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Abstract 
 
 Longevity risk, the risk that people will live longer than expected, weighs 
heavily on those who run pension schemes and on insurers that provide annui-
ties. Hence the prediction of future mortality rates is an issue of fundamental 
importance for the insurance and pensions industry. Our analysis focuses on 
mortality at higher ages (65 – 95), given our interest in pension-related applica-
tions where the risk associated with longer-term cash flow is primarily linked to 
uncertainty in future rates of mortality. We use data on deaths and exposures for 
the The Visegrad Group (V4) – the Czech Republic, Poland, Hungary and Slo-
vakia from the Human Mortality Database (HMD). We have shown that if the 
today rate of increase will continue, it will at age 65 concluded (after calcula-
tion) to increase the present value of pension liabilities in defined-benefit 
schemes about 5% if we use cohort life table instead of period life table. 
 
Keywords: longevity risk, annuity, stochastic mortality, life table, Lee-Carter 
model 
 
JEL Classifications: C53, G22, J11, J32 
 
 
 
Introduction 
 

 Benjamin Franklin said: “In this world nothing can be said certain, except 
death and taxes.” The death is certain, but the timing is much less certain. 
 The mortality of the population in developed countries has improved rapidly 
over the last thirty years and this has important financial implications for the 
insurance industry, since several important classes of liability are sensitive to the 
direction of future mortality trends. This uncertainty about the future develop-
ment of mortality gives rise to longevity risk.  
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 Longevity risk, the risk that people live longer than expected, weighs heavily 
on those who run pension schemes and on insurers that provide annuities. The 
risk that the reserves established for the payment of benefits (retirement, widow-
hood, orphan hood, disability, dependency…) are inadequate for that purpose if 
they are based on life tables (or mortality tables) with lower survival hypothesis 
than real. Longevity risk plays a central role in the insurance company manage-
ment since only careful assumptions about future evolution of mortality phe-
nomenon allow the company to correctly face its future obligations. Longevity 
risk represents a sub-modul of the underwriting risk module in the Solvency II 
framework. The Figure 1 provides evidence that life expectancy in V4 is increas-
ing during the last decades.  
 By the article “Longevity swaps: Live long and prosper” (The Economist, 
2010): “Every additional year of life expectancy at age 65 is reckoned to bump 
up the present value of pension liabilities in British defined-benefit schemes by 
3%, or GBP 30 billon (USD 48 billion).”  
 This article inspired us to estimate what effect has the increase in life expec-
tancy on the present value of annuities in V4 countries. 
 The most popular and widely used model for projecting longevity is the well-
known Lee-Carter model. This paper follows on articles Gogola (2014a; 2014b; 
2015); Jindrová and Slavíček (2012); Pacáková and Jindrová (2014) and    
Pacáková, Jindrová and Seinerová (2013). They deal with the development and 
the prediction of life expectancy in selected European countries (Czech Republic, 
Slovakia, Finland and Spain) by applying Lee-Carter model and the Quantifica-
tion of Selected Factors of Longevity.  
 
F i g u r e  1  

Life Expectancy at Birth for V4 Countries, 1950 – 2014 

 
Source: Human Mortality Database – HMD <www.mortality.org>. 
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 Most stochastic mortality models are constructed in a similar manner. Specif-
ically, when they are fitted to historical data, one or more time-varying parame-
ters are identified. 
 By extrapolating these parameters to the future, we can obtain a forecast of 
future death probabilities and consequently other demographic quantities such as 
life expectancies. They are important for quantifying longevity in pension risks 
and for constructing benchmarks for longevity-linked liabilities.  
 The main goal of this paper is to apply the Lee-Carter model to construct the 
so-called “cohort life tables” and use them for calculation of a 30-year annuity to 
a person aged 65 in 2015. 
 
 
Methodology and Data 
 
 We use data of the total population deaths and exposure to risk between 1950 
and 2014 for the V4 countries (except Poland where are available data only for 
time period 1958 and 2014) from the Human Mortality Database (www. mortali-
ty.org). We consider the restricted age range from 0 to 95. 
 Let calendar year t runs from exact time t to exact time t + 1 and let x ,td  be 

the number of deaths aged x last birthday in the calendar year t. We suppose that 

the data on deaths are arranged in a matrix ( )x ,td=D . In a similar way, the data 

on exposure are arranged in a matrix ( )x ,te=cE  where x ,te  is a measure of the 

average population size aged x last birthday in calendar year t, the so-called cen-

tral exposed to risk. We suppose that ( )x ,td  and ( )x ,te  are each a yn n×  matrices, 

so that we have an  ages and yn  years.  

 We denote the force of mortality (or hazard rate) at exact time t for lives with 
exact age x by x ,tµ . The force of mortality can be thought as an instantaneous 

death rate, the probability that a life subject to a force of mortality x ,tµ  dies in 

the interval of time  d( t , t t )+  is approximately dx ,t tµ ⋅  where dt  is small. 

 The force of mortality x ,tµ  for human populations varies slowly in both x and 

t and a standard assumption is that x ,tµ  is constant over each year of age, 

i.e., from exact age x to exact age x + 1, and over each calendar year, i.e., from 
exact time t to exact time t + 1. Thus 

 
x u ,t v x ,tµ µ+ + =  for 0 1  0 1u , v≤ < ≤ <                           (1) 

 

and so x ,tµ  approximate the mid-year force of mortality 0 5  0 5x . , t .µ + + . 
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 We suppose that x ,td  is a realization of a Poisson variable x ,tD : 
 

x ,tD ~ ( )x ,t x ,tPo e µ⋅                                         (2) 
 

 The expected values are the product of exposures x ,te  and the force of mortal-

ity x ,tµ . 

 Assumption (2) leads us to the maximum likelihood estimates of MLE
x ,t x,tmµ =  as 

 

 x ,t
x ,t

x ,t

d
m

e
=                                     (3) 

 

or in a matrix form =
c

D
m

E
, that means element-wise division in R.  

 We also consider the mortality rate x ,tq . This is the probability that an indi-

vidual aged exactly x at exact time t will die between t and t + 1. We have the 
following relation between the force of mortality and the mortality rate: 

 
1

0

1 1 x ,t

x,t x s,t sq exp ds eµµ −
+ +

 
= − − = − 

 
∫                               (4) 

 
 We use the following conventions for our model: 

• the  x x,α β  coefficients will reflect age-related effects, 

• the tκ  coefficients will reflect time-related effects. 

 Our models are fitted to historical data. 
 The Lee-Carter model was introduced by Ronald D. Lee and Lawrence Carter 
in 1992 with the article Lee and Carter (1992). The model grew out of their work 
in the late 1980s and early 1990s attempting to use inverse projection to infer 
rates in historical demography. The model has been used by the United States 
Social Security Administration, the US Census Bureau and the United Nations. It 
has become the most widely used mortality forecasting technique in the world 
today. 
 Lee and Carter proposed the following model for the force of mortality: 

 

x ,t x x tlog m α β κ= + ⋅                    (5) 
 

with constraints   

1

1
an

x
x

β
=

=∑                        (6) 

 

1

0
yn

t
t

κ
=

=∑            (7) 
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 The second constraint implies that, for each x, the estimate for xα  will be 

equal (at least approximately) to the mean over t of x ,tlog m . 

 Let φ represent the full set of a parameters and the notation for x ,tµ  is extend-

ed to x ,t( )µ ϕ , to indicate its dependence on these parameters.  

 For our model the likelihood function under the Poisson assumption will be: 
 

L( ; , )ϕ =D E  
( )( )

( ( ))
x ,td

x ,t x ,t

x ,t x ,t
x t x ,t

e
exp e

d !

µ ϕ
µ ϕ

⋅
⋅ − ⋅∏∏  

 
or the log-likelihood 

 

 l( ; , )ϕ =D E  ( )[ ( )] ( ) ( )x,t x,t x,t x,t x,t x,t
x t

d log e e log d !µ ϕ µ ϕ⋅ ⋅ − ⋅ −∑∑   (8) 

 
and parameters estimation is by maximum likelihood (MLE). 

 
 By the equation (5) the log of the force mortality is expressed as the sum 
of an age-specific component xα  that is independent of time and another   

component that is the product of a time-varying parameter tκ  reflecting the gen-

eral level of mortality and an age-specific component xβ  that represents how 

rapidly or slowly mortality at each age varies when the general level of mortality 
changes. 
 Interpretation of the parameters in Lee-Carter model is quite simple: 

( )xexp α  is the general shape of the mortality schedule and the actual forces of 

mortality change according to overall mortality index tκ  modulated by an age 

response xβ  (the shape of the xβ  profile tells which rates decline rapidly and 

which slowly over time in response of change intκ ). 

 For practice the fitting of a model is usually only the first step and the main 
purpose is the forecasting of mortality. For forecasting time series we use Ran-
dom Walk with Drift.  
 The estimated age parameters,  x x,α β , are assumed invariant over time. This 

last assumption is certainly an approximation but the method has been very thor-
oughly tested in Booth, Tickle and Smith (2005) and found to work. 
 We assume that trend observed in past years can be graduated (or smoothed) 
and that it will continue in future years. 

 By the Random Walk with Drift the dynamics of tκ follows 
 

1 1t t tκ κ θ ε− −= + +                (9) 
 

with i.i.d standard Gaussian distribution tε ∼ N(0; 2
εσ ). 
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 Value at future time t + h can be written as 
 

1

0

h

t h t t s
s

hκ κ θ ε
−

+ +
=

= + ⋅ +∑                  (10) 

 
which has Gaussian distribution N( 2

t h ; hεκ θ σ+ ⋅ ⋅ ). 
 

 Hence the best point estimate for future value at time t + h is t hκ θ+ ⋅ , and 

the 95% confidence interval (CI) is  
 

( 1 96 1 96 )t th . h ; h . hε εκ θ σ κ θ σ+ ⋅ − ⋅ ⋅ + ⋅ + ⋅ ⋅         (11) 
 

where θ is the mean of the first differences 1t t tκ κ κ −∆ = −  and 2
εσ  their variance. 

 
 
Results 
 
 In Figure 2 we have plotted the maximum likelihood estimates for the param-
eters of the Lee-Carter model (L-C model), using the Czech Republic (CR) total 
population data, aged 0 – 95. (All partial results we will demonstrate for the CR). 
Model fitting was done in R (Statistical computing language), which was also 

used for Figure 4. Note that estimated values for xβ  are higher at the lowest ages 

(i.e. for children), meaning that at those ages the mortality improvements are 
faster during the last decades. The decreasing trend in tκ  reflects general im-

provements in mortality over time at all ages. We will now simulate the tκ up to 

2060 according to equation (9). We have done 1 000 simulations. These results 
in case of the total population are plotted in Figure 3. (which illustrated only six 
simulations). The dashed curves in plot show the 2.5-th and 97.5-th percentile of 
the distribution of tκ  resulting in a 95% confidence interval. 
 
F i g u r e  2  

Estimated Parameters x x,α β , tκ  of the L-C Model for Population of the CR 

 

-10

-8

-6

-4

-2

0
0 10 20 30 40 50 60 70 80 90 100

A
lp

ha
x

Age



757 

  

 
Source: Author´s processing. 

 
 By forecasted tκ  we get the predictions for the force of mortality 

( )x,t x x texpµ α β κ= + ⋅ , which lead us by equation (4) to mortality rates qx,t. 

 
F i g u r e  3  
Predicted tκ  for Total Population with 95% CI 

 
Source: Author’s processing. 
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 To avoid underestimation of the relevant liabilities we use dynamic mortality 
model. Cohort or dynamic life table provide a view on the future evolution of 
mortality rates and it implies the diagonal arrangement in a projecting life table 
(see Table 1). That is, we take the mortality rate for age 65 in 2014, age 66 in 
2015…, age 75 in 2024…, age 85 in 2034 and so on. 
 
T a b l e  1  

Period Life Table vs. Cohort Life Table (for the CR total population) 

qx,t 2014 2015 2016 2017 2018 2019 2020 

. . . . . . . . 
65 0.014699 0.014505 0.014314 0.014125 0.013938 0.013754 0.013573 
66 0.015832 0.015618 0.015406 0.015197 0.014991 0.014788 0.014587 
67 0.017191 0.016954 0.016721 0.016491 0.016263 0.016039 0.015818 
68 0.018574 0.018311 0.018051 0.017795 0.017543 0.017294 0.017048 
69 0.020037 0.019744 0.019456 0.019172 0.018892 0.018615 0.018343 
70 0.021675 0.02135 0.021029 0.020714 0.020403 0.020097 0.019795 
71 0.023349 0.02299 0.022637 0.022289 0.021946 0.021609 0.021276 
. . . . . . . . 

Source: Author’s calculations. 

 
F i g u r e  4  

Observed qx in 2014 and Predicted qx in 2030 and 2045 for Total Population  
of the CR 

 
Source: Author’s calculations. 

 
 Finally by equations (12) – (15) we find the present values of the annuities 

such as term immediate annuity 
x:n|

a , term annuity-due 
¨

x:n|a . We will also con-

sider annuities payable m-times per year. 
 

1

n
t

t xx:n|
t

a v p
=

= ⋅∑        (12) 
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 ( ) 1
(1 )

2
m n

n xx:n| x:n|

m
a a v p  

m

−= + ⋅ − ⋅   (UDD)                 (13) 

 

  
1

0

n¨
t

x:n| t x
t

a v p
−

=

= ⋅∑     (14) 

 

 
( ) 1

(1 )
2

m¨ ¨
n

x:n| x:n| n x

m
a a v p

m

−= − ⋅ − ⋅   (UDD)                (15) 

 
where (UDD) means the assumption of Uniform Distribution of Deaths. 
 
 Take an individual aged 65 in 2015 (birth year = 1950) who wants to pur-
chase a 30 years annuity. For calculation annuities first we use the Period table, 
which contains the last available mortality rates. In our case it is year 2014 (the 
second column of Table 1). Then we use the diagonal values (Cohort table) for 
the cohort aged 65 in 2015 (born 1950) who are still alive in year 2015 + t. 
 Table 2 gives present values of 30 years annuities for the individual aged 65 
from the whole population of the Czech Republic with interest rate of 2% p.a. 
(or i = 0.02). In Table 3 – 5 we present results for other V4 countries.  
 
T a b l e  2  

Present Values of Annuities for the Total Population in the Czech Republic  
(x = 65, n = 30, I = 0.02) 

 
x:n|

a  ( )12

x:n|
a  

( )12¨

x:n|a  
¨

x:n|a  

Period table 14.04 14.31 14.74 15.01 
Cohort table 14.75 15.01 15.43 15.69 
Relative change      5.01%      4.85%      4.69%      4.54% 
2.5% 14.13 14.40 14.83 15.09 
      0.65%      0.61%      0.60%      0.57% 
97.5% 15.34 15.60 16.01 16.27 
      9.26%      8.99%      8.64%      8.39% 

Source: Author’s calculations. 

 
T a b l e  3  

Present Values of Annuities for the Total Population in Poland  
(x = 65, n = 30, i = 0.02)  

  
x:n|

a  ( )12

x:n|
a  

( )12¨

x:n|a  
¨

x:n|a  

Period table 14.07 14.34 14.76 15.03 
Cohort table 14.74 15.00 15.41 15.67 
Relative change       4.75%      4.61%      4.41%      4.28% 
2.5% 14.23 14.49 14.92 15.18 
       1.13%      1.08%      1.04%      0.99% 
97.5% 15.24 15.49 15.90 16.15 
       8.29%      8.06%      7.69%      7.48% 

Source: Author’s calculations. 
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T a b l e  4  

Present Values of Annuities for the Total Population in Hungary  
(x = 65, n = 30, I = 0.02) 

  
x:n|

a  ( )12

x:n|
a  

( )12¨

x:n|a  
¨

x:n|a  

Period table 12.99 13.25 13.69 13.96 
Cohort table 13.53 13.79 14.22 14.48 
Relative change      4.16%      4.00%      3.88%      3.74% 
2.5% 13.04 13.30 13.74 14.01 
       0.42%      0.38%      0.39%      0.35% 
97.5% 14.01 14.27 14.70 14.95 
       7.91%      7.64%      7.36%      7.11% 

Source: Author’s calculations. 

 
T a b l e  5  

Present Values of Annuities for the Total Population in Slovakia  
(x = 65, n = 30, I = 0.02) 

  
x:n|

a  ( )12

x:n|
a  

( )12¨

x:n|a  
¨

x:n|a  

Period table 13.29 13.56 13.99 14.26 
Cohort table 13.86 14.12 14.55 14.81 
Relative change      4.24%      4.09%      3.97%     3.83% 
2.5% 13.37 13.64 14.07 14.33 
       0.57%      0.53%     0.54%     0.49% 
97.5% 14.34 14.60 15.03 15.28 
      7.91%      7.64%     7.38%     7.13% 

Source: Author’s calculations. 

 
 
Conclusions 
 
 National governments and the WHO announce life expectancies of different 
populations every year. To financial institutions, life expectancy is not an ade-
quate measure of risk, because all it does not give any idea about how mortality 
rates at different ages vary over time. On the other hand, indicators of longevity 
risk cannot be too complicated. An indicator that is composed by a huge array of 
numbers is difficult to interpret and will lose the purpose as a “summary” of 
a mortality pattern. 
 We have presented stochastic models to analyse the mortality and shown how 
they may be fitted. Afterwards we can turn to the industry requirement to fore-
cast future mortality.  
 We have shown that if the today rate of increase will continue, it will at age 
65 concluded (after calculation) to increase the present value of pension liabili-
ties in defined-benefit schemes if we use cohort life table instead of period life 
table (provided all else unchanged). There is a variety of this increase in V4 
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countries, the smallest increase is estimated in Hungary, 4.16%, for ��:��| and the 

highest expected increase is in the Czech Republic about 5%. This increase is not 
very significant if we use different constant interest rate. For interest rate in the 
interval 〈1%, 2%〉 the relative change (provided all else unchanged) of ��:��| is in 

〈5.01%, 5.22%〉 for the total population of CR. This small change leads us to use 
constant interest rate instead of any yield curve.  
 But forecasting of mortality should be approached with both caution and hu-
mility. Any prediction is unlikely to be correct. 
 There is a need for awareness of model risk when assessing longevity-related 
liabilities, especially for annuities and pensions. The fact that parameters can be 
estimated does not imply that they can sensibly be forecast. The Lee-Carter 
model has also many critics. Some argued that many age specific rates are so 
low that they cannot realistically be projected to decline much further. Other 

have questioned whether the  x x,α β  should be treated as invariant. Limitation of 

the Lee-Carter model is that it requires a long data series for fitting. Therefore it 
may be invalid for many developed countries.  
 Such forecasting should enable actuaries to examine the financial conse-
quences with different models and hence to come to an informed assessment of 
the impact of longevity risk on the portfolios in their care. There is a question 
how these results could influence self-annuitization strategies such as pro-
grammed withdrawal compared to the immediate annuitization as has been studied 
by Šebo and Šebová (2016). 
 Longevity expectations continue to increase across the developed world. As they 
do, defined benefit pension funds, a primary holder of this risk have to recognise 
it in their actuarial valuations. This increases their liabilities and puts their fi-
nances under further pressure. 
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