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Abstract – The problem of optimally locating service 
centers to maximize customer coverage within a 
specified distance remains both theoretically significant 
and practically relevant. This article presents a game-
theoretic approach to solving such location-allocation 
problems, offering a comprehensive framework that 
identifies all viable facility configurations while 
evaluating their strategic stability. The methodology 
enables the discovery of alternative solutions that may 
be preferable under specific conditions, considering 
both maximum coverage objectives and system-wide 
stability requirements. The study examines the case of 
two service centers planned for organizational merger, 
with the approach being extensible to multiple facilities. 
The proposed technique provides new theoretical 
insights into location problems while offering practical 
applications across various domains. Potential 
implementations include retail network optimization 
during corporate consolidations, strategic placement of 
specialized healthcare facilities, and deployment of 
critical public infrastructure services. A regional case 
study illustrates how equilibrium-based solutions 
outperform traditional approaches by simultaneously 
maintaining service accessibility and ensuring long-
term network stability. 
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1. Introduction

While opening service centers remains a critical 
problem for individuals, as well as for businesses and 
governments at both local and national levels, it 
presents a set of challenges rather than profits for all.  

Such facilities could be numerous, taking large 
housing spaces such as central warehouses, hospitals, 
or recycling hubs in a particular location [19]. The 
location-allocation issue, which is about the best 
placement of the service centers, has been the subject 
of many controversial discussions among scientists 
for almost a century [10], [9]. On the other hand, while 
traditional coverage gives you only one plane of 
solutions (the problem of enumerating all optimal 
solutions may be more difficult than optimizing the 
original problem), game theory posits a more 
profound insight.  

The theoretical framework for evaluating 
consumers' responses to prices and transport costs for 
different types of products is Fetter’s early law of 
market areas, established in 1924, which determines 
the proportionate market share based on the distance 
between consumers' locations. Hotelling further 
developed this field with his 1929 article, “Stability in 
Competition,” in which he proposed a linear market 
model selling identical commodities with consumers 
evenly distributed along the scale [12], [18].  

 Martin C. Byford explores the Hotelling model 
under the realistic assumption of a finite number of 
consumers [4]. This setup does not allow for a pure 
strategy Nash equilibrium [12]. 

The location-allocation problem is a complex 
optimization challenge that requires balancing various 
factors, such as transportation costs, customer 
preferences, and competitive dynamics [1]. One 
application of the location-allocation problem is in the 
context of printed circuit board assembly, where the 
optimal placement of component bins can 
significantly impact the efficiency of the assembly 
process [5]. Similarly, in the context of warehouse 
management, the allocation of inventory across 
multiple warehouses can be modeled as a location-
allocation problem, with the goal of maximizing 
regional utilization [18].  
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Another aspect of the location-allocation problem 
is the consideration of stochastic factors, such as 
demand uncertainty or supply chain disruptions. By 
incorporating these elements into the problem 
formulation, researchers have developed robust 
optimization techniques to ensure the resilience of 
location-allocation decisions. 

The location-allocation problem is a strategic 
decision-making process that aims to minimize the 
total cost or distance between the demand points and 
the facilities [15], [14]. This problem is often 
formulated as a mathematical optimization problem, 
where the objective function aims to minimize total 
transportation costs, maximize demand coverage, or a 
combination of these factors [8], [9]. The solution to 
the location-allocation problem can be found using 
techniques such as heuristic algorithms, 
metaheuristics, or exact optimization methods, 
depending on the complexity of the problem [17], [7].  

In a service center framework, it is convenient to 
consider all the involved entities as a unit entity that 
can be easily covered through a facilitated process. 
While the introduction of centers as competitors offers 
a dynamic aspect to appraisal, it may ultimately lead 
to more long-lasting solutions in the future. Game 
theory provides a tool for considering situations in 
which the centers strive for domination without the 
possibility of unilateralism over the status quo. One 
application of game theory focuses on spatial 
competition, where companies strategically locate 
their facilities to maximize profits and minimize costs 
[18]. 

The location-allocation problem and the bimatrix 
game are both important concepts in the realm of 
operations research and game theory [1].  While they 
have distinct applications, the interplay between these 
two concepts can offer valuable insights into strategic 
decision-making across various industries and 
contexts [2], [3].   

This approach allows us to extensively investigate 
the problem and form feasible recommendations that 
achieve the best balance of conditions that go beyond 
the traditional ones, among which there may be 
options that deviate enough from the model. How 
companies interact with each other and where they're 
located creates a competition for space. In studies of 
this competition, businesses primarily compete for 
customers by offering the lowest prices and by 
locating in the most convenient places [5]. These two 
factors form the foundation of a company's success in 
the market [10], [21]. 

This article proposes an alternative perspective for 
addressing location-allocation problems through 
game theory, unconstrained by traditional limitations.  

 
 

The analysis examines a competitive model 
involving two service centers, representing a 
duopolistic framework where each center operates as 
a strategic player.  

This analysis provides new insights to address the 
service center location issue, contributing to a deeper 
understanding of the location-allocation problem. 

For the aforementioned reasons, this results in 
instability, which can be triggered when either party, 
including public or private healthcare service 
providers, decides to migrate (when given the 
opportunity) [21], [5]. 

The location-allocation problem and the bimatrix 
game are two distinct but interrelated concepts in 
operations research and game theory. The integration 
of these two concepts can lead to more realistic and 
practical decision-making models in various 
applications, such as supply chain management, 
logistics, and urban planning [12], [13]. 
 
2. Location-Allocation Problem and  

Bimatrix Game 
 

The section presents the methodological base that 
will be used in the case study. Assume a complete and 
valued graph �̅�𝐺 = (𝑉𝑉,𝐻𝐻�), where  𝑉𝑉 = {1,2, …𝑛𝑛},𝑛𝑛 ∈
𝑍𝑍+ is the set of nodes and 𝐻𝐻� is the set of graph edges 
between all pairs of nodes 𝑣𝑣𝑖𝑖  a 𝑣𝑣𝑗𝑗, 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, whose 
value is equal to minimal distance (length, time) 
between nodes 𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑗𝑗 . This edge evaluation can be 
written into a matrix 𝐃𝐃𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑑𝑑𝑖𝑖𝑗𝑗�, 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉.  The 
following mathematical models address selected 
location-allocation problems [11]. 

Consider a scenario where the number of service 
centers is predetermined, and these centers can be 
placed at any node of the graph �̅�𝐺. The objective is to 
determine the minimum distance required for these 
centers to serve all nodes. The model employs the 
following notation: 

Sets and parameters: 
 

𝑛𝑛 ∈ 𝑍𝑍+– number of nodes of the graph 
𝑉𝑉 = {1,2, …𝑛𝑛} – set of all nodes  
𝑑𝑑𝑖𝑖𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉 – minimal distances between i-th and j-th 
node 
p – maximal (predetermined) number of service 
centers 
Variables:  
𝑧𝑧, 𝑧𝑧 ≥ 0 – non-negative variable representing the 
smallest distance needed to cover all nodes 
𝑦𝑦𝑖𝑖𝑗𝑗 ,𝑦𝑦𝑖𝑖𝑗𝑗 ∈ {0,1}, 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉– binary variable representing 
whether the i-th node is within reach of the j-th center 
(𝑦𝑦𝑖𝑖𝑗𝑗 = 1), or not  (𝑦𝑦𝑖𝑖𝑗𝑗 = 0) 
𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑖𝑖 ∈ 𝑉𝑉– binary variable representing 
whether the serving center opens at the i-th node (𝑥𝑥𝑖𝑖 =
1), or not (𝑥𝑥𝑖𝑖 = 0) 
 



TEM Journal. Volume 14, Issue 2, pages 1006-1013, ISSN 2217-8309, DOI: 10.18421/TEM142-03, May 2025. 
 

1008                                                                                                                                 TEM Journal – Volume 14 / Number 2 / 2025. 

The mathematical model is then as follows: 
 

𝑓𝑓(𝐱𝐱, 𝐲𝐲 , 𝑧𝑧) = 𝑧𝑧 → 𝑚𝑚𝑖𝑖𝑛𝑛 (1) 
 

∑ 𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖∈𝑉𝑉 = 1 𝑗𝑗 ∈ 𝑉𝑉 (2) 
 

𝑦𝑦𝑖𝑖𝑗𝑗 − 𝑥𝑥𝑖𝑖 ≤ 0 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉 (3) 
 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖∈𝑉𝑉 ≤ 𝑝𝑝  (4) 
 

∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖∈𝑉𝑉 ≤ 𝑧𝑧, 𝑗𝑗 ∈ 𝑉𝑉 
  

(5) 

The objective function (1) minimizes the 
maximum distance required to achieve complete 
graph coverage. Constraints (2) enforce the condition 
that each node must be assigned to exactly one service 
center. Constraints (3) guarantee that a node can only 
be served by an open facility, while constraint (4) 
limits the total number of service centers to the 
predetermined value p. The coverage requirements are 
implemented through constraints (5), which ensure all 
nodes are accessible within the determined maximum 
distance. 

Subsequently, a mathematical formulation is 
introduced to maximize graph coverage (without 
requiring complete coverage) given a fixed number of 
service centers and a specified maximum service 
distance. The model employs the following sets and 
parameters: 

 

𝑛𝑛 ∈ 𝑍𝑍+– number of nodes of the graph 
𝑉𝑉 = {1,2, …𝑛𝑛} – a set of all nodes of a graph 
p – maximum (pre-determined) number of serving 
centers 
K – maximum required availability (may not be 
sufficient to cover the entire graph) 
𝑎𝑎𝑖𝑖𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉 – parameters representing if the i-th and j-
th nodes are to distance K (𝑎𝑎𝑖𝑖𝑗𝑗 = 1), or not (𝑎𝑎𝑖𝑖𝑗𝑗 = 0) 
Variables:  
𝑦𝑦𝑗𝑗 ,𝑦𝑦𝑗𝑗 ∈ {0,1}, 𝑗𝑗 ∈ 𝑉𝑉- a binary variable representing 
whether the j-th node is in athe vailability of at least 
one center (𝑦𝑦𝑖𝑖𝑗𝑗 = 1), or not (𝑦𝑦𝑖𝑖𝑗𝑗 = 0) 
𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉- a binary variable representing 
whether the sorting center opens in the i-th node (𝑥𝑥𝑖𝑖 =
1), or not (𝑥𝑥𝑖𝑖 = 0) 
 

The mathematical model can be formulated as 
follows: 

 

𝑓𝑓(𝐱𝐱, 𝐲𝐲 , z) = ∑ 𝑦𝑦𝑗𝑗𝑖𝑖∈𝑉𝑉 → 𝑚𝑚𝑖𝑖𝑛𝑛  (6) 
 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖∈𝑉𝑉 ≤ 𝑝𝑝   
 

(7) 

∑ 𝑎𝑎𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗∈𝑉𝑉 − 𝑦𝑦𝑖𝑖 ≤ 0 𝑗𝑗 ∈ 𝑉𝑉 (8) 
 

Objective (6) ensures the greatest possible 
coverage of the graph. Condition (7) represents that 
the maximum number of operating service centers 
must not be greater than the predetermined number.  

Equations (8) ensures that if the j-th service center 
is within reach of the i-th node, it is served from that 
center.  

The location-allocation problem can alternatively 
be analyzed through a game-theoretic lens. This study 
examines network coverage through a duopolistic 
framework, where two competing service providers 
(players P₁ and P₂) strategically select nodes for 
facility placement, following the approach established 
in [10]. The model incorporates two key assumptions: 
(1) unit demand exists at each graph node, and (2) 
service coverage is constrained by a maximum 
distance threshold K between facilities and demand 
points. This situation can be formulated as a bimatrix 
game (non-constant sum game), where the payment 
matrix A of the player 𝑃𝑃1 and the payment matrix B of 
the player 𝑃𝑃2 are of dimension nxn. Elements of matrix 
A (𝑎𝑎𝑖𝑖𝑗𝑗  𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉) represent the number of nodes served 
if player 𝑃𝑃1 serves in the i-th location and player 𝑃𝑃2 
serves in the j-th location and elements of matrix B 
(𝑏𝑏𝑖𝑖𝑗𝑗  𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉) represent the number of nodes served, if 
player 𝑃𝑃2 serves in the i-th location and player 𝑃𝑃1 
serves in the j-th location. It is further assumed that the 
demand of each node is served at its closer service 
point, but only if the distance to the operating position 
is less than or equal to K; otherwise, the node remains 
unserved. In the case that the distances to both players 
are equal (and less than or equal to K), both players 
share the service equally. 

Thus, the payment matrix elements �𝐀𝐀 = �𝑎𝑎𝑖𝑖𝑗𝑗�,
𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉� can be calculated as follows:  

 

LET  𝑉𝑉 = {1,2, …𝑛𝑛}, 𝐃𝐃𝑛𝑛x𝑛𝑛 = �𝑑𝑑𝑖𝑖𝑗𝑗�, K 
LOOP (𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉) DO 
𝑎𝑎𝑖𝑖𝑗𝑗 = 0; 
LOOP (𝑘𝑘, 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉) DO 
andIF 𝑑𝑑𝑘𝑘𝑖𝑖 < 𝑑𝑑𝑘𝑘𝑗𝑗and𝑑𝑑𝑘𝑘𝑖𝑖 ≤ 𝐾𝐾 DO 𝑎𝑎𝑖𝑖𝑗𝑗 = 𝑎𝑎𝑖𝑖𝑗𝑗 + 1;  
ELSEIF 𝑑𝑑𝑘𝑘𝑖𝑖 = 𝑑𝑑𝑘𝑘𝑗𝑗  and 𝑑𝑑𝑘𝑘𝑖𝑖 ≤ 𝐾𝐾  DO 𝑎𝑎𝑖𝑖𝑗𝑗 = 𝑎𝑎𝑖𝑖𝑗𝑗 + 0,5;  
ENDIF 
END 
 

In this formulation of the location-allocation 
problem, pricing strategies between duopolists are not 
taken into account. Consequently, the payoff matrix 
for player 𝑃𝑃2 is identical to that of player 𝑃𝑃1, so 𝐁𝐁 =
𝐀𝐀. resulting in a symmetric game. The bimatrix game 
solution involves identifying optimal strategies where 
neither player can unilaterally improve their outcome 
by deviating from equilibrium. Specifically, when a 
player adopts a Nash equilibrium strategy, any 
unilateral strategy change by the opponent cannot 
disadvantage the equilibrium-playing player. This 
strategic stability, formalized as the Nash equilibrium 
(named for John Nash, recipient of the 1994 Nobel 
Memorial Prize in Economic Sciences), ensures that 
no player benefits from deviating from their 
equilibrium strategy. 
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The solution of bimatrix games is based on the 
following assumptions: Both players have complete 
information about the conflict situation, the players 
are intelligent, and each player wants to maximize the 
payment, and knows that the opponent is also 
watching this.  

Within the location-allocation problem 
framework, the analysis focuses exclusively on pure 
strategy solutions, defined as strategy pairs (i0,j0) 
where for all: 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉: 

0 0 0i j ija a≥  and 
0 0 0j i jib b≥

i.e. These conditions correspond to identifying 
column maxima in payoff matrices A and B. Four 
distinct cases may emerge: 

 

1. A unique equilibrium point exists, clearly 
identifying optimal pure strategies for both 
players. 

2. Multiple equilibrium points exist, with one 
dominant solution Pareto-superior for both 
players. 

3. Multiple non-dominated equilibrium points 
exist, necessitating mixed strategy solutions. 

4. No equilibrium point exists in pure strategies, 
requiring mixed strategy analysis. 

 

However, the interpretation of mixed strategies in 
the case of a location-allocation problem is 
problematic, although not impossible [21]. This study, 
therefore, restricts its consideration to pure strategies 
due to their more practical interpretation in facility 
location contexts. This approach aligns with the 
cooperative game solution concept where the optimal 
location pair maximizes the joint coverage function  
𝑚𝑚𝑎𝑎𝑥𝑥�𝑎𝑎𝑖𝑖𝑗𝑗 + 𝑏𝑏𝑗𝑗𝑖𝑖�. The principle is illustrated in the next 
section. 
 
 
 

3. Case Study 
 

This study applies the proposed methodology to 
analyze service coverage in the Banská Bystrica 
region of Slovakia. Region border splitting of 
Slovakia is of great importance to provide services and 
resources to the citizen. It is organized as an 
autonomous entity comprising eight self-managing 
districts, each with its own capital. Slovakia regional 
structure offers a platform for service delivery and 
organization. However, the most effective service 
centers within regions are placed in different factors, 
such as population, facilities like roads and housing, 
and, of course, economic activities. The game-
theoretic approach to the location-allocation problem 
provides a rigorous framework for determining 
optimal service point distribution within Slovakia's 
regional organizational structure. 

The district towns of the Banská Bystrica region 
consists of thirteen cities (𝑉𝑉 = {1,2, … 13}), which 
will be indexed as follows: 1 – Banská Bystrica, 2-
Banská Štiavnica, 3-Brezno, 4-Detva, 5-Krupina, 6-
Lučenec, 7-Poltár, 8-Revúca, 9-Rimavská Sobota, 10-
Veľký Krtíš, 11-Žarnovica, 12-Žiar nad Hronom, 13-
Zvolen. 

The shortest distances (in km) between district 
towns of the Banská Bystrica region are represented 
in Table 1. 

The application of Model (1)-(5) demonstrates that 
complete network coverage can be achieved with two 
service centers operating within a maximum service 
distance of 59.7 km. Subsequent optimization using 
Model (6)-(8) with parameter p=2 yields an optimal 
solution locating facilities at nodes 1 (Banská 
Bystrica) and 7 (Poltár). All numerical optimizations 
were performed using GAMS programming language 
with CPLEX 12.10.0.0 as the solver [6].

 
Table 1. District towns of Banská Bystrica – shortest distances 
  

 

Order 1 2 3 4 5 6 7 8 9 10 11 12 13
1 0 46,8 42 50 52 83 89,8 91,1 109 79,1 57,2 41,5 21,1
2 46,8 0 89 54 21 87 94,2 138 114 60,5 33,9 34,2 31
3 42,1 88,8 0 52 94,2 77 59 49 67,6 95,8 99.3 83,6 63,2
4 49,9 54,2 52 0 51,7 35 42,3 89,3 61,1 54,1 64,8 49,2 26,7
5 52 21 94 52 0 84 91,3 142 111 39,8 67 51,4 28,9
6 82,8 87,1 77 35 84,2 0 18,6 81,1 31 35 98 82,4 59,9
7 89,8 94,2 59 42 91,3 19 0 59,7 25,6 49,2 105 89,5 67
8 91,1 138 49 89 142 81 59,7 0 57,4 116 148 133 112
9 109 114 68 61 111 31 25,6 57,4 0 64,5 123 108 85
10 79,1 60,5 96 54 39,8 35 49,2 116 64,5 0 94 78,4 55,9
11 57,2 33,9 99.3 65 67 98 105 148 123 94 0 19,7 41,5
12 41,5 34,2 84 49 51,4 82 89,5 133 108 78,4 19,7 0 25,7
13 21,1 31 63 27 28,9 60 67 112 85 55,9 41,5 25,7 0
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Now formulate the problem as a bimatrix game, 
where K=59,7. The game is characterized by a payoff 
bimatrix with elements 𝑐𝑐𝑖𝑖𝑗𝑗 = �𝑎𝑎𝑖𝑖𝑗𝑗; 𝑏𝑏𝑗𝑗𝑖𝑖; �, 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, 
where the first element 𝑎𝑎𝑖𝑖𝑗𝑗 represents the number of 
served nodes of player P1, the second element 𝑏𝑏𝑗𝑗𝑖𝑖 

represents the number of served nodes of player P2 in 
the case the player P1 serves in node i and the player 
serves in node j. The payoffs related to the nature of 
nodes at each decision point imply the extent to which 
the service center will cover the area and thus, will be 
accessible. 

Table 2. Bimatrix game 
 

 
 

For both players, the best answers are marked 
(13,7). Therefore, it is obvious that the game has two 
Nash equilibria; to build service centers in nodes 13 
and 7. 

The cooperative solution space is examined 
through joint payoff analysis. Table 2 presents the 
coalition values: �𝑎𝑎𝑖𝑖𝑗𝑗 + 𝑏𝑏𝑗𝑗𝑖𝑖�: 

 
Table 3. Cooperative solution 

 

 
The table shows that all network coverage can be 

achieved by building centers in nodes 1 and 7; 2 and 
7; 7 and 12; 7 and 13; 8 and 13.  

 

Of these points, however, only 7 and 13 or 13 and 
7 respectively are Nash equilibriums, so this solution 
should be preferred regarding the stability of the 
whole system.  

 

Order 1 2 3 4 5 6 7 8 9 10 11 12 13
1 4;4 4;4 7;3 (6);5 6;3 (7);5 (7);6 8;3 (8);4 (7);4 5;3 3;5 2;(8)
2 4;4 3,5;3,5 5;5 5;6 4;4 6;5 6;(7) 7;4 7;4 6;4 5;2 2;5 3;6
3 3;7 5;5 2,5;2,5 3;8 4;6 3;6 3;5 4;2 4;3 4;5 5;4 3;7 3;(9)
4 5;(6) 6;5 8;3 5;5 (7);3 (7);4 (7);5 (9);3 (8);4 (7);3 (8);3 5;(6) 5;(6)
5 3;6 4;4 6;4 3;(7) 3,5;3,5 5;5 6;6 7;4 7;4 6;3 6;2 3;5 3;6
6 5;(7) 5;6 6;3 4;(7) 5;5 3;3 4;4 6;2 5;2 4;3 5;5 5;6 4;(7)
7 6;(7) (7);6 5;3 5;(7) 6;6 4;4 3,5;3,5 5;2 5;2 6;3 7;5 (7);6 (6);(7)
8 3;8 4;7 2;4 3;(9) 4;7 2;6 2;5 2;2 2;3 3;6 4;5 4;7 4;9
9 4;(8) 4;7 3;4 4;(8) 4;7 2;5 2;5 3;2 2;2 4;4 4;5 4;7 4;(8)

10 4;(7) 4;6 5;4 3;(7) 3;6 3;4 3;6 6;3 4;4 3;3 5;5 4;6 3;(7)
11 3;5 2;5 4;5 3;(8) 2;6 5;5 5;7 5;4 5;4 5;5 2,5;2,5 2;5 2;7
12 5;3 5;2 7;3 (6);5 5;3 6;5 6;(7) 7;4 7;4 6;4 5;2 3,5;3,5 2;(7)
13 (8);2 6;3 (9);3 (6);5 6;3 (7);4 (7);(6) (9);4 (8);4 (7);3 7;2 (7);2 4,5;4,5

Order 1 2 3 4 5 6 7 8 9 10 11 12 13

1 8 8 10 11 9 12 13 11 12 11 8 8 10
2 8 7 10 11 8 11 13 11 11 10 7 7 9
3 10 10 5 11 10 9 8 6 7 9 9 10 12
4 11 11 11 10 10 11 12 12 12 10 11 11 11
5 9 8 10 10 7 10 12 11 11 9 8 8 9
6 12 11 9 11 10 6 8 8 7 7 10 11 11
7 13 13 8 12 12 8 7 7 7 9 12 13 13
8 11 11 6 12 11 8 7 4 5 9 9 11 13
9 12 11 7 12 11 7 7 5 4 8 9 11 12

10 11 10 9 10 9 7 9 9 8 6 10 10 10
11 8 7 9 11 8 10 12 9 9 10 5 7 9
12 8 7 10 11 8 11 13 11 11 10 7 7 9
13 10 9 12 11 9 11 13 13 12 10 9 9 9
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The matrix exhibits the payoffs of both parties 
outlined by their strategies. As will be illustrated by 
the example, if player P1 chooses the node 1 and 
player P2 choose the node 7, player P1 serves 7 nodes 
and player P2 serves 6 nodes. The same coverage of 
the net is achieved if player P1 serves from node 13 
and player P2 serves from node 7 (or vice versa).  

However, assuming the primary concern is the 
"common good" and the secondary concern is system 
stability, management should prefer a Nash 
equilibrium solution rather than building centers in 
nodes 1 and 7 (marked in red).  

A critical distinction emerges when examining the 
stability of alternative solutions. The configuration 
with facilities at nodes 1 and 7, while providing 
complete coverage, represents a strategically unstable 
solution. This instability arises because 𝑃𝑃2 has a 
rational incentive to unilaterally deviate to node 8, as 
such relocation would increase its served nodes by 
two. This potential deviation demonstrates the non-
equilibrium nature of the (1,7) solution, as it fails to 
satisfy the Nash condition where neither player can 
benefit from unilateral strategy changes. 

 However, in that case, player P1 would serve only 
two nodes, and the total number of nodes served 
would decrease to 10. Player P1 would then want to 
move the service to node 7, where they would serve 
six nodes (compared to two), and the game would end 
in a Nash equilibrium. 

The established Nash equilibria denote the 
strategic patterns where neither of the players has a 
motivation to break it, it is offered without prompting 
a similar change by his opponent. As a result, at those 
points of equilibrium, both will be happy with their 
choice, as their counterparts also made the same 
decision. 

In both cases, all nodes are served; however, the 
configuration with facilities at nodes 13 and 7 yields a 
stable system. 

The presence of the game's equilibriums provides 
information about decision-making processes' 
strategic. These equilibriums occasionally offer stable 
outcomes, but they also are not the dominant ones, 
which means that the "best" solution strongly depends 
on many factors including the preferences of decision 
makers, and the broader service provision context 
[10], [21]. 

For this reason, management should give close 
attention to the consequences of each Nash 
equilibrium, so that the intentions towards ensuring 
that there are maximum number of people covered is 
not being complied, the same time accessibility is not 
compromised while stability is maintained. One way 
to achieve this is by choosing to employ the Nash 
equilibrium as a basis for decision-making to attain a 
stable solution while also making good progress 
toward meeting the service delivery objectives in the 
Banská Bystrica region. 

The analysis proceeds by examining solutions 
across varying service distance thresholds 𝐾𝐾 =
{50,40,30,20}. Table 3 presents the optimal coverage 
configurations for each threshold value, along with the 
corresponding minimal inter-nodal distances: 
min
𝑖𝑖,𝑗𝑗
�𝑑𝑑𝑖𝑖𝑗𝑗� , 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉 .         

 

Table 4. Solution for different distances 
 

 
 

Table 4 shows that at the required maximum 
distance of 50 highest distance, the 11 nodes of the 
graph (possible 4 solutions) will be covered. However, 
all four plans regarding the service center’s location 
fall into non-Nash equilibrium classes.  

At K = 40 (a lower distance), ten nodes are covered 
(two solutions). A Nash equilibrium solution only has 
one service center localized, in either node 6 or node 
13 (the nodes for the service centers), for stability. 

At K = 30, the point of service provides coverage 
for the eight locations. The only placements are nodes 
7 and 13, which repeat after a certain time. 

With K = 20 distance, coverage is extremely low 
(four at most). Surprisingly, for all four of these the 
possible moves, every move becomes a Nash 
equilibrium. Thus, this means that such a network has 
a high stability degree where the providers' migration 
to other regions is not a priority because no migration 
is at the advantage of them. 

The analysis demonstrates an inherent trade-off 
between service coverage and system stability 
mediated by the distance threshold parameter K. Two 
distinct operational regimes emerge: 

At elevated K values, expanded service coverage is 
achieved through greater nodal accessibility, though 
this potentially compromises system stability due to 
the possible absence of Nash equilibrium solutions. 
Under these conditions, service providers face 
intensified incentives for unilateral relocation, which 
can potentially undermine coordinated spatial 
arrangements. 

Conversely, diminished K values ensure 
guaranteed stability through Nash equilibrium 
solutions but impose stricter distance limitations that 
constrain overall service coverage.  

 
 

K 50 40 30 20
#  of 

covered 
nodes

11 10 8 4

Location of 
service 
centers

2,6;2,7;
6,13;7,1

3

6,2;
6,13 7,1 6,11;6,12;

7,11;7;12

Nash 
equilibrium Not 6,1 7,1 6,11;6,12;

7,11;7;12
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This constrained regime naturally reduces 
providers' incentives to deviate from optimal 
locations, fostering system-wide stability at the 
expense of reduced accessibility. 

The parametric analysis demonstrates that while 
extensive coverage distances (large K) improve 
service accessibility, they may undermine strategic 
stability. Conversely, constrained coverage distances 
(small K) ensure equilibrium conditions but require 
accepting more limited-service availability. This 
trade-off presents policymakers with crucial design 
considerations when planning facility networks. 

The value of K that maximizes the overall 
objective depends on the priorities. When coverage is 
the primary objective, it may be justifiable to prefer 
larger values of K. However, if stability is prioritized, 
then a lower value of K can be recommended, with 
fewer accessible places but converging to the Nash 
equilibrium. 

The findings from the location-allocation analysis 
in Slovakia’s Banská Bystrica region highlight two 
critical and interdependent considerations: The trade-
off between stability and coverage. By continuously 
varying the distance threshold K, the study reveals 
how adjustments influence both the extent of service 
coverage and the conditions for a Nash equilibrium. 

Higher values of K enhance regional inclusivity by 
expanding service coverage, but this comes at the cost 
of potential instability, as equilibrium conditions may 
no longer hold. Conversely, lower values of K 
reinforce stability through Nash equilibria; however, 
this restricts coverage, leaving significant portions of 
the region underserved. 

While the two-player model captures essential 
strategic dynamics, real-world scenarios often involve 
more complex interactions among multiple 
stakeholders. The theory of n-player games extends 
this framework, providing tools to analyze decision-
making in systems with numerous participants and 
complex relationships. The generalized solution to the 
location-allocation problem aligns with cooperative 
game theory, where optimal placements maximize 
coverage while satisfying equilibrium conditions in a 
non-cooperative setting. 

Although efficiently identifying all equilibrium 
points in n-player non-cooperative games remains a 
computational challenge, the present problem can be 
addressed by verifying pure-strategy equilibria, which 
admit tractable solutions under certain constraints 
[10]. This approach ensures the practical applicability 
of facility placement strategies while maintaining 
theoretical rigor. 

 
 
 
 
 

4. Conclusion  
 

This study investigates the location-allocation 
problem in Slovakia's Banská Bystrica region through 
a game-theoretic optimization framework. The 
research employs a bimatrix game formulation to 
model strategic interactions between two competing 
service providers, with the dual objectives of 
maximizing coverage while maintaining system 
stability. 

The analysis identifies Nash equilibrium solutions 
that represent mutually optimal facility placements, 
where neither provider has an incentive to deviate 
from their chosen location unilaterally. 

This equilibrium provides a stable solution, 
ensuring that the system remains robust and 
predictable over time. The results show that by 
focusing on these equilibrium points, decision-makers 
can avoid disruptions in service delivery that would 
otherwise occur if players deviated from their optimal 
strategies. 

In the specific case of the Banská Bystrica region, 
the model demonstrated that placing service centers in 
nodes 7 and 13 achieved both full coverage and 
system stability. This configuration was identified as 
a Nash equilibrium, ensuring that both service centers 
can operate without the risk of relocation or instability 
induced by competition. Moreover, alternative 
locations, such as nodes 1 and 7, were found to be less 
stable, as one of the centers would be incentivized to 
change its location, resulting in a reduction in overall 
coverage and system efficiency. 

The present approach provides policymakers with 
practical insights, demonstrating that prioritizing 
equilibrium-based solutions yields stable and efficient 
service center placement. By solving the problem 
using both location-allocation model and game theory, 
the study highlights the importance of strategic 
decision-making in minimizing costs and disruptions. 
The stability of the Nash equilibrium ensures that 
service centers remain in their optimal positions, 
providing continuous and reliable service to the entire 
region. 

This study also offers a framework for further 
application in regions with similar service center 
needs. The game-theoretical approach enables 
decision-makers to consider competition between 
service centers while ensuring maximum coverage 
without compromising long-term stability. The 
findings presented in this case study can serve as a 
reference for addressing the challenge of balancing 
competitive dynamics with operational efficiency, 
demonstrating the practical benefits of integrating 
game theory into location-allocation problems. 

 
 
 



TEM Journal. Volume 14, Issue 2, pages 1006-1013, ISSN 2217-8309, DOI: 10.18421/TEM142-03, May 2025. 
 

TEM Journal – Volume 14 / Number 2 / 2025.                                                                                                                               1013 

Acknowledgments 
 

This work was supported by VEGA 1/0115/23 
Applications of cooperative game theory models in 
economics and international relations. 
 
References 
  

[1]. Adler, N., & Hashai, N. (2015). The impact of 
competition and consumer preferences on the location 
choices of multinational enterprises. Global Strategy 
Journal, 5(4), 278-302. Doi: 10.1002/gsj.1102 

[2]. Ashkezari, A. B., et al. (2024). A scenario-based game 
theory integrating with a location-allocation-routing 
problem in a pre-and post-disaster humanitarian 
logistics network under uncertainty. Journal of 
Modelling in Management, 19(5), 1686-1718. 

[3]. Beiki, H., et al. (2020). A Location-Routing Model for 
Assessment of the Injured People and Relief 
Distribution under Uncertainty. Materials and Energy 
Research Center, 33(7).  
Doi: 10.5829/ije.2020.33.07a.14 

[4]. Byford, M. C. (2019). Hotelling competition with 
discrete consumers: Comparing equilibrium concepts in 
spatial competition. SSRN. Doi: 10.2139/ssrn.3501958 

[5]. Foulds, L. R., & Hamacher, H. W. (1993). Optimal bin 
location and sequencing in printed circuit board 
assembly. European Journal of Operational 
Research, 66(3), 279-290.  
Doi: 10.1016/0377-2217(93)90217-b 

[6]. GAMS. (2012). GAMS Development Corporation, 
GAMS, A User’s Guide.  GAMS. Retrieved from: 
https://www.gams.com/ [accessed: 10 September 2024] 

[7]. García, S., Labbé, M., & Marín, A. (2011). Solving 
large p-median problems with a radius 
formulation. INFORMS Journal on Computing, 23(4), 
546-556.  

[8]. Gatti, N., Rocco, M., & Sandholm, T. (2017). On the 
verification and computation of strong Nash 
equilibrium. arXiv preprint arXiv:1711.06318.  

[9]. Hennessy, J. L., & Patterson, D. A. (2011). Computer 
architecture: a quantitative approach. Elsevier.  

[10]. Holzerova, P., & Cickova, Z. (2022). Duopoly Pricing 
Strategy in Spatial Competition Using Constant-sum 
Games. TEM Journal, 11(4), 1439.  
Doi: 10.18421/TEM114-03 
 

[11]. Koné, Y. A., et al. (2020). Efficient Strategies 
Algorithms for Resource Allocation 
Problems. Algorithms, 13(11), 270.  
Doi: 10.3390/a13110270 

[12]. Mirzaei, E., Bashiri, M., & Shemirani, H. S. (2019). 
Exact algorithms for solving a bi-level location–
allocation problem considering customer 
preferences. Journal of Industrial Engineering 
International, 15, 423-433.  
Doi: 10.1007/s40092-018-0302-6 

[13]. Park, Y., et al. (2022). Facility location-allocation 
problem for emergency medical service with unmanned 
aerial vehicle. IEEE transactions on intelligent 
transportation systems, 24(2), 1465-1479.  

[14]. Reisinger, M., Seel, C., & Stehr, F. (2023). Hotelling 
Revisited-The Price-then-Location Model.  SSRN. 

[15]. Reyes, F. O. G., Gendreau, M., & Potvin, J. Y. (2024). 
A metaheuristic for a time-dependent vehicle routing 
problem with time windows, two vehicle fleets and 
synchronization on a road network. EURO Journal on 
Transportation and Logistics, 13, 100143. 

[16]. Sachdeva, A., et al. (2022). Metaheuristic for Hub-
Spoke Facility Location Problem: Application to Indian 
E-commerce Industry. arXiv preprint 
arXiv:2212.08299. Doi: 10.48550/arxiv.2212.08299 

[17]. Sathyanarayana, G., & Patro, A. (2020). Intelligent 
warehouse allocator for optimal regional 
utilization. arXiv preprint arXiv:2007.05081.  
Doi: 10.48550/arxiv.2007.05081 

[18]. Sequeira Lopez, A. J. (2024). Spatial competition: A 
scenario of Lanzarote Island with or without regulatory 
intervention. Quantitative Methods in Economics: 
Multiple Criteria Decision Making XXII: Proceedings 
of the International Scientific Conference, 105-110.  

[19]. Wong, B. B., & Kokko, H. (2005). Is science as global 
as we think?. Trends in ecology & evolution, 20(9), 475-
476.  

[20]. Xu, L., & Lee, S. H. (2023). Cournot–Bertrand 
comparisons under double managerial delegation 
contracts with sales and environmental 
incentives. Managerial and Decision Economics, 44(6), 
3409-3421.  

[21]. Čičková, Z., Reiff, M., & Holzerová, P. (2022). 
Applied multi-criteria model of game theory on spatial 
allocation problem with the influence of the 
regulator. Polish Journal of Management 
Studies, 26(2). Doi: 10.17512/pjms.2022.26.2.07. 

 

https://doi.org/10.5829/ije.2020.33.07a.14
https://www.gams.com/

