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Abstract. Game theory, and its specific area – spatial games, deal with the 

behavior of competitors. Spatial games focus on analyzing imperfect competition 

from a spatial point of view and the competitors represent companies operating 

in the market with the aim to attract customers and find the best location for their 

branch. Each company applies its own pricing policy, which affects its market 

share. In this article we present formulation and solution of a specific spatial 

game of two players who decide on the locations of their branches in space and 

want to maximize their revenues. The space is characterized by a graph, where 

location of customers and possible places of service represent its nodes. 

Customers choose one of the companies based on their total costs, consisting of 

the price of the product and shipping costs. The service in each of the nodes must 

be performed by either one or the other player. Such a situation can be analyzed 

using zero-sum games. The article presents the issue of determining the price of 

one player, based on a predetermined price of the opponent, to have player's 

revenues as high as possible. The game considers limited offer of the first player 

and different demands in each of the nodes.  

Keywords: Spatial competition, Pricing, Matrix games, Imperfect competition, 

duopoly 

JEL classification: C 70, C 72, D 43 

1 Introduction 

To operate in the market and maintain or improve its position, company must be 

competitive, which is closely linked to the prices of its products and services and their 

quality. To secure its position and market share, the company must proceed 
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strategically. The concept of strategy can be found in various fields, one of which is 

game theory. It is a tool for analysing the strategic behaviour of players who can 

represent any entity in a conflict decision-making situation. In the market, it is precisely 

companies that find themselves in a conflict situation with competing companies 

offering the same or similar products and services. Each of these companies aims to 

gain as many customers as possible, increase their market share and maximize their 

profits. The path to success is defined at the outset by several factors. One of them is 

the choice of location, whether it is warehouses, branches, operations, production 

facilities, or equipment. Location models address this issue, while the problem of 

location can be defined at the level of municipalities, cities, regions, or states. 

How a company behaves in the market is also influenced by the type of structure of 

the market in which it operates. In the market, we generally distinguish between perfect 

and imperfect competition, both of which are characterized by their specific features. 

Imperfect competition is characterized mainly by the ability to set and control product 

prices by companies or manufacturers (Samuelson and Nordhaus 2010).  

The behaviour of the firms in the market of imperfect competition must consider the 

decisions of other subjects (whether on the supply or demand side). That means, when 

deciding on the quantity and price of the offered product, the company must, as part of 

an oligopolistic market structure, consider the steps of other companies. Such strategic 

interactions and their market specifications can be explained using game theory (Varian 

1992).  From the point of view of the game theory, the decision-making situation of 

individual oligopolists can then be considered as a game in which players try to 

maximize their expected payment by their strategic behaviour.  

In the article we present the duopolistic market, defined by two companies operating 

in the market, in a space that can be characterized by a graph. Players make their 

decisions about the location of the operation simultaneously. It is a one-round game, 

the results of which are determined by setting the prices of their products, which also 

affect their respective market share (and thus sales). We will design an original 

mathematical model, based on which it is possible to set the price for one player based 

on the price of his opponent, which is known in advance, so that his sales are as high 

as possible. We consider additional condition of a limited supply and various demands 

in each possible location, which also represents location of customers choosing one of 

the duopolists based on their lower costs, which include both the price of the goods and 

transport costs. 

2 Models of spatial competition 

The basis of an open market economy is free competition, which is a conflict of interest 

The analysis of the oligopolistic market in space is currently increasingly discussed 

topic. One of the first to address this issue was the mathematician and economist H. 

Hotelling (1929), who presented a model based on the presence of two companies 

looking for the most advantageous position in the linear market. The model is the basis 

of many theories of product differentiation and location, but despite its applicability, it 

has undergone many criticisms. For example, C. D'Aspremont, J. Jaskold Gabszewicz 



178 

 

 

and J.-F. Thisse (1979) points out its flaw and proves that it is not possible to have a 

balance if companies are close to each other. The result of their modified model is a 

model whose solution ensures the existence of equilibrium at any point in the market 

(D'Aspremont et al. 1979). 

Even though the beginnings of the issue of spatial models are associated with 

Hotelling, in fact, the first known attempt to analyse economic activity in space is 

associated with the Thünen (1826), whose theory explained the location of production 

activities in an isolated city-state with land and homogeneous resources (Gehling, 

1968). Weber (1909) later developed a theory of the location of industry.  

Also, before Hotelling, in 1924, Fetter, one of the first authors to lay the foundations 

for the analysis of relationships and interdependencies between firms, published his 

work with a significant impact on network competition theory. Unlike Hotelling, Fetter 

focused on modelling demand behavior, not on optimal decisions (Biscaia and Mota, 

2013). A further extension of Fetter's work can be found in the publications of many 

other authors, such as (Hamoudi and Martín-Bustamante, 2011) and (Hamoudi.a 

Risueño, 2012).  

Other publications are proof that Hotelling's model has laid the foundations for 

several other works dealing with this issue. (Beath and Katsoulacos, 1991) is also based 

on his model. The authors deal, among other things, with the price competition of the 

spatial duopoly. Customers located along the linear market, forced to travel if they want 

to buy the products on offer, are the only ones who bear the transport costs. The location 

is an exogenous parameter for the companies, so price is their only decision variable 

(Beath & Katsoulacos, 1991). 

3 Determining the product price of duopolist based on best 

response 

In this section, we will present an original mathematical model that allows us to 

determine the price of the product of duopolist based on the determined price of the 

opponent in the case of a specific spatial game with the assumption of limited capacity 

of the duopolist determining price of his product and different demand in each possible 

location. The idea of the paper will be based on (Čičková and Holzerová, 2020). The 

paper was focused on modelling the pricing of the product price of duopolist based on 

best response model in case where each of the customers always made a purchase from 

the player, where the total costs associated with the purchase were lower.The specific 

model was based on zero-sum game model. 

In the model, like Hotelling in his basic model, we apply the basic assumptions: 

product homogeneity (both companies on the market offer a very similar product), zero 

production costs of companies and consumer indifference (due to the choice of 

manufacturer with unlimited capacity). Basic model also assumes one unit consumption 

in each node. We leave this assumption in the extended version. 

The idea of spatial game is based on (Lopez and Čičková 2018). We will assume 

following: Let 𝑉 = {1,2, …𝑛}, 𝑛 ∈ 𝑍+ be the set of customers and let there be graph 

𝐺 =  (𝑉, 𝐻) where 𝑉 represents nodes of the graph and 𝐻 ⊂ 𝑉𝑥𝑉 represents set of the 
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edges ℎ𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗) from node 𝑣𝑖 to node 𝑣𝑗, while for each oriented edge ℎ𝑖𝑗 there is 

assigned real number 𝑜(ℎ𝑖𝑗) referred to as a valuation or value  ℎ𝑖𝑗. Spatial game was 

formulated in so-called full-valued graph �̅� = (𝑉, 𝐻) with the same set of nodes as 

graph 𝐺, where 𝐻 is set of the edges between each pair of nodes 𝑣𝑖  and 𝑣𝑗, while their 

valuation is equal to the minimum price between nodes 𝑣𝑖  and 𝑣𝑗 of the original graph, 

𝑖, 𝑗 ∈ 𝑉. It is often assumed that o(ℎ𝑖𝑗) =  𝑑𝑖𝑗   where 𝑑𝑖𝑗  represents the minimum 

distance (the shortest path lenght) between the nodes 𝑣𝑖  and 𝑣𝑗, then the matrix  𝐃𝑛𝑥𝑛 =

{𝑑𝑖𝑗} is the matrix of the shortest distances between the nodes 𝑣𝑖  and 𝑣𝑗. 

We assume there are two companies (players) 𝑃 = {1,2}, offering a homogeneous 

product (good or service) in unlimited quantities, and these companies can place their 

branches in just one of the nodes, i.e., in any element of the set 𝑉 = {1,2, … 𝑛}, which 

are also the locations of customers. Although both players offer identical products in 

unlimited quantities, the price of the products may be different. Let 𝑝1 be the price of 

the product of player 1 and 𝑝2 the price of the product of player 2. Each customer makes 

a purchase from any company (service is always carried out, i.e., lost demand is not 

considered). When choosing a company, customers consider the total cost of 

purchasing the product, which consists of the price of the product and the cost of 

transportation to the selected company. Transport costs are expressed as 𝑡 per unit 

distance. If player 1 places his store in the 𝑖th node ( 𝑖 ∈ 𝑉) and player 2 places his 

store in the 𝑗th node ( 𝑗 ∈ 𝑉), player 1 gets the customer from the 𝑘th node (𝑘 ∈ 𝑉) 

only if 𝑡 ∗ 𝑑𝑘𝑖 + 𝑝
(1) < 𝑡 ∗ 𝑑𝑘𝑗 + 𝑝

(2), while 𝑡 ∗ 𝑑𝑘𝑖 + 𝑝1 = 𝑛𝑖𝑗
(1)

 and  𝑡 ∗ 𝑑𝑘𝑖 + 𝑝2 =

𝑛𝑖𝑗
(2)

are elements of cost matrices of customers 𝐍(1)and  𝐍(2). Otherwise, the customer 

from the 𝑖th node is served by player 2. If 𝑡 ∗ 𝑑𝑘𝑖 + 𝑝1 = 𝑡 ∗ 𝑑𝑘𝑗 + 𝑝2, players share 

the demand equally.  

The basic situation, represented by a fixed price model, is where the prices of both 

products are known in advance and based on the above assumptions. Thus, elements of 

the payment matrix of player 1 𝐀 = (𝑎𝑖𝑗), 𝑖, 𝑗 ∈ 𝑉, (where the element 𝑎𝑖𝑗  represents 

the number of served nodes of player 1 in the case if player 1 operates in the 𝑖th node 

and the opponent in the 𝑗th node), are explicitly calculated. The elements of matrix A 

are quantified based on the stated elements of cost matrices of consumers as follows: 

𝑎𝑖𝑗 = {
𝑎𝑖𝑗 + 1,          𝑖𝑓 𝑛𝑖𝑗

(1)
< 𝑛𝑖𝑗

(2)

𝑎𝑖𝑗 + 0.5,      𝑖𝑓 𝑛𝑖𝑗
(1)
= 𝑛𝑖𝑗

(2)
 

Such matrix characterizes a given game with a constant sum (where the game 

constant is equal to the number of nodes of the graph G). Equilibrium strategies can 

then be determined in a standard way based on the min-max principle. If the use of this 

approach does not lead to an equilibrium strategy, equilibrium strategies can be 

determined based on linear programming problem. 

When determining the best response to an opponent's price, the price of the goods of 

the second player 𝑝2 is known in advance. The price of the goods of the first player 𝑝1 

is in this model variable and the player would like to set it in a way to maximize his 
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revenues. It is obvious that under such assumptions the elements of the payment matrix 

of player 1 will depend on the value of 𝑝1.  

The relationship between the elements of the payment matrix and the price 𝑝1 is: 

 

𝑎𝑖𝑗(𝑝1) =∑
𝑠𝑔𝑛 (𝑡 ∗ 𝑑𝑘𝑗 + 𝑝2 − (𝑡 ∗ 𝑑𝑘𝑖 + 𝑝1)) + 1

2
𝑖∈𝑉

  

Now it is possible to express the pricing for player 1 by this mathematical model: 

 

𝑤 ∗ 𝑝1 → max 
 

 

𝑎𝑖𝑗(𝑝1) =∑
𝑠𝑔𝑛 (𝑡 ∗ 𝑑𝑘𝑗 + 𝑝2 − (𝑡 ∗ 𝑑𝑘𝑖 + 𝑝1)) + 1

2
𝑖∈𝑉

  

 ∑𝑎𝑖𝑗𝑥𝑖 ≥ 𝑤, 𝑗 ∈ 𝑉

𝑖∈𝑉

  

 ∑𝑥𝑖
𝑖∈𝑉

= 1  

The problem is discontinuity of the Signum function here, but the function can be 

replaced by binary programming problem. The new model includes following sets and 

parameters: 

• n ∈ 𝑍+ – number of nodes 

• 𝑉 = {1,2, …𝑛} – set of all nodes 

• 𝑑𝑖𝑗 ≥ 0, 𝑖, 𝑗 ∈ 𝑉 – shortest distance between nodes i and j 

• t > 0– costs per unit distance 

• 𝑝(2) > 0 – price of opponent’s ( player 2) product 

• M – big positive number 

• 𝜀 − small positive number. 

Variables: 

• w ∈ 〈0, 𝑛〉  – number of served nodes 

• 𝑥𝑖 ∈ 〈0,1〉, 𝑖 ∈ 𝑉 – ith mixed strategy of player 

• 𝑝(1) > 0 – price of product of player 1 

• 𝑎𝑖𝑗 ∈ 〈0, 𝑛〉 , 𝑖, 𝑗 ∈ 𝑉 – payment matrix of player 1 

• 𝑏𝑘𝑖𝑗
(1)
∈ {0,1}; 𝑘, 𝑖, 𝑗 ∈ 𝑉,  

• 𝑏𝑘𝑖𝑗
(2)
∈ {0,1}; 𝑘, 𝑖, 𝑗 ∈ 𝑉, 

• 𝑏𝑘𝑖𝑗 ∈ 〈−1,1〉;  𝑘, 𝑖, 𝑗 ∈ V. 

This situation can be described by this mathematical model: 

 𝑤 ∗ 𝑝(1) → max (1) 

 𝑡 ∗ 𝑑𝑘𝑗 + 𝑝
(2) − (𝑡 ∗ 𝑑𝑘𝑖 + 𝑝

(1)) ≤ 𝑀 ∗ 𝑏𝑘𝑖𝑗
(1)
; 𝑘, 𝑖, 𝑗 ∈ 𝑉 (2) 

 𝑡 ∗ 𝑑𝑘𝑗 + 𝑝
(2) − (𝑡 ∗ 𝑑𝑘𝑖 + 𝑝

(1)) ≥ −𝑀 ∗ 𝑏𝑘𝑖𝑗
(2)
; 𝑘, 𝑖, 𝑗 ∈ 𝑉 (3) 
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 𝑏𝑘𝑖𝑗
(1)
+ 𝑏𝑘𝑖𝑗

(2)
≤ 1; 𝑘, 𝑖, 𝑗 ∈ 𝑉  (4) 

 𝑏𝑘𝑖𝑗 = 𝑏𝑘𝑖𝑗
(1)
− 𝑏𝑘𝑖𝑗

(2)
; 𝑘, 𝑖, 𝑗 ∈ 𝑉 (5) 

 𝑏𝑘𝑖𝑗
(1)
∗ (𝑡 ∗ 𝑑𝑘𝑗 + 𝑝

(2) − (𝑡 ∗ 𝑑𝑘𝑖 + 𝑝
(1))) ≥ 𝜀 ∗ 𝑏𝑘𝑖𝑗

(1)
; 𝑘, 𝑖, 𝑗 ∈ 𝑉 (6) 

 𝑏𝑘𝑖𝑗
(2)
∗ (𝑡 ∗ 𝑑𝑘𝑗 + 𝑝

(2) − (𝑡 ∗ 𝑑𝑘𝑖 + 𝑝
(1))) ≤ −𝜀 ∗ 𝑏𝑘𝑖𝑗

(2)
; 𝑘, 𝑖, 𝑗 ∈ 𝑉 (7) 

 

𝑎𝑖𝑗 =
∑ (𝑏𝑘𝑖𝑗 + 1𝑘∈𝑉 )

2
; 𝑖, 𝑗 ∈ 𝑉 (8) 

 𝑤 ≤∑𝑎𝑖𝑗 ∗ 𝑥𝑖
𝑖∈𝑉

; 𝑖, 𝑗 ∈ 𝑉 (9) 

 ∑𝑥𝑖
𝑖∈𝑉

= 1 
(10) 

The objective function (1) represents the revenue function of player 1. Equations (2) 

to (8) are used to determine the payment matrix of player 1. Equations (9) and (10) 

make it possible to determine the equilibrium mixed strategy of player 1. 

3.1 Best response model with limited capacity of duopolist and different 

demands of nodes 

In the previous section, we considered unit demand of individual nodes of the graph. It 

is obvious that a player's interest in each node is generally conditioned by the "size" of 

the demand of a given node, while in terms of this criterion, some nodes are more 

interesting for the player than the others. The size of demand can be related, for 

example, to the number of inhabitants. We will also leave the assumption of an 

unlimited offer and assume the limited offer of players. Considering the limited demand 

of nodes, which is given by the vector 𝐠 = (𝑔𝑖), 𝑖 ∈ 𝑉, let us also consider constraints 

on supply side. We will mark the maximum offered quantity of goods for player 1 as 

𝑘1 and the maximum offered quantity of goods for player 2 as 𝑘2. Consumer demand 

will then be distributed among the players based on the following rules: the consumer 

seeks to minimize his costs. However, if the player's capacity is not sufficient, he must, 

despite the increased costs, move to the opponent.  

When solving such game, the total capacity on the supply side needs to be 

considered. If it is possible to satisfy the whole demand of the nodes, that means if 𝑘1 +
𝑘2 ≥ ∑ 𝑔𝑖𝑖∈𝑉 , it is possible to use a game with constant sum. If it is not possible to 

satisfy the whole demand of the nodes, that means if 𝑘1 + 𝑘2 < ∑ 𝑔𝑖𝑖∈𝑉 , any node 

would be equally advantageous for both players (𝐀𝑛𝑥𝑛 = (𝑘1), 𝐁𝑛𝑥𝑛 = (𝑘2)). 
In case the prices of duopolists are known in advance (case of the fixed price model) 

and it is possible to satisfy the whole demand of the nodes (𝑘1 + 𝑘2 ≥ ∑ 𝑔𝑖𝑖∈𝑉 ), the 

calculation of elements of payment matrix of player 1 (𝐀) and payment matrix of player 

2 (𝐁) can be written in the form of the following procedure: 

 
LET  𝑉 = {1,2, …𝑛}, 𝐃𝑛x𝑛 = (𝑑𝑖𝑗), t,  𝑝1, 𝑝2, 𝐠𝑛 = (𝑔𝑖), 𝑘1, 𝑘2 

LOOP (𝑖, 𝑗 ∈ 𝑉) DO 
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𝑛𝑖𝑗
(1)
= 𝑡 ∗ 𝑑𝑖𝑗 + 𝑝1; 

𝑛𝑖𝑗
(2)
= 𝑡 ∗ 𝑑𝑖𝑗 + 𝑝2; 

𝑎𝑖𝑗 = 0; 

𝑏𝑖𝑗 = 0; 

LOOP (k,i,j ∈ 𝑉) DO 

IF 𝑛𝑘𝑖
(1)
< 𝑛𝑘𝑗

(2)
 DO 𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 𝑔𝑘;  

ELSEIF 𝑛𝑘𝑖
(1)
= 𝑛𝑘𝑗

(1)
  DO 𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 0.5𝑔𝑘 , 𝑏𝑗𝑖 = 𝑎𝑗𝑖 + 0.5𝑔𝑘; 

ELSEIF 𝑛𝑘𝑖
(1)
> 𝑛𝑘𝑗

(2)
 DO 𝑏𝑗𝑖 = 𝑏𝑗𝑖 + 𝑔𝑘; 

ENDIF 

LOOP (𝑖, 𝑗 ∈ 𝑉) DO 
IF 𝑎𝑖𝑗 − 𝑘1 > 0 DO 𝑎𝑖𝑗 = 𝑘1, 𝑏𝑗𝑖 = 𝑏𝑗𝑖 + 𝑎𝑖𝑗 − 𝑘1; 

ENDIF  
IF 𝑏𝑗𝑖 − 𝑘2 > 0 DO 𝑏𝑗𝑖 = 𝑘2, 𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑗𝑖 − 𝑘2; 

ENDIF  

 

The determination of the equilibrium price of player as the best response to the set 

price of the opponent is different now. Unlike the basic model, we will consider the 

size of the demand of individual nodes. Let the demand of the nodes be given by vector 

𝐠 = (𝑔𝑖), 𝑖 ∈ 𝑉 and the equation (17) will be replaced by equation: 

 

𝑎𝑖𝑗 ≤
∑ (𝑏𝑘𝑖𝑗 + 1𝑘∈𝑉 )

2
∗ 𝑔𝑘; 𝑖, 𝑗 ∈ 𝑉 (11) 

We consider the case where duopolist knows the limit of his capacity, but he does 

not know the limit of his opponent (he considers it to be large enough to satisfy the 

whole demand). 

Then the elements of matrix A must meet the constraints:  

 

𝑎𝑖𝑗 ≤ 𝑘1; 𝑖, 𝑗 ∈ 𝑉 (12) 

These relations will ensure (together with equations (1)-(7), (9)-(11)) the setting of 

such values of matrix A, that also meet the capacity limit for player 1. 

4 Numerical example 

Further illustrative example is inspired by the administrative division of the Slovak 

Republic. Let the nodes of graph G represent potential regions - the so-called catchment 

areas for the construction of new branches of two companies operating in the market in 

the position of two strong players (P = {1,2}). By regions (catchment areas) we will 

understand the regions of the Slovak Republic, represented by individual regional 

cities: 1-Banská Bystrica, 2-Bratislava, 3-Košice, 4-Nitra, 5-Prešov, 6-Trenčín, 7-

Trnava and 8- Žilina. These 8 cities therefore represent the nodes of the graph G, 𝑉 =
{1,2, …8}. 
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The demand of individual nodes is equal to the number of customers of these nodes 

and is represented by the vector: 

𝐠𝑻 = (112; 115; 122; 122; 119; 108; 88; 109) 

The numbers are given in thousands and rounded. This means that, for example, in 

the first node (i.e., in the city of Banská Bystrica) there are currently 160 thousand 

potential customers, whom companies can get and sell their products to. In the second 

node (Bratislava) there are 33 thousand more of them, that means 115 thousand 

customers and in the third node (Košice) 189 thousand. This continues until the last, 

eighth node, which corresponds to the city of Žilina and where there are currently 165 

thousand potential customers. 

Each of these consumers make purchase from one of the two companies (players) 

being aware of the costs they must bear if they decide to buy from a selected company. 

Based on these costs, he decides who from to buy the goods. Although the companies 

offer homogeneous services, their prices are not the same.  However, in addition to the 

price of the goods, the total costs of the customers also include transport costs. Those 

per kilometre of distance are represented by t. We will consider different unit transport 

costs. It is clear, that the value of these costs also represents the "weight" between the 

player’s price and the distance to go to the place of service. The matrix 𝐃 = 𝑑(𝑖, 𝑗),
𝑖, 𝑗 ∈ 𝑉 is also known, is representing the shortest distances between individual regional 

cities and has the following form: 

D=

[
 
 
 
 
 
 
 
0 207 213 119 248 142 165 89
207 0 420 88 419 125 47 198
213 420 0 332 35 329 378 256
119 88 332 0 361 85 46 140
248 419 35 361 0 294 372 221
142 125 329 85 294 0 78 73
165 47 378 46 372 78 0 151
89 198 256 140 221 73 151 0 ]

 
 
 
 
 
 
 

 

Let us have a situation in which the pre-known unit price of the second player's 

product will be 𝑝2 = 100. However, let the consumer know that his price cannot differ 

from the other player’s price by more than 50%. The product price of the player must 

be within interval 〈𝑝1
(𝑙𝑜)
; 𝑝1

(𝑢𝑝)〉 where 𝑝1
(𝑙𝑜)

= 50 and 𝑝1
(𝑢𝑝)

= 150. Let the unit costs 

per kilometre be t=0.2 and limited capacity of player 1 be 600. That means that he 

knows he cannot serve more than 600 units of demands, but he does not know the 

capacity of the opponent (he considers it to be large enough).  
Based on our model we obtain these results, solved by GAMS and its solver Couenne 

(this is a problem of mixed integer nonlinear programming (MINLP)). The calculated 

price of the first player's product at the known price 𝑝2 = 100 is at level 𝑝1 = 99.999, 

at which he achieves revenues of 52,172.095, while serving almost 522 customers. The 

solution also gives the final payment matrix A: 
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A=

[
 
 
 
 
 
 
 
600 462 600 462 600 353 462 356
433 600 600 115 600 203 115 325
241 241 600 241 356 241 241 241
433 600 600 600 600 437 584 325
241 241 539 241 600 241 241 241
542 600 600 458 600 600 570 433
433 600 600 311 600 325 600 325
539 570 600 570 600 462 570 600]

 
 
 
 
 
 
 

 

The accuracy of the calculation can be verified using a fixed price model (where 

prices of both players are given in advance).  

Strategy of the first player is then given by the vector 𝐱𝑻 =
(0; 0; 0; 0.01968; 0; 0.43633; 0; 0.54399). Interpretation of mixed strategies (the 

probability of strategy selection) is generally difficult. If it was possible to change the 

place of service (for example, daily revenues, distribution of the number of employees 

or distribution of a divisible commodity), player 1 should perform 1.968% of service 

in node 4, 43.633% in node 6 and 54.399% in node 8.  

5 Conclusion 

Every company wants to be successful in operating in the market. To gain its aims, it 

needs to be competitive and make strategic decisions like choosing location or price of 

its products. Spatial competition models are generally discussed topic focused primarily 

on the analysis of location decisions of players who aim to maximize their revenues. 

Game theory tools, due to their competitive nature, can support the decision analysis.  

In our article we presented specific situation of spatial game dealing with placement 

on the graph, in which two companies operating in the market make simultaneous 

decisions about locations of their branches. At the same time, one of the two companies 

also decide on the price of its products while the price of his opponent is known in 

advance. That means, the price is a variable in the model and the duopolist tries to set 

it in a way to maximize his revenues based on the best response. Offer of this duopolist 

is considered to be limited. The demand, located in the nodes and represented by 

indifferent customers, is divided among duopolists and we assumed it to be different in 

each node. The duopolists compete to attract their potential customers, who choose one 

of them based on their total costs, consisting of product price and shipping costs. To 

analyze this situation zero-sum games can be used. The situation we also presented on 

numerical example where nodes represented regional cities of Slovak Republic, while 

demands of these cities were related to the number of their inhabitants. For finding 

optimal solution we used GAMS and its solver Couenne.  
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