U0 + c · t− St, t ≥ 0.

Using Equation (9), we can create the intermediate process {Zt}t≥0 and determine its
characteristics, namely E(Z1) = µ = 7451.9 Var(Z1) = σ2 = 7957.762. We can then use
Equation (19) to express the ruin probability up to time τ. The results are shown in Table 2.

Table 2. Relationship between the initial reserves and the ruin probability expressed by means of Brownian motion.

Φ(U0,τ)/Φ(U0) = 0.01 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

27,356.28 0.01 0.188428 0.455344 0.663923 0.799253 0.881519
42,829.13 0.000007 0.01 0.095598 0.266530 0.457874 0.623028
56,384.02 0 0.000213 0.01 0.061678 0.169371 0.311966
68,954.28 0 0.000002 0.000623 0.01 0.048177 0.127610
80,899.04 0 0 0.000023 0.001087 0.01 0.040435
92,401.58 0 0 0 0.000081 0.001535 0.01

The initial reserves in Table 2 are chosen to cover the liabilities up to time τ = 1, 2, . . . , 6
with 99% probability. In other words, we set the initial reserves such that the ruin proba-
bility is kept at 1%, allowing for all cash flows. The remaining probabilities in the rows
show how a particular level of the reserves affects the ruin probability at given times τ. For
example, we can see from the figures in the first row of the table that reserves of an amount
U0 = 27, 356.28 are enough to cover the first year with 99% probability. At the end of the
sixth year, given this level of the reserves, there is an 88.15% probability that the surplus is
negative. For the figures shown, we have that with time τ, the ruin probability increases
and with increasing reserves, it decreases as is illustrated in Figure 4, where u = U0.

In the cases in Table 2 where the ruin probability is zero, the initial reserves are
unnecessarily high. We can avoid this by using the following approach, which we have
divided into a number of steps. The first step is to consider (19) as the distribution function

of the random variable T ∼ IG
(

U0
µ ; U0

2

σ2

)
, which represents the time to ruin and has an

inverse Gaussian distribution.
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In the second step, we set a maximum time when ruin can occur with a given prob-
ability. We use the value CVaR0.99(T) to improve on the value VaR0.99(T) in accordance
with Equation (25). For the initial reserves shown in Table 2, we can then express the
corresponding quantiles by means of the distribution function of the random variable with

distribution T ∼ IG
(

U0
7451.9 ; U0

2

957.762

)
. In what follows, we will also work with the value

CVaR0.99(T), which we use to determine the maximum time until the surplus falls below
zero with 0.99 probability. The results are shown in Table 3.

Table 3. Values of VaR0.99(T) and CVaR0.99(T) for the random variable of the time to ruin T.

U0 P(T<τ) = 0.99 CVaR0.99(T)

27,356.28 10.58 12.52
42,829.13 13.86 15.98
56,384.02 16.79 18.99
68,954.28 19.22 21.53
80,899.04 21.47 23.75
92,401.58 23.59 26.11

The first row, for example, shows that for initial reserves of 27,356.28, needed with
probability 0.99 to cover the claims in the first year, the value of VaR0.99(T) is 10.58. We can
interpret this value as follows. With almost 100% certainty, ruin will occur approximately
at the end of the 11th time period for the initial reserves so set, taking into account all cash
flows in the surplus. We can improve on this further, using the CVaR0.99(T) value shown
in the third column.

Based on this information, we calculate the values shown in Table 4, where we give
the values for the first six years we have considered. We obtained these figures by carrying
out the steps, described in the theory part of this paper, for ensuring the adequacy of the
reserves in each year by the injection of additional capital at the appropriate time. That
is to say that the insurer does not hold the required reserves at the start of the observed
period but gradually adds further capital, thereby saving on resources in each year whilst
keeping the ruin probability at the required 1% level and staying solvent.

For the reserve values shown in the first column, the ruin probability is 1% with the
corresponding expected surplus shown in the third column. The values ∆uτ represent the
amount of additional capital injected at the end of year t, t = 1, 2, . . . , 5, 11. In each year,
we can consider the values in the last column of the table as the amount saved given initial
reserves of 27,356.28. By analogy, we can continue up to t = 11, respectively t = 13, whereby
the whole period would be covered in which insolvency could occur.
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Table 4. Additional capital ∆uτ for P(T < τ|T < ∞) = 0.01.

U0 P(T<τ|T < ∞) = 0.01 E(Zτ) ∆uτ , τ = 1, 2, . . . 5, 11

27,356.28 P(T < 1|T < ∞) = 0.01 7451.89 ∆u1 = 15, 472.85
42,829.13 P(T < 2|T < ∞) = 0.01 1490.79 ∆u2 = 13, 554.89
56,384.02 P(T < 3|T < ∞) = 0.01 22,355.69 ∆u3 = 12, 570.26
68,954.28 P(T < 4|T < ∞) = 0.01 29,807.59 ∆u4 = 11, 945.16
80,899.04 P(T < 5|T < ∞) = 0.01 37,259.49 ∆u5 = 11, 502.14
92,401.58 P(T < 6|T < ∞) = 0.01 44,711.38 ∆u6 =11,168.71

...
...

...
...

146,035.85 P(T < 11|T < ∞) = 0.01 81,970.87 ∆u = 12, 702

3.3. The Effect of Proportional Reinsurance on the Parameters of the Random Variable Z1

In order to assess whether it is desirable to reinsure our portfolio of insurance contracts
proportionally, we consider a chain made up of quota share and surplus reinsurance. By
using the rules for setting reinsurance protection, see [5], we derive for the two principles
for calculating the risk premium the parameters µ and σ. The means µ = E(Z1) are
specified in Table 5. The derivations apply for the considered primary and secondary
distributions and the mean value principle with risk margins q, ςq, ξα and the variance
principle with risk margins θ, ςq, ξα.

Table 5. The parameters of the insurer’s random variable Z1.

Risk
Premium

Quota Share
Reinsurance

Surplus
Reinsurance Quota-Surplus Chain Surplus-Quota Chain

Mean value principle µ = µθ,q µ = µθ,α µ = µθ,q,α µ = µθ,α,q
σ2 = Var(Z1) · q2 σ2 = Var(Z1) ·

(
α
S
)2

σ2 = Var(Z1) · q2 ·
(

α
S
)2

σ2 = Var(Z1) · q2 ·
(

α
S
)2

Variance principle µ = µη,q µ = µη,α µ = µη,q,α µ = µη,α,q
σ2 = Var(Z1) · q2 σ2 = Var(Z1) ·

(
α
S
)2

σ2 = Var(Z1) · q2 ·
(

α
S
)2

σ2 = Var(Z1) · q2 ·
(

α
S
)2

The following Table 6 gives expressions for the parameter µ.

Table 6. Specification of the parameter µ.

µ = µθ,q µ = E
(

Scol
)
·
[
θ − ςq · (1− q)

]
µ = µθ,α µ = E

(
Scol

)
·
[
θ − ξα ·

(
1− α

S
)]

µ = µθ,α,q µ = E
(

Scol
)
·
[
θ − ξα ·

(
1− α

S
)
− α

S · ςq · (1− q)
]

µ = µθ,q,α µ = E
(

Scol
)
·
[
θ − ςq · (1− q)− q · ξα ·

(
1− α

S
)]

µ = µη,q µ = Var
(

Scol
)
·
[
θ − ςq · (1− q)2

]
µ = µη,α µ = Var

(
Scol

)
·
[
θ − ξα ·

(
1− α

S
)2
]

µ = µη,q,α µ = Var
(

Scol
)
·
[
θ − ςq · (1− q)2 − ξα · q2 ·

(
1− α

S
)2
]

µ = µη,α,q µ = Var
(

Scol
)
·
[
θ − ξα ·

(
1− α

S
)2 − ςq ·

(
α
S
)2 · (1− q)2

]

In the case of proportional reinsurance, we can use the expression for the parameter
µ to determine the insurer’s expected surplus at time τ. In all cases, we have for the
variance σ2 = q2 ·

(
α
S
)2 · Var

(
Scol
)

. If we consider only quota reinsurance, then we
have, in accordance with (28), that α ≥ S, where S is the insured amount. In the case of
surplus reinsurance, q = 1. If we then put the modified parameters µ and σ into (18), we
can determine the ruin probability at time τ for values of the parameters q and α of the
reinsurance chain. These can be chosen, for example, on the basis of experience, but we
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can set them by applying an optimisation criterion. In the next part, we show how these
approaches affect the results.

3.4. Estimation, with 99% Probability, of the Expected Surplus Using Optimally Set
Quota-Surplus Reinsurance Chains

We present the results obtained according to the parameters chosen for the quota-
surplus chain. We compare these with the situation in which we set the quota and the
own retention by applying an optimisation criterion. We look for values of q and α, which
minimise the variance for a set surplus. In our case, we set the surplus to that which the
insurer would make without reinsurance protection.

(a) Let us analyse the risk given the initial reserves needed by the insurer to cover
its risk with a 99% probability and the achieved surplus in the case of quota reinsurance
with q = 0.3. We use a risk premium, calculated using the mean value principle and a
quota reinsurance margin ζq = 0.2. These values are then inserted, together with the
parameters E(Scol) = 46, 574.36, Var(Scol) = 7957.762 and the risk margin θ = 0.16, into
the relevant equation for µθ,q, shown in Table 6. The result together with the variance

σ2 = q2 ·Var
(

Scol
)

is then inserted into Equation (19). We set the ruin probability to 1%
and determine the reserves needed to cover the risk up to time τ. The resulting figures are
summarised in Table 7.

Table 7. Initial reserves for a quota q = 0.3 with a ruin probability Φ(u, τ)/Φ(u) = 0.01 and the
resulting surplus at time τ.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

Initial reserve 6992.46 10,392.09 13,204.27 15,713.49 18,029.69 20,209.16
Surplus 931.49 862.98 2794.46 3725.95 4657.44 5588.96

By comparing the results in Tables 2 and 7, we note that in order to ensure a 1% ruin
probability without reinsurance, we need initial reserves at time τ = 1 of u = 27, 356.28
with an achieved surplus of 7451.89.

With quota reinsurance with q = 0.3 over the same time period, the initial reserves fall
to U0 = 6992.46, but the surplus also reduces to only 931.49. This shows that as the own
retention reduces, not only does the risk, but also the surplus. In our case, the reduction
in risk manifests itself as a reduction in the initial reserves required. On the other hand,
if we had used with the quota reinsurance the reserves needed to cover the risk without
reinsurance, we would have discovered that these reserves are unnecessarily high.

(b) If we now repeat this process but with a quota-surplus reinsurance chain, there
are changes in the choice of the value of µ = µθ,q,α in the expression for the variance for

which we now have σ2 = q2 ·
(

α
S
)2 ·Var

(
Scol
)

and in the level of expenses for the surplus
reinsurance via the premium addition ξα = 0.22. The results from the reinsurance with
fixed parameters q = 0.3 and α/S = 0.4 are shown in Table 8.

Table 8. Initial reserves for a quota q = 0.3, α/S = 0.4 and ruin probability Φ(u, τ)/Φ(u) = 0.01 and
the resulting surplus at time τ.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

Initial reserve 5203.65 7921.91 9632.86 11,117.10 12,427.91 13,613.18
Surplus 316.71 633.42 950.12 1266.82 1583.53 1900.23

By comparing the figures shown in Table 8 with those in Table 2, we deduce that
retaining all the risk, i.e., without reinsuring, is more advantageous than if we use the
proposed reinsurance. Given the requirement of a 1% ruin probability, diversification is
pointless. The product is not viable.
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We will decide if it is possible in this case to set effectively the parameters for this
form of reinsurance after we apply an optimisation criterion.

So instead of choosing fixed values for the reinsurance parameters, we search for opti-
mal values that meet our requirements, using the following constrained minimising function:

L(q, α, γ) = q2
( α

S

)2
Var

(
Scol
)

τ + γ
(
µq,ατ − k

)
where the surplus is constrained to a value k and γ is the Lagrange multiplier. The value k
is set equal to the values of the surplus shown in the first and sixth rows of Table 4, i.e., the
surplus that is obtained without reinsurance at times τ = 1 and τ = 6.

For a surplus k = 7500, we get the optimal parameters q = 0.5815 and α/S = 0.3472
and for a surplus k = 45,000, they are q = 0.7939 and α/S = 0.7646. The expression for
µq,α and the margins remain unchanged. By repeating the preceding procedure but using
these optimal reinsurance parameters, we get the results shown in Tables 9 and 10. We
can see the effect of using reinsurance by comparing these figures with those ignoring
reinsurance shown in Table 2. The first column in Tables 9 and 10 shows the amount of the
initial reserves.

Table 9. Optimal reinsurance parameters q = 0.5815, α/S = 0.3472 and an ensured surplus of 7500.

Φ(u,τ)
Φ(u) = 0.01 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

5284.42 0.01 0.161378 0.388256 0.579263 0.716534 0.810130
8163.48 0.000018 0.01 0.081637 0.219382 0.378882 0.526575

10,652.97 0 0.000274 0.01 0.056060 0.148620 0.271689
12,942.29 0 0 0.000756 0.01 0.044017 0.111911
15,104.39 0 0 0 0.001277 0.01 0.037120
17,176.54 0 0 0 0.000120 0.001766 0.01

Table 10. Optimal reinsurance parameters q = 0.7939, α/S = 0.7646 and an ensured surplus of 45,000.

Φ(u,τ)
Φ(u) = 0.01 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

19,441.25 0.01 0.319648 0.714426 0.904179 0.973174 0.9914956
1736.12 0 0.01 0.167591 0.488742 0.755928 0.900910

42,888.67 0 0.000035 0.01 0.112494 0.355492 0.6227574
53,455.41 0 0 0.000155 0.01 0.085559 0.274105
63,650.04 0 0 0 0.000343 0.01 0.069934
72,531.24 0 0 0 0 0.000794 0.01

A comparison of the figures in Tables 4 and 10 shows that without reinsurance, we
need initial reserves of amount 92,401.58 to ensure, immediately before time τ = 6, a ruin
probability of 1% whilst attaining a surplus of 44,711.38. With the optimal reinsurance
protection in the form of quota share followed by surplus reinsurance, it is enough to have
initial reserves of amount 72,531.24.

A further way to save capital is for the insurer to inject additional capital at the end of
a particular time period in combination with an optimal reinsurance programme. Given
the initial reserves shown in the first columns of Tables 9 and 10, which we determined so
that in each time period there was a 99% probability that the insurer’s surplus would not
fall below zero, we can proceed to determine the amount of the capital injections.

The figures shown in Tables 11 and 12 were determined as before on the assumption
of a 1% probability of ruin. They allow us to follow in column 3 the amounts of capital that
need to be injected at the end of each year, where the last figure, ∆u, is the average yearly
capital injection. Column 2 of the two tables shows the corresponding expected profit.
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Table 11. P(T < τ|T < ∞) = 0.01, surplus 7500.

Initial Reserves E(Zτ) Capital Injection
∆uτ , τ = 1, 2, . . . , 6

5284.42 for τ = 1 1250 ∆u1 = 2879.06
8163.48 for τ = 2 2500 ∆u2 = 2489.49

10,652.97 for τ = 3 3750 ∆u3 = 2289.32
12,942.29 for τ = 4 5000 ∆u4 = 2162.11
15,104.39 for τ = 5 6250 ∆u5 = 2072.14
17,176.54 for τ = 6 7500 ∆u = 2378

Table 12. P(T < τ|T < ∞) = 0.01, surplus 45,000.

Initial Reserves E(Zτ)
Capital Injection

∆uτ , τ = 1, 2, . . . , 6

19,441.25 for τ = 1 7500 ∆u1 = 12,294.87
31,736.12 for τ = 2 15,000 ∆u2 = 11,152.55
42,888.67 for τ = 3 22,500 ∆u3 = 10,566.74
53,455.41 for τ = 4 30,000 ∆u4 = 10,194.63
63,650.04 for τ = 5 37,500 ∆u5 = 8881.20
72,531.24 for τ = 6 45,000 ∆u = 10,618.00

Table 13 allows us to see the effect of using optimised reinsurance protection. It
compares the results we obtained using the same approach but without reinsurance with
those from using optimally determined parameters for a quota-surplus reinsurance chain.
Figures for the initial reserves U0 are shown for two time periods τ = 1 and τ = 6 for the
same level of risk and surplus.

Table 13. Example savings in the initial reserves without and with reinsurance whilst maintain-
ing solvency.

τ = 1 τ = 6

U0 = 26, 917.75 U0 = 92, 401.58
Without reinsurance ∆u1 = 15, 023.49 ∆u5 = 11, 502.14

E(Zτ=1) = 7451.89 E(Zτ=6) = 44, 711.38

Surplus k = 7500 U0 = 5125.25 U0 = 17, 176.54
Optimal parameters

quota-surplus ∆u1 = 2879.06 ∆u5 = 2072.14

α/S = 0.3472, q = 0.5815 E(Zτ=1) = 1250 E(Zτ=6) = 7500

Surplus k = 45000 U0 = 19, 441.25 U0 = 72, 531.24
Optimal parameters

quota-surplus ∆u1 = 12, 294.87 ∆u5 = 8881.2

α/S = 0.7647, q = 0.7940 E(Zτ=1) = 7500 E(Zτ=6) = 45, 000

4. Results

In the paper, we followed the progress of an insurer’s surplus in continuous time for
a given initial distribution of the number of claims and individual claim amounts. The
approach would be the same in the case of another primary and secondary distribution.
The expression of the maximal total claim amount with a specific probability and the setting
of the conditional value at risk, CVaR, may be different, as these values depend on the form
of the distribution function. If the distribution function of the total claim amount cannot be
stated explicitly, it is possible either to approximate it or to use a simulation. The other steps
leading to a reduction in the required initial reserves, ignoring reinsurance, can be carried
out for a freely chosen compound distribution for which the necessary moments exist.

The theoretical apparatus is conceived such that, by its use, it is possible to analyse
an insurance portfolio and develop various scenarios for the development of the risk in
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continuous time. The starting point for the proposed approach to setting the initial reserves
in connection with the ruin probability is approximating the compound Poisson process
by Brownian motion. The expected time of ruin depends on four key quantities, which
describe the surplus process. By its use, it is possible to set all the parameters of the process
such that the resulting ruin probability meets the required level. In our case, the task was
to set up reserves in continuous time, which would ensure a 99% probability of solvency.
In combination with the maximum time of ruin, the additional amount of capital can be
estimated that is needed to avoid the surplus becoming negative.

When considering an optimal insurance programme, on the basis of the outlined
strategy for dividing the risk between the insurer and the reinsurer, we can choose one of a
number of optimisation criteria. For example, if the insurer sets importance on security, it
constrains the variance of the surplus to a required value and uses the following criterion:
maximisation of surplus for a constant variance. On the other hand, by constraining
the insurer’s expected surplus to a particular level, we can look for the values of the
parameters of the reinsurance protection, which, given the stated constraint, minimises the
relevant variance.

Based on data for the number of claims and individual claim amounts, Table 1 shows
the initial reserves required for a chosen realisation of the Poisson process, which are
adequate to ensure solvency with a 99% probability up to the time shown. Table 2 shows
the same information but after evaluating all the surplus paths, namely all cash-flows up to
time τ, together with the effect on the required initial reserves. Given that the time to ruin
is a random variable T with an inverse Gaussian distribution, we can, by setting the value
VaR0.99(T), obtain the maximum time up to which ruin may arise with 99% probability, or
refine this value by using CVaR0.99(T). During the period up to this time, we implement an
algorithm for the potential increase in the reserves needed for the next year. For example,
the values in the first row of Table 4 show the reserves needed in the first year and their
increase at the end of this year such that the probability that they will be adequate in the
second year is 99%.

It was possible to reduce the reserves further, whilst maintaining the required proba-
bility of ruin, by using a specified reinsurance programme. The order in which different
reinsurance covers are applied affects the resulting values of the initial reserves and thus
also the ruin probabilities at each time. It is, therefore, useful to consider meaningful
scenarios for possible reinsurance chains and study and compare the results. It is necessary
to point out that the number of independent random variables, for which we seek an
unbounded or bounded extreme, is conditional on the number of types of cover included
in the resulting reinsurance chain.

In our paper, we worked with quota reinsurance and surplus reinsurance and vari-
ations of these. Tables 5 and 6 show the derived characteristics for approximating the
Poisson process by Brownian motion for two methods for calculating the premium. The
parameters of the reinsurance protection were set, using optimisation criteria. Using these
parameters, the insurer’s total claim amount was reduced and the earlier approach with-
out reinsurance was repeated, incorporating the appropriate reinsurance protection. The
paper compares and discusses the results obtained, and the final Table 13 summarises the
estimates for the initial reserves U0.

5. Conclusions

The results we give show that with the presented approach, it is possible to develop a
number of scenarios from which the insurer can choose those which fit its strategic aims.
These allow the insurer to see the differences in the results obtained with a particular
type of reinsurance but also the differences in those obtained using a random choice of
parameters for a particular type of reinsurance and when they are set optimally. We have
shown that an arbitrary set of reinsurance protection parameters does not necessarily lead
to a good result. On the other hand, through optimisation, we can set not only suitable
reinsurance protection for the investigated risk, but also optimal parameters. An analysis
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based on these leads to a safe level for initial reserves, whilst maintaining a suitable chosen
level of risk. The possibility of choosing optimisation criteria allows the insurer to prefer
security also in the case where surplus is set at an expected level.

The results from the scenarios obtained using the above proposed approach can
contribute to the appropriate and responsible decisions of the insurer. Further, the injection
of additional capital at a particular time contributes to a saving in the capital that the
insurer must have at their disposal to cover the risks they take on.
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