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Quantification of Longevity Risk for Pension Insurance
in V4 Countries

Jan GOGOLA

Abstract

Longevity risk, the risk that people will live tper than expected, weighs
heavily on those who run pension schemes and emerssthat provide annui-
ties. Hence the prediction of future mortality matis an issue of fundamental
importance for the insurance and pensions indusbyr analysis focuses on
mortality at higher ages (65 — 95), given our iggrin pension-related applica-
tions where the risk associated with longer-terrahciow is primarily linked to
uncertainty in future rates of mortality. We useadan deaths and exposures for
the The Visegrad Grouf/4) —the Czech Republi®oland Hungary andSlo-
vakia from the Human Mortality Database (HMD). We have shahat if the
today rate of increase will continue, it will at@®5 concluded (after calcula-
tion) to increase the present value of pensioniliisgs in defined-benefit
schemes about 5% if we use cohort life table imktégeriod life table.

Keywords: longevity risk, annuity, stochastic mortality, lifable, Lee-Carter
model

JEL Classifications: C53, G22, J11, J32

Introduction

Benjamin Franklin said: “In this world nothing cée said certain, except
death and taxes.” The death is certain, but th¢jns much less certain.

The mortality of the population in developed coigst has improved rapidly
over the last thirty years and this has importamarfcial implications for the
insurance industry, since several important clasgéiability are sensitive to the
direction of future mortality trends. This uncentgi about the future develop-
ment of mortality gives rise fongevity risk
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Longevity risk, the risk that people live longeah expected, weighs heavily
on those who run pension schemes and on insurarptavide annuities. The
risk that the reserves established for the paymibénefits (retirement, widow-
hood, orphan hood, disability, dependency...) ardengaate for that purpose if
they are based on life tables (or mortality tablesh lower survival hypothesis
than real. Longevity risk plays a central role e insurance company manage-
ment since only careful assumptions about futur@ugon of mortality phe-
nomenon allow the company to correctly face itaifeitobligations. Longevity
risk represents a sub-modul of the underwriting r®dule in the Solvency I
framework. The Figure 1 provides evidence thatdifpectancy in V4 is increas-
ing during the last decades.

By the article “Longevity swaps: Live long and gper” (The Economist,
2010): “Every additional year of life expectancyage 65 is reckoned to bump
up the present value of pension liabilities in Bhtdefined-benefit schemes by
3%, or GBP 30 billon (USD 48 billion).”

This article inspired us to estimate what effeas the increase in life expec-
tancy on the present value of annuities in V4 coest

The most popular and widely used model for prapgciongevity is the well-
known Lee-Carter model. This paper follows on #&tidcGogola (2014a; 2014b;
2015); Jindrovd and Slasdk (2012); Pacdkova and Jindrova (2014) and
Pacékova, Jindrova and Seinerova (2013). Theywléalthe development and
the prediction of life expectancy in selected Eeapcountries (Czech Republic,
Slovakia, Finland and Spain) by applying Lee-Camedel and the Quantifica-
tion of Selected Factors of Longevity.

Figure 1
Life Expectancy at Birth for V4 Countries, 1950 — D14
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Most stochastic mortality models are constructed similar manner. Specif-
ically, when they are fitted to historical datagoor more time-varying parame-
ters are identified.

By extrapolating these parameters to the futueecan obtain a forecast of
future death probabilities and consequently otenaraphic quantities such as
life expectancies. They are important for quamifylongevity in pension risks
and for constructing benchmarks for longevity-lidkmbilities.

The main goal of this paper is to apply the Leet&anodel to construct the
so-called “cohort life tables” and use them forcaddtion of a 30-year annuity to
a person aged 65 in 2015.

Methodology and Data

We use data of the total population deaths andsxe to risk between 1950
and 2014 for the V4 countries (except Poland wilagecavailable data only for
time period 1958 and 2014) from the Human Mortdlgtabase (www. mortali-
ty.org). We consider the restricted age range foam 95.

Let calendar yearruns from exact tim¢ to exact time + 1 and letd,, be

the number of deaths agrdbst birthday in the calendar ydaiWe suppose that
the data on deaths are arranged in a maDrix(dX't). In a similar way, the data
on exposure are arranged in a matgx=(e,, ) Wheree,, is a measure of the
average population size agethst birthday in calendar yegrthe so-called cen-
tral exposed to risk. We suppose tl(nd;yt) and(e,,) are eachn, xn, matrices,
so that we have, ages andh, years.

We denote thérce of mortality(or hazard raté at exact time for lives with
exact agex by u, . The force of mortality can be thought as an imstaeous

death rate, the probability that a life subjecttéorce of mortalityz, , dies in
the interval of timg(t, t+dt) is approximatelyy, , [t wheredt is small.

The force of mortalityy,, for human populations varies slowly in botand
t and a standard assumption is that is constant over each year of age,
i.e., from exact age to exact age + 1, and over each calendar year, i.e., from
exact timet to exact time + 1. Thus

Hwwy =My for0su<1, 0sv<1 (@)

and sou, , approximate the mid-year force of mortality, , .. o s-
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We suppose thal, , is a realization of a Poisson varialile , :

D><,t~ PO(%; Eux,t) (2

The expected values are the product of exposgreand the force of mortal-

Ity /'Ix,t '
Assumption (2) leads us to the maximum likelihestimates ofi;,= =m,, as

m,, = —= (3)

. . D . o
or in a matrix formm = o that means element-wise divisionRn

We also consider the mortality ratg, . This is the probability that an indi-

vidual aged exactlx at exact time will die betweent andt + 1. We have the
following relation between the force of mortalitydathe mortality rate:

1
O =1- ex;{j “Hyssps d% =1- & (4)
0

We use the following conventions for our model:
- the a,, B, coefficients will reflect age-related effects,

- the «; coefficients will reflect time-related effects.

Our models are fitted to historical data.

The Lee-Carter model was introduced by Ronald é® &nd Lawrence Carter
in 1992 with the article Lee and Carter (1992). Tialel grew out of their work
in the late 1980s and early 1990s attempting toimgerse projection to infer
rates in historical demography. The model has hexsmd by the United States
Social Security Administration, the US Census Buraad the United Nations. It
has become the most widely used mortality foreagsttechnique in the world

tOdeé and Carter proposed the following model ferfirce of mortality:
logm, =a,+ B, Ik, ®)
with constraints
> 8, =1 ©

>k =0 (7)
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The second constraint implies that, for eachhe estimate forr, will be
equal (at least approximately) to the mean owériogm,, .

Let grepresent the full set of a parameters and thetioatfor 4, , is extend-
edtoy, (¢), to indicate its dependence on these parameters.

For our model the likelihood function under théd8on assumption will be:

L(#:D.E)= l_”_l(ex Euxt<¢))

or the log-likelihood
(¢:D.E)= Y. ¥ (d,, ogle, [, (A - &, () - log d,.})  (8)

|]3Xp( - Q,t lj“[xt(¢))

and parameters estimation is by maximum likelihGddE).

By the equation (5) the log of the force mortaligyexpressed as the sum
of an age-specific component, that is independent of time and another

component that is the product of a time-varyingap@eterk; reflecting the gen-

eral level of mortality and an age-specific compang, that represents how

rapidly or slowly mortality at each age varies wilee general level of mortality
changes.

Interpretation of the parameters in Lee-Carter @hoid quite simple:
exp(a,) is the general shape of the mortality schedulethadactual forces of

mortality change according to overall mortality éxdx; modulated by an age
responsef, (the shape of the8, profile tells which rates decline rapidly and

which slowly over time in response of changg;ih

For practice the fitting of a model is usually yithe first step and the main
purpose is the forecasting of mortality. For fosdtay time series we use Ran-
dom Walk with Drift.

The estimated age parameterg, 5,, are assumed invariant over time. This
last assumption is certainly an approximation hatrmethod has been very thor-
oughly tested in Booth, Tickle and Smith (2005) &nahd to work.

We assume that trend observed in past years cgrabeated (or smoothed)
and that it will continue in future years.

By the Random Walk with Drift the dynamics &ffollows

Kt = Kt—l + 0 + gt—l (9)

with i.i.d standard Gaussian distributienCIN(0; o?).
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Value at future timeé+ h can be written as

h-1
Kt+h :Kt +hm+z‘9t+s (10)

s=0
which has Gaussian distribution K(+ h[#;0? [h).

Hence the best point estimate for future valugna¢t + h is «, + h(#, and
the 95% confidence interval (Cl) is

(k,+hB-1.96, 3/hk, + hiB+ 1.960, B/h) (11)

where@is the mean of the first differencés, =«, —«,_, ando’ their variance.

Results

In Figure 2 we have plotted the maximum likelihastimates for the param-
eters of the Lee-Carter model (L-C model), using @zech Republic (CR) total
population data, aged 0 — 95. (All partial resuleswill demonstrate for the CR).
Model fitting was done irR (Statistical computing language), which was also
used for Figure 4. Note that estimated valuesBoare higher at the lowest ages
(i.e. for children), meaning that at those ages rtfzgtality improvements are
faster during the last decades. The decreasing iren, reflects general im-
provements in mortality over time at all ages. Wk mow simulate thex, up to
2060 according to equation (9). We have done 1d®@@lations. These results
in case of the total population are plotted in Feg8. (which illustrated only six
simulations). The dashed curves in plot show tbettf2 and 97.5-th percentile of
the distribution ofx, resulting in a 95% confidence interval.

Figure 2
Estimated Parametersa,,f, , k, of the L-C Model for Population of the CR

10 20 30 40 50 60 70 80 100

Alphax

Age




757

0,04
0,035 Y
0,03 N
0,025

0,02 -
0,015
0,01 -
0,005

Betax

40 T,

8 0 . . . . . . : x . : : : .

o

%_201.550 1955 1960 1965 1970 1975 1980 1985 19 95 2000 200% Zzmns5
-40

60 \\,v\

Year

Source:Author’s processing.
By forecasted x, we get the predictions for the force of mortality

U =exp(a, + B, k), which lead us by equation (4) to mortality raggs

Figure 3
Predicted «, for Total Population with 95% CI
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To avoid underestimation of the relevant lial@ktive use dynamic mortality
model. Cohort or dynamic life table provide a view the future evolution of
mortality rates and it implies the diagonal arrangat in a projecting life table
(see Table 1). That is, we take the mortality fateage 65 in 2014, age 66 in
2015..., age 75in 2024..., age 85 in 2034 and so on.

Table 1

Period Life Table vs. Cohort Life Table (for the CRtotal population)
Tt 2014 2015 2016 2017 2018 2019 2020
65 0014699 | 0014505| 0014314 0014125 0013938  0=M37 0.013573
66 0015832 | 0.015618 | 0.015406| 0015197 0014991 0014788  0&TL45
67 0017191 | 0.016954] 0016721 | 0016491] 0016263 0016039  0.015818
68 0018574 | 0018311] 0.01805] 0.017795 | 0.017543| 0017294  0.017048
69 0020037 | 0019744] 0019456  0.01917 0.018892 | 0.018615 0.01834
70 0021675 | 0.02135| 0021029 0020714  0.0204 0.020097 | 0.019795
71 0023349 | 002299 | 0022637 0022249 0021946  0.@1| 0.021276

Source:Author’s calculations.

Figure 4

Observedqy, in 2014 and Predictedy, in 2030 and 2045 for Total Population

of the CR
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Finally by equations (12) — (15) we find the prasealues of the annuities

such as term immediate annu'ﬁy_ﬁl, term annuity-dueax . We will also con-

sider annuities payabte-times per year.

a'><:ﬁ| = th q R
t=1

(12)
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)=+ "2M-vp) (UDD) 19
- n-1
axn = Y VO B (14)
t=0
- (m) m-1
ax:ﬁl = ax:?ﬂ_ om ml_ \/1 q R() (UDD) (15)

where (UDD) means the assumption of Uniform Disttitn of Deaths.

Take an individual aged 65 in 2015 (birth year95Qd) who wants to pur-
chase a 30 years annuity. For calculation annuitisswe use the Period table,
which contains the last available mortality ratesour case it is year 2014 (the
second column of Table 1). Then we use the diagealaks (Cohort table) for
the cohort aged 65 in 2015 (born 1950) who arkadile in year 2015 +.

Table 2 gives present values of 30 years annditiethe individual aged 65
from the whole population of the Czech Republichwitterest rate of 2% p.a.
(ori =0.02). In Table 3 — 5 we present results foepi¥ countries.

Table 2

Present Values of Annuities for the Total Populatia in the Czech Republic
(x=65,n=30,1=0.02)

12] - (12)
in| E(;“) ai ﬁ\) Axn|

Period table 14.04 14.31 14.74 15.01
Cohort table 14.75 15.01 15.43 15.69
Relative change 5.01% 4.85% 4.69% 4.54%
2.5% 14.13 14.40 14.83 15.09

0.65% 0.61% 0.60% 0.57%
97.5% 15.34 15.60 16.01 16.27

9.26% 8.99% 8.64% 8.39%

Source:Author’s calculations.

Table 3

Present Values of Annuities for the Total Populatia in Poland
(x=65,n=30,i =0.02)

12) 12) )
xan| i:ﬁ\) a(x ;‘) Axn|
Period table 14.07 14.34 14.76 15.03
Cohort table 14.74 15.00 15.41 15.67
Relative change 4.75% 4.61% 4.41% 4.28%
2.5% 14.23 14.49 14.92 15.18
1.13% 1.08% 1.04% 0.99%
97.5% 15.24 15.49 15.90 16.15
8.29% 8.06% 7.69% 7.48%

Source:Author’s calculations.
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Table 4

Present Values of Annuities for the Total Populatia in Hungary
(x=65,n=30,I =0.02)

12) 12
i aia) a(x:a) xi

Period table 12.99 13.25 13.69 13.96
Cobhort table 13.53 13.79 14.22 14.48
Relative change 4.16% 4.00% 3.88% 3.74%
2.5% 13.04 13.30 13.74 14.01

0.42% 0.38% 0.39% 0.35%
97.5% 14.01 14.27 14.70 14.95

7.91% 7.64% 7.36% 7.11%

Source:Author’s calculations.

Table 5

Present Values of Annuities for the Total Populatio in Slovakia
(x=65,n=30,1 =0.02)

12) - (12
| ai:?q) ai:;\l) Axn|

Period table 13.29 13.56 13.99 14.26
Cobhort table 13.86 14.12 14.55 14.81
Relative change 4.24% 4.09% 3.97% 3.83%
2.5% 13.37 13.64 14.07 14.33

0.57% 0.53% 0.54% 0.49%
97.5% 14.34 14.60 15.03 15.28

7.91% 7.64% 7.38% 7.13%

Source:Author’s calculations.

Conclusions

National governments and the WHO announce lifeeetgncies of different
populations every year. To financial institutiofife expectancy is not an ade-
guate measure of risk, because all it does notamyeidea about how mortality
rates at different ages vary over time. On therofiaed, indicators of longevity
risk cannot be too complicated. An indicator tlsat@omposed by a huge array of
numbers is difficult to interpret and will lose tlpeirpose as a “summary” of
a mortality pattern.

We have presented stochastic models to analysadhtality and shown how
they may be fitted. Afterwards we can turn to theéustry requirement to fore-
cast future mortality.

We have shown that if the today rate of increaslecantinue, it will at age
65 concluded (after calculation) to increase thes@nt value of pension liabili-
ties in defined-benefit schemes if we use cohtetthble instead of period life
table (provided all else unchanged). There is @&waof this increase in V4
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countries, the smallest increase is estimated imgelty, 4.16%, fou,.;; and the
highest expected increase is in the Czech Repabbat 5%. This increase is not
very significant if we use different constant irsfr rate. For interest rate in the
interval (1%, 2% the relative change (provided all else unchangéd).;; is in
(5.01%, 5.22%for the total population of CR. This small chahgads us to use
constant interest rate instead of any yield curve.

But forecasting of mortality should be approachtth both caution and hu-
mility. Any prediction is unlikely to be correct.

There is a need for awareness of model risk wissassing longevity-related
liabilities, especially for annuities and pensionle fact that parameters can be
estimated does not imply that they can sensiblyfdoecast. The Lee-Carter
model has also many critics. Some argued that rageyspecific rates are so
low that they cannot realistically be projecteddicline much further. Other
have questioned whether time, S, should be treated as invariant. Limitation of

the Lee-Carter model is that it requires a lon@da&tries for fitting. Therefore it
may be invalid for many developed countries.

Such forecasting should enable actuaries to exartfie financial conse-
guences with different models and hence to comantmformed assessment of
the impact of longevity risk on the portfolios ineir care. There is a question
how these results could influence self-annuitizatgirategies such as pro-
grammed withdrawal compared to the immediate aizatiitn as has been studied
by Sebo and Sebova (2016).

Longevity expectations continue to increase adiwssleveloped world. As they
do, defined benefit pension funds, a primary hotafehis risk have to recognise
it in their actuarial valuations. This increasesitHiabilities and puts their fi-
nances under further pressure.
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