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Abstract: This article investigates the connections among the prices of biofuels, agricultural commodities and other 
relevant assets in Europe, the US, and Brazil. The analysis includes a comprehensive data set covering price data for 
38 traded titles during the period from 2003 to 2020. We used the minimum spanning tree (MST) approach to identify 
price connections in a complex trading system. Our analysis of mutual price connections reveals the major defining 
features of world-leading biofuel markets. We provide the characteristics of the main bioethanol and biodiesel markets 
with respect to government policies and technical and local features of the production and consumption of particular 
biofuels. Despite a relatively long and dynamically evolving history of biofuels, the biofuel systems in the US, Brazil 
and Europe do not converge toward the same pattern of relations among fossil fuels, biofuels, agricultural commodi-
ties and financial assets.
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As identified in  the early contributions of  Tyner 
and Taheripour (2008) and Tyner (2010), agricultur-
al and energy markets had not been closely correlated 
before the advent of biofuels. All this has changed dur-
ing the last 20 years (Timilsina 2018).

The goal of this article is to take empirical data on ag-
ricultural and energy commodities and to evaluate their 
co-movement from a  dynamic perspective. We  pro-
vide an empirical analysis of a global system of biofuel- 
-induced price transmission among the main energy and 
agricultural commodities and potentially related finan-
cial assets. Our results show a dynamic evolution of the 

biofuel-related price co-movements with different levels 
of  price integration during the four main sub-periods 
identified in our analysis. Despite a relatively long and 
dynamically evolving history of  biofuels, the biofuel 
systems in the US, Brazil and Europe do not converge 
toward the same pattern of relations among fossil fuels, 
biofuels, agricultural commodities and financial assets.

As outlined in  the comprehensive book on  bio-
fuel policies by  de Gorter et  al. (2015), the literature 
on  fuel versus food economic policies and resulting 
price linkages uses three main modelling approaches 
– theoretical models of channels leading to price con-
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nectedness (Ciaian and Kancs 2011a,  b; Rajčaniová 
et al. 2013, 2014; Drabík et al. 2014, 2015, 2016; Bou-
testeijn et  al. 2017), partial and general equilibrium 
models simulating market interdependencies (Beck-
man et al. 2012; Campbell et al. 2018; Taheripour et al. 
2021; Zhao et al. 2021), and time series analyses, which 
is a method used in this article.

Mutual co-movement of time series of prices of bio-
fuels and related assets is a subject of a large body of lit-
erature which was reviewed in detail by Serra (2013) and 
more recently by Janda and Krištoufek (2019). A large 
number of different time series techniques have already 
been used for the investigation of biofuel-related price 
transmission analyses. Some of them are very standard 
mainstream time series econometrics techniques, such 
as the vector error correction model (Zhang et al. 2010; 
Ciaian and Kancs 2011a, b; Rajčaniová and Pokrivčák 
2011), vector autoregression or  structural vector au-
toregression (Capitani et  al. 2018; Dalheimer et  al. 
2021), generalised autoregressive conditional het-
eroscedasticity models (Abdelradi and Serra 2015), 
autoregressive distributed lag (Dutta 2018) and more 
general Granger causality approaches (Bastianin et al. 
2016). However, less common techniques, such as cop-
ulas (Reboredo 2012; Tiwari et al. 2021), wavelets (Pal 
and Mitra 2017) and frequency-dependent spillovers 
(Pal and Mitra 2020), are used as well.

In this article, we  use the minimum spanning tree 
(MST) technique which was introduced to  biofuel-
-related research by Krištoufek et al. (2012) and Lau-
tier and Raynaud (2012). In large systems of variables, 
it  is  especially difficult to  identify connections above 
the standard pairwise perspective, as the testing statis-
tics or  estimated parameters are, by  definition, given 
for a  specific one-to-one relationship. MSTs are built 
on such pairwise connections as well, but they provide 
a more complex picture of the connections, as the co-
-movement dynamics are represented as a connected 
graph. This type of visualisation leads to a better un-
derstanding of the interconnections in the whole sys-
tem together rather than studying the connections 
separately, so  it makes the interpretation much more 
straightforward.

Compared with investigators in earlier articles deal-
ing with MSTs in  biofuel-related networks (Krištou-
fek et  al. 2012; Lautier and Raynaud 2012), we  have 
used  a  wider set of  potentially relevant commodities 
and a  longer period of  analysis. Therefore, our main 
contribution to  the biofuel-related MSTs  literature 
is data-based, and we also provide improved, colour-
-based visualisation of the MSTs.

MATERIAL AND METHODS

We investigated the co-movement of biofuel-related 
prices through MSTs. The starting points of MST anal-
yses are the Pearson pairwise correlation coefficients, 
ρij , which were used in the seminal agenda-setting ar-
ticles by Tyner and Taheripour (2008) and Tyner (2010) 
to illustrate the paradigm of integrated energy and agri-
cultural markets. The MSTs reconstruct the correlation 
structure from the correlation matrix through distances 
and the resulting tree-like structure that represents 
the most important connections in  a  system of  vari-
ables or a network. To translate the correlations of ρij 
between variables  i  and  j  into distances, we  followed 
the method of  Mantegna (1999) by  transforming the 
Pearson correlation coefficients of ρij so that they rep-
resented an appropriate measure of distance by using 
the following formula:

( )2 1ij ijd − ρ= 	 (1)

where: dij – distance; ρij – Pearson pairwise correlation 
coefficient.

Matrix , composed of the distances dij , meets all the 
criteria of the Euclidean metric.

The values of the coefficients dij are strictly positive, 
varying between 0 and 2. For dij = 0, we have the perfect 
positive correlation, dij = √2, which means no correla-
tion, and dij = 2 represents the perfect negative corre-
lation. This transformation is  not strictly required 
for the purpose of  this article, which is  the creation 
of  a  cluster structure of  closely related commodities. 
However, we  have used it  to  be consistent and com-
parable with the mathematical graph theory literature, 
in  which it  is  considered important to  use distance 
metrics (i.e. using non-negative distances).

There are several algorithms that can be used to find 
the MST. In our analysis, we used Kruskal's algorithm 
(Kruskal 1956). The basic way that this algorithm works 
is that it starts with all of the possible n(n –1)/2 connec-
tions (where: n – number of variables) and subsequently 
systematically eliminates the weakest links, or  in our 
case, the largest distances between the nodes, until 
it  is still possible to connect all nodes with their links. 
This elimination results in a significantly lower number 
of linkages that are now decreased to only the n – 1 value 
for the MST. Such a simplified graph is much more leg-
ible and easier to comprehend visually than is the initial 
matrix of all pairwise correlation coefficients. All of the 
computations necessary for this part were processed 
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in R software (version 3.4.4), and the MSTs were visual-
ised through the igraph package (version 1.2.5).

The problem that we would likely have to face when 
it comes to using MST analysis lies in the possible tem-
poral instability of the links between each of the inputs. 
As  shown by  Krištoufek et  al. (2012), the structure 
of the MST on the basis of monthly or weekly data may 
be different, so although we are using the economically 
most natural weekly data, we must be concerned with 
what happens if we consider different data frequencies. 
Therefore, to  check the stability of  the links and find 
out whether they are actually relevant or appear in the 
chosen structure with weekly time-frequency rather 
randomly, we used the bootstrapping technique, which 
was introduced by Tumminello et al. (2007). To do so, 
we  took the already created MST and constructed 
a bootstrapped version of the time series from which 
the previous MST was created and on  which it  was 
based. We then kept the whole data set as it was; how-
ever, we then allowed for the data set to be randomly 
reorganised, and we  also allowed repetitions, which 
can simply mean that some links will be  completely 
omitted and some can appear multiple times. This will 
create a new MST structure, whose links are then re-
corded, while this process is repeated 1 000 times over-
all. The procedure finally left us with a precise number 
of how many times out of 1 000, a certain link appeared 

in our MST construction. All of these values were then 
marked for each edge as bij ∈ [0; 1], which is the ratio 
of the actual number of appearances in the MST to the 
total number of  realised bootstraps. We  considered 
a value greater than 0.5 as a fairly stable link.

Our data set contains 38 price time series of different 
commodities and assets that are in some way possibly 
connected to the prices of biofuels. We considered the 
following: Brazilian and US ethanol, European Union 
and US  biodiesel, Brazilian sugar, corn, sugar beets, 
sugar cane, wheat, palm oil, rapeseed, soybeans, sun-
flower seeds, cattle, cocoa, coffee, cotton, orange juice 
and rice, Brazilian, US  and German diesel and gaso-
line, Brent crude, heating oil, West Texas Intermediate 
(WTI) oil, exchange rates [Brazilian real (BRL)/USD, 
USD/EUR] and indexes [Bovespa, German stock index 
(DAX), Dow Jones, Financial Times Stock Exchange 
(FTSE)  100, Standard and Poor's (S&P)  500, Federal 
Funds Effective Rate, London Interbank Offered Rate 
(LIBOR)]. A detailed description of the data is provided 
in Schererová (2020).

For our analysis, we  transformed our raw data into 
logarithmic returns according to this formula:

( ) ( )1
–1

log – log log t
t t t

t

P
r P P

P−= = 	 (2)

where: rt – logarithmic return; Pt – prices.
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Figure 1. FAO Food Price Index

The years 2002–2004 represent 100 (the base period); the colours serve to distinguish 4 time periods
Source: Own calculations based on FAO (2020)
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For the construction of  MSTs, we  needed to  pro-
duce a correlation matrix first, which meant that such 
correlations needed to  be  defined. The  studied series 
thus could not contain unit roots. A  combination 
of the augmented Dickey-Fuller test (Dickey and Fuller 
1979) and the Kwiatkowski-Phillips-Schmidt-Shin test 
(Kwiatkowski et al. 1992) allowed the log-return series 
to be used for the analysis.

Each of  our time series was a  collection of  weekly 
prices from the period from 21  November  2003 until 
24 April 2020. As  far as  the day of  the collection was 
concerned, we always looked for Friday data; only when 
Friday data were not available did we use the data from 
the closest previous day. The span that our data set cov-
ers is approximately 18 years, which leads to 859 weekly 
observations.

As shown in Figure 1, we divided the whole data set 
into smaller parts according to  the price fluctuations 
captured by the Food Price Index, which is published 
by the FAO (2020). These periods are as follows:
–	Period I: 21. 11. 2003 – 31. 08. 2007 (199 observations)
–	Period II: 07. 09. 2007 – 28. 10. 2011 (217 observations)
–	Period III: 4. 11. 2011 – 25. 12. 2015 (217 observations)
–	Period IV: 01. 01. 2016 – 24. 04. 2020 (226 observations)

RESULTS AND DISCUSSION

In the MST graphs, each edge that connects two 
assets has two numerical values depicted next to  it. 
First, the one without brackets represents the dis-
tance dij that denotes the strength of the correlation be-
tween the two assets. In this case, all distances dij vary 
from 0 to √2, where smaller numbers represent a stron-
ger relationship between the two (as  it  is a distance). 
An  important feature of  our data is  that in  all of  the 
MST graphs, we have only non-negative correlations. 
The MST algorithm, which minimises distances in the 
whole graph, is  focused on positively correlated pairs 
of  assets. As  long as  there are enough positively cor-
related pairs of  assets, the negatively correlated pairs 
of  assets are not included in  the MSTs, which is  the 
case in this article.

The second important number depicted in the MST 
graphs, the one within brackets, represents the value 
created by  the bootstrap, bij , representing the ratio 
between the number of times that this particular pair-
wise link appeared in the bootstrapped MST from the 
1 000 repetitions. We used the value of bij = 0.5 as a val-
ue from which to consider certain links as being stable.

Looking at the MST for the entire period (Figure 2), 
we describe how the previously defined methodology 

works. The  first pair that is  created with the lowest 
number, representing the closest link or the strongest 
relationship, is  the Dow Jones and the S&P 500, with 
the distance of 0.223, which creates a pair in all of the 
MSTs. This finding is quite intuitive, considering that 
they are both from the US stock market. We can also 
say with confidence that all financial indexes are in-
terconnected to  some extent and that they will form 
a cluster in every period of our analysis. In the second 
step of  the construction of  this MST, Brent crude oil 
and WTI are connected with the distance of  0.498, 
along with a strong connection of Brent crude oil with 
heating oil as well (0.556).

The construction of  the MST was not continuous 
in  the sense that we  would obtain an  initial continu-
ous graph which would simply be enlarged in any new 
step. Instead, as highlighted by our example of the first 
pair of stock indexes and the second pair of fossil fu-
els, we  first created several (possibly non-connected) 
clusters, which were connected only in the subsequent 
steps of the MST's creation. This method, in particu-
lar, means that we  should not expect any linearity 
(monotonicity) in the constructed MST. For example, 
in Figure 2, we have a  link of US gasoline, US diesel, 
Brazilian diesel and Brazilian gasoline in  which the 
links between country-specific fossil fuels were created 
during the early steps of MST construction; therefore, 
they have low distances (approximately 0.6 for US fu-
els and 0.7  for Brazilian fuels). However, the connec-
tion of country-specific fuel clusters in a global fossil 
fuel cluster was done in  later steps, as  documented 
by a much higher distance between US diesel and Bra-
zilian diesel (d = 1.269).

We stress that all of these links, along with other im-
portant relationships that were formed, are not ran-
dom and that their bootstrap value (in the brackets) 
is usually equal to 1 or is very close to 1, meaning that 
these connections appeared in all or almost all of  the 
1  000  bootstrapped cases. This finding ensures that 
these relationships are stable throughout the whole pe-
riod and will appear in nearly every MST that we anal-
yse. Another important connection is  that between 
the two indexes FTSE  100 and DAX, both coming 
from the  European financial markets. The  algorithm 
proceeded with the elimination of  the weakest con-
nections, leaving us with the previously mentioned 
n –1 connections (edges), which in this case represent 
the 37 edges that can be observed in the MST structure. 
What resulted from such elimination were various clus-
ters, which were formed into groups – clusters based 
on certain similarities that the assets possess, as further 
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described by Sieczka and Hołyst (2009). The commodi-
ties that are in a cluster together either belong to  the 
same sector or are interconnected in a similar way.

We were able to distinguish among five main clusters. 
The  first one consists of  the stock indexes that were 
further present in some form in all of  the MSTs pre-
sented here. From there, we observed the connection 
provided by the Brazilian stock market index, Bovespa, 
which is not very meaningful on its own, on the basis 
of  the bootstrapped bij  value, but provides a  connec-
tion to other clusters.

Although the colour code for related commodities 
and assets in general clearly indicates that similar as-
sets are usually clustered together, a clear exception are 
interest rates and agricultural commodities not serv-
ing as  a  biofuel feedstock, which are spread all over 
the MST, with dij close to √2, indicating very low cor-
relation, and with bij close to 0, indicating low stabil-
ity of the particular connection. We followed up with 
MSTs for specific periods.

In  Figure  3, we  considered the period from No-
vember 2003 to August 2007. This period was an ini-
tial stage of  a  biofuel boom, with biofuel-supporting 
policies being promoted all over the globe. During this 

period, there was a significant increase in the produc-
tion of biofuels connected with very strong expecta-
tions of  future further large expansions of  biofuel 
production driven by both government support poli-
cies and market forces. During this period, the refin-
ery capacities and further infrastructure were in  the 
process of expansion, generally lagging behind the in-
creasing demand.

The strongest connection in the MST for this period 
is the one between American and European biodiesel. 
The important thing to notice here is the quite weak but 
very stable connection to  rapeseed as  the main feed-
stock. The second-lowest pair is known to us from the 
previous MST – the Dow Jones and S&P 500  (0.294) 
with b = 1. Furthermore, all of the stock indexes form 
a very connected cluster; note the connection between 
the FTSE 100 and DAX, along with the connection be-
tween the DAX and S&P 500. A very stable pair across 
all of  the periods was that of  sugar cane and sugar 
beets, with the distance of 0.321, which is understand-
able given that the sugar from sugar beets and sugar 
cane is nearly identical (Kramer 2016).

Another common pair is that of Brent crude oil and 
WTI (0.424, with b  =  1), which is  not surprising be-

Figure 2. Minimum spanning tree – Entire period 2003–2020

Colour-code: orange – biofuels; yellow – bioethanol feedstock; red – biodiesel feedstock; green – food commodities; 
dark red – fossil fuel; grey – stock indices; pink – interest rates; blue – exchange rates
The numbers in parenthesis represent a percentage of appearance of particular link in 1 000 bootstrapped replications
Source: Own calculations based on Thomson Reuters Eikon (2020), Bloomberg Datastream (2020), U.S. Energy Informa-
tion Administration (2020), ANP (2020), Federal Reserve Bank of St. Louis (2020), CEPEA (2020)
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Figure 4. Minimum spanning tree – Period II

Colour-code: orange – biofuels; yellow – bioethanol feedstock; red – biodiesel feedstock; green – food commodities; 
dark red – fossil fuel; grey – stock indices; pink – interest rates; blue – exchange rates
The numbers in parenthesis represent a percentage of appearance of particular link in 1 000 bootstrapped replications
Source: Own calculations based on Thomson Reuters Eikon (2020), Bloomberg Datastream (2020), U.S. Energy Informa-
tion Administration (2020), ANP (2020), Federal Reserve Bank of St. Louis (2020), CEPEA (2020)

Figure 3. Minimum spanning tree – Period I

Colour-code: orange – biofuels; yellow – bioethanol feedstock; red – biodiesel feedstock; green – food commodities; 
dark red – fossil fuel; grey – stock indices; pink – interest rates; blue – exchange rates
The numbers in parenthesis represent a percentage of appearance of particular link in 1 000 bootstrapped replications
Source: Own calculations based on Thomson Reuters Eikon (2020), Bloomberg Datastream (2020), U.S. Energy Informa-
tion Administration (2020), ANP (2020), Federal Reserve Bank of St. Louis (2020), CEPEA (2020)
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cause they are both seen as the global benchmark ref-
erences for crude oil prices. They are followed by the 
connection of Brent crude oil with heating oil (0.580, 
with b = 1). However, there is no established connec-
tion between heating oil and WTI, which would nor-
mally be there, but because it would create a loop, the 
algorithm minimising the number of links did not in-
clude it. Obvious but still very important connections 
were established between the gasolines and diesels 
– namely, German diesel and gasoline (0.493), US die-
sel and gasoline (0.693) and Brazilian diesel and gaso-
line  (0.515). All of  these relationships also were very 
stable in the bootstrapped cases. The process then con-
tinued to create the whole MST in Figure 3.

Figure  3 shows three clusters –  that of  fossil fuels 
connected to crude oils and heating oil, the financial 
assets, such as stock indexes, and biofuels that are con-
nected to their feedstock. A very interesting link seen 
throughout the whole period is that of Brazilian ethanol 
and sugar. This link is so stable mainly because Brazil's 
market was already well established since the produc-
tion of  biofuels begun in  the  1970s. Another reason 
for that stability is the government's interventions and 

subsidisation (Koizumi 2003), as well as being related 
to  the monopoly situation with Brazil's Petrobras, 
which is seen as the only important market player for 
fuels. Also, biodiesel is  already well connected to  its 
feedstock, whereas US  ethanol is  not yet connected 
to its major feedstock, corn.

The next two periods of biofuel development are cap-
tured in  Figure  4 (September  2007 to  October  2011) 
and Figure 5 (November 2011 to December 2015).

The last period after 2016 (Figure 6) can be charac-
terised as  a  return to  a  stable proportional develop-
ment of  both biofuels and agriculture in  a  stabilised 
policy environment. If  we  look at  the Food Price In-
dex, which was also included in the previous part, the 
prices of commodities and assets in this period seem 
to be without any increasing or decreasing trend and 
are not very volatile. A  major feature of  this period 
of mature biofuel markets is a close connection of both 
US and Brazilian ethanol, connected through the US fi-
nancial markets. This alignment of the US and Brazilian 
ethanol prices also means that US agricultural markets 
recovered from a period of ethanol production being 
the main driving force for US corn production.

Figure 5. Minimum spanning tree – Period III

Colour-code: orange – biofuels; yellow – bioethanol feedstock; red – biodiesel feedstock; green – food commodities; 
dark red – fossil fuel; grey – stock indices; pink – interest rates; blue – exchange rates
The numbers in parenthesis represent a percentage of appearance of particular link in 1 000 bootstrapped replications
Source: Own calculations based on Thomson Reuters Eikon (2020), Bloomberg Datastream (2020), U.S. Energy Informa-
tion Administration (2020), ANP (2020), Federal Reserve Bank of St. Louis (2020), CEPEA (2020)
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Even after a  relatively long period of  development 
of US ethanol and both US and European Union bio-
diesel, Brazilian ethanol and commodities and assets 
closely related to them still kept their central position 
of the most developed and best integrated biofuel sys-
tem. Brazilian ethanol connects US ethanol to a com-
pact cluster of vehicle fuels and through the Bovespa 
financial index connects with other major financial in-
dexes to the oil branch of the fossil fuel system.

CONCLUSION

Our comparison of MSTs over distinct periods shows 
an  interesting change in  the structure of  the price in-
terconnection of  biofuels and related assets and com-
modities, along with the global development of biofuels 
and related policies. During the initial period of biofuel 
development, it was clear that all fossil fuels considered 
in our analysis stood apart as a clearly defined and closely 
interconnected group without a strong interaction with 
biofuels, so it was a time when agricultural commodities 
and fossil fuels were still much less connected.

During the 18 years covered in our analysis, we ob-
served a clear erosion of the initial firm cluster of fos-

sil fuels. Although the institutional decoupling of  the 
prices of natural gas and oil, driven by industrial organ-
isation policies rather than biofuel policies, was a major 
force in driving natural gas away from the WTI/Brent 
crude/heating oil cluster, the separation of highly pro-
cessed vehicle fuel prices from the prices of non-vehicle 
raw oils was closely connected with the advances of bio-
fuels. This finding is  particularly strong for ethanol, 
which became closely aligned with vehicle fuels, mainly 
because of  mandatory blending requirement policies. 
For biodiesel, the technological properties different 
from those of ethanol, leading to different blending pol-
icies meant that it was not as close to fossil vehicle fuels 
as was ethanol, but biodiesel was still a part of a large 
vehicle fuel-related cluster.

An important regularity over the whole investigated 
period was a  close and stable direct connection be-
tween the European Union and US biodiesel together 
with their close connection with their feedstock. In the 
same way, we have documented a strong and stable di-
rect connection between Brazilian ethanol and its sugar 
cane feedstock, which was represented by sugar. How-
ever, US ethanol behaved differently from other biofu-
els. Figures 2–6 seem to indicate that a close connection 

Figure 6. Minimum spanning tree – Period IV

Colour-code: orange – biofuels; yellow – bioethanol feedstock; red – biodiesel feedstock; green – food commodities; 
dark red – fossil fuel; grey – stock indices; pink – interest rates; blue – exchange rates
The numbers in parenthesis represent a percentage of appearance of particular link in 1 000 bootstrapped replications
Source: Own calculations based on Thomson Reuters Eikon (2020), Bloomberg Datastream (2020), U.S. Energy Informa-
tion Administration (2020), ANP (2020), Federal Reserve Bank of St. Louis (2020), CEPEA (2020)
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of  US  ethanol and its major feedstock, corn, was not 
a natural stable situation. This close connection of etha-
nol and corn occurred only during the period of  food 
crises and during the subsequent period of stagnation 
for biofuels. Both during the initial period of  market 
build-up for biofuels and during a more recent period 
of market stabilisation for biofuels, the US ethanol price 
was related more to fossil fuel prices than to corn prices.

The positive connection between the prices of fossil 
fuels and agricultural commodities was a common re-
sult of both our research and that seen in other recent 
literature covering a comparably long period (Pal and 
Mitra 2020; Tiwari et al. 2021). However, although these 
other investigators conclude that this co-movement 
is due to ethanol mandates, without explicitly consid-
ering the development of  prices of  ethanol and other 
biofuels, we are much more explicit in directly covering 
all relevant prices, including the prices of biofuels.

In addition to fossil fuels and biofuels being closely 
related commodities, our results included two other 
big groups of prices that used to be related to biofuels 
in some of  the previous literature. For the food com-
modities outside of  biofuel feedstock groups, our 
results clearly showed that in  no period were they 
important for price transmission in  a  large system 
of biofuels and fuels. However, for financial assets, the 
situation was different. Although particular financial 
assets served as  important connectors for the price 
transmission of biofuels and fuels in different periods, 
they also became more systemically important for the 
whole system of biofuels and fuels as a major connector 
between vehicle fuels and raw oil clusters, which had 
become separated over time because of  the growing 
importance of biofuels in the fuel system.
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