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Abstract 

In this working paper, the topic of country vs. industry effects in stock returns is 

explored. An approach based on stock market network modeling is used to assess both effects. 

Three different network subgraphs are employed: Minimum Spanning Trees, Planar Maximal 

Filtered Graphs  and Threshold Graphs. By constructing the networks for the whole sample 

covering 2003 – 2012, significance of country and industry effects are shown both by visual 

inspection, as well as simulation and fitting of Exponential Random Graph Models. The 

relative importance of country/industry effects are assessed using the indicators “Relative 

Country Links” and “Relative Industry Links”, in a rolling windows analysis covering the 

sample period, indicating dominance of country effects. 

  

JEL Classification: G01, L14 

Keywords: stock market networks, emerging and frontier markets, portfolio diversification. 

 

Acknowledgements  

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0666-

11. I would like to thank Eduard Baumöhl and Štefan Lyócsa for their ideas and input regarding this paper, as 

well as routines for stationarity testing. 

 

 

  



Introduction 

Since the seminal works of Markowitz (1952), many papers have been written on the 

topic of portfolio diversification. The exploitation of low correlation for minimizing the risk 

of a portfolio within the mean-variance frameworks has led to a search for asset classes (and 

asset groups within these classes) that would offer the best risk-reward ratios. A lengthy 

debate ensued on the benefits of international and cross-industry diversification. The general 

idea is simple – as each sector is affected differently by the business cycle, diversification 

across industries should be beneficial. International diversification should help even further, 

as there are fewer common factors and thus systematic risk should be lower. This effect 

however is mitigated by the development on internationalization of markets, globalization and 

growing market interdependencies (e.g. cross-listings of stocks and the rise of transnational 

companies). Thus, the puzzle of superiority of industry/international diversification remains.  

This paper does not have the ambition to solve the long lasting puzzle. It focuses on the 

use of stock market network analysis tools to compare the two approaches. The paper 

analyzes the industry/country effects present in the networks constructed from stock returns of 

CEE-3 markets (the Czech Republic, Poland and Hungary), together with the neighbouring 

major stock market of Germany.  

 

1. Related literature 

1.1 International vs. industry diversification 

The discussion of country/industry effects in stock returns go back as far as 1974, as 

Lessard (1974) states that the country effects are more important. These findings were 

supported by Solnik (1974), demonstrating the benefits of international diversification.  

More recently, the work of Heston and Rouwenhorst (1995) have marked the beginning 

of a series of papers on the topic, with ambiguous outcome. Griffin and Karolyi (1998) 

confirm that little of the variation in country index returns can be explained by their industrial 

composition. Cavaglia et al. (2000) followed the analysis of Heston and Rouwenhorst, used a 

different return decomposition structure in their econometric treatment and expressed their 

view that the preference on international diversification over the industry diversification is not 

warranted. They described the relationship between the effects as a dynamic one, with a 

growing trend in favour of industry factors.  



Diermeier and Solnik (2001) analyzed the proportion of domestic and foreign sales, as 

well as currency risk exposure. They found evidence that companies are priced globally, the 

location of company’s headquarters is not a major determinant of stock price, and that foreign 

stock market exposure is more important than foreign currency exposure. Cavaglia and Moroz 

(2002) support the notion of related companies creating closer ties, thus aiding stronger 

industry links in their paper on cross-industry, cross-country allocation. Baca et al. (2002) 

confirm the rise of industry effects, and express their view that the findings suggest that 

country-based approaches to global investment management may be losing their 

effectiveness. In Wang et al. (2003), the authors analyze 7 equity markets and 22 industrial 

group returns indexes in the period of January 1990 – February 2001. Their results support the 

dominance of industry effects over country effects since 1999. They also find that country 

effects tend to show a cyclical trend. 

More recently, much of the research focused on a related topic of contagion of markets, 

which may further reduce the meaningfulness of international diversification. In their notable 

paper, Forbes and Rigobon (2002) define contagion as the rise in correlation among stock 

market returns in time of crises, or an external shock in one of the economies. Although the 

literature on contagion is extensive (e.g. Bekaert et al., 2002; Kearney and Lucey, 2004; 

Goetzman et al, 2005; Bekaert et al, 2009 and others), we will not pursue this topic in more 

detail, but rather focus on the dichotomy of industry/country effects in stock returns within 

the context of stock market networks.  

1.2 Stock market networks 

Stock market network modeling is an area based on graph theory, studied in discrete 

mathematics. The seminal paper on this topic is by Mantegna (1999), who analyzed the 

constituents of Dow Jones Industrial Average and S&P500 during the period 1989 – 1995. 

This paper introduced several key topics: a way to define a network as a set of vertices 

(assets) and their relationships (return correlations) forming edges. It also solved a problem of 

meaningful assignment of edge weights, where (possibly also negative) correlations are 

transformed into distances. The problem of impracticality of working with complete graphs 

was solved by the proposal of using a minimum spanning tree (MST) to select a sub-graph 

retaining the most important edges while retaining connectivity and acyclic properties.  

The research on stock market networks that followed was quite extensive, and several 

improvements and alternative subgraph creation algorithms have been proposed. The 



approach using MSTs was used e.g. on the US market by Bonanno et al. (2001), who used 

high-frequency data, and Vandewalle et al. (2001). The analysis of Bonanno et al. (2004) 

extended the analysis to the stock markets of 24 countries during the period 1988 – 1996. The 

paper introduced some ideas dealing with stock trading non-synchronicity. The paper by 

Onella et al. (2002) contributed by analyzing the dynamics of evolution of stock market 

networks. Their analysis of S&P500 constituents on the sample of 1982 – 2000 demonstrated 

the rise of correlations between stock returns, which justifies the dynamic approach. This rise 

is demonstrably also reflected in various network characteristics, which shows the economic 

meaningfulness of the network approach. They also demonstrated the relation between 

portfolio diversification and the so-called normalized tree length (which is a network 

property).  

Coelho (2007) used the network analysis on the stocks constituting the FTSE 100 index. 

They compared the industry structure of FTSE 100 to the clustering induced by the ensuing 

MST, stating their similarity. Their results were in contrast with a prior analysis by Coronello 

et al. (2005), who used intraday data, thus providing evidence on the significance of the 

sampling frequency. Gilmore et al. (2008) on the sample of 21 EU countries demonstrated the 

central role of the older EU members, such as Germany and France. They confirm the 

usefulness of using MSTs. Also, the lower linkages of CEE countries suggested 

diversification potential. Eryiğit and Eryiğit (2009) analyzed 143 stock market indices in 59 

countries during the years 1995 – 2008. Apart from the traditional MST, they also used planar 

maximally filtered graphs (PMFG), introduced by Tumminello et al. (2005). With both 

approaches leading to similar results, the authors confirm the rise in correlations in time and 

spatial clustering of stock indices, particularly in the daily data. Similarly, Di Matteo et al. 

(2010) studied PMFGS, with emphasis on centrality. The results showed the dominant 

position of the financial sector. More recent studies, spanning also the crisis period include 

the work of Dias (2012), Sandoval Jr and Franca (2012) and Sandoval Jr (2012).  

 

  



Table 1: Index constituents for indices of CEE-3 and Germany 

Ticker Company Country Sector NACE Model specification LB LB2 

ERSTE Erste group bank CZE Financial K ARIMA(1,1,1)-sGARCH(1,1) 0.120 0.592 

PM Philip morris CR CZE Consumer Goods G ARIMA(1,1,1)-sGARCH(1,1) 0.833 0.365 

CEZ ČEZ CZE Utilities D, E ARIMA(1,1,1)-csGARCH(1,1) 0.308 0.504 

KB Komerční banka CZE Financial K ARIMA(3,1,1)-gjrGARCH(1,1) 0.070 0.141 

UNI Unipetrol CZE Basic Materials B ARIMA(1,1,1)-eGARCH(1,1) 0.073 0.101 

O2 Telefónica CR CZE Technology J ARIMA(1,1,1)-eGARCH(1,1) 0.246 0.754 

EGIS Egis pharmaceuticals HUN Healthcare Q ARIMA(1,1,1)-gjrGARCH(1,1) 0.330 0.090 

EST Est media HUN Services I, R, H ARIMA(1,1,1)-eGARCH(1,1) 0.835 0.635 

MOL MOL HUN Basic Materials B ARIMA(1,1,1)-eGARCH(1,1) 0.191 0.436 

MTK Magyar telekom HUN Technology J ARIMA(2,1,1)-csGARCH(1,1) 0.136 0.055 

OTP OTP bank HUN Financial K ARIMA(1,1,1)-eGARCH(3,1) 0.330 0.228 

PAE PannErgy HUN Utilities D, E ARIMA(1,1,1)-csGARCH(1,1) 0.278 0.595 

REG Richter Gedeon HUN Healthcare Q ARIMA(2,1,2)-sGARCH(1,1) 0.216 0.251 

SYN Synergon HUN Technology J ARIMA(1,1,1)-sGARCH(1,1) 0.109 0.276 

KGHM KGHM POL Basic Materials B ARIMA(1,1,1)-eGARCH(1,1) 0.322 0.449 

PEO Bank Polska Kasa Opieki POL Financial K ARIMA(2,1,1)-sGARCH(1,1) 0.168 0.337 

PKN Polski Kon. Naftowy Orlen POL Basic Materials B ARIMA(1,1,1)-sGARCH(2,2) 0.397 0.133 

TPS Telekomunikacja Polska POL Technology J ARIMA(1,1,1)-eGARCH(1,1) 0.070 0.065 

ACP Asseco Poland POL Technology J ARIMA(1,1,1)-sGARCH(1,1) 0.138 0.192 

BHW Bank Handl. w Warszawie POL Financial K ARIMA(1,1,1)-sGARCH(1,1) 0.457 0.059 

BRE BRE Bank POL Financial K ARIMA(3,1,5)-eGARCH(1,1) 0.059 0.330 

BRS Boryszew POL Basic Materials B ARIMA(3,1,1)-gjrGARCH(1,1) 0.067 0.632 

ADS Adidas DEU Consumer Goods G ARIMA(1,1,1)-sGARCH(1,1) 0.055 0.198 

ALV Allianz DEU Financial K ARIMA(1,1,1)-gjrGARCH(1,1) 0.520 0.187 

BAS BASF DEU Basic Materials B ARIMA(1,1,1)-csGARCH(1,1) 0.334 0.144 

BMW Bayerische Motoren Werke DEU Consumer Goods G ARIMA(1,1,1)-sGARCH(1,1) 0.434 0.209 

BAYN Bayer DEU Healthcare Q ARIMA(1,1,1)-eGARCH(1,1) 0.335 0.121 

BEI Beiersdorf DEU Consumer Goods G ARIMA(1,1,1)-sGARCH(1,1) 0.377 0.410 

CBK Commerzbank DEU Financial K ARIMA(1,1,1)-sGARCH(1,1) 0.107 0.663 

CON Continental DEU Consumer Goods G ARIMA(1,1,1)-gjrGARCH(3,2) 0.115 0.063 

DAI Daimler DEU Consumer Goods G ARIMA(1,1,1)-csGARCH(1,1) 0.515 0.084 

DBK Deutsche Bank DEU Financial K ARIMA(1,1,1)-sGARCH(3,1) 0.188 0.256 

DB1 Deutsche Boerse DEU Financial K ARIMA(1,1,1)-gjrGARCH(1,1) 0.219 0.085 

DPW Deutsche Post DEU Services I, R, H ARIMA(1,1,1)-sGARCH(1,1) 0.131 0.104 

DTE Deutsche Telekom DEU Technology J ARIMA(1,1,1)-sGARCH(1,1) 0.504 0.236 

EOAN E.ON DEU Utilities D, E ARIMA(1,1,1)-sGARCH(1,1) 0.548 0.058 

FME Fresenius Medical Care DEU Healthcare Q ARIMA(1,1,1)-csGARCH(1,1) 0.111 0.132 

FRE Fresenius SE & Co KGaA DEU Healthcare Q ARIMA(1,1,1)-sGARCH(1,1) 0.487 0.256 

HEI HEICO Corporation DEU Industrial Goods C ARIMA(3,1,2)-sGARCH(1,1) 0.105 0.090 

HEN3 Henkel AG & Co. DEU Consumer Goods G ARIMA(1,1,1)-sGARCH(1,1) 0.560 0.202 

IFX Infineon Technologies DEU Technology J ARIMA(1,1,1)-sGARCH(1,1) 0.366 0.321 

SDF K+S Aktiengesellschaft DEU Basic Materials B ARIMA(1,1,1)-eGARCH(1,1) 0.067 0.375 

LIN Linde Aktiengesellschaft DEU Basic Materials B ARIMA(1,1,1)-sGARCH(1,1) 0.200 0.085 

LHA Deutsche Lufthansa DEU Services I, R, H ARIMA(1,1,1)-sGARCH(2,1) 0.326 0.107 

MRK Merck KGaA DEU Healthcare Q ARIMA(2,1,2)-csGARCH(1,1) 0.088 0.498 

MUV2 Munich RE DEU Financial K ARIMA(1,1,1)-gjrGARCH(1,1) 0.788 0.087 

SAP SAP DEU Technology J ARIMA(1,1,1)-sGARCH(1,1) 0.565 0.476 

SIE Siemens Aktiengesellschaft DEU Industrial Goods C ARIMA(1,1,1)-eGARCH(1,1) 0.422 0.441 

TKA ThyssenKrupp AG DEU Basic Materials B ARIMA(1,1,1)-sGARCH(1,1) 0.520 0.077 

VOW3 Volkswagen DEU Consumer Goods G ARIMA(1,1,1)-eGARCH(1,1) 0.708 0.214 

Notes: LB and LB
2
 are the p-values for Ljung-Box test for autocorrelation in model residuals and squared 

residuals on first 25 lags. GARCH models used are described in more detail in Appendix 1. 

 

  



2. Data and methodology 

The data used in the paper encompasses the major stock market index constituents in 

CEE-3 markets (the Czech republic, Poland and Hungary) and Germany, with a total of 

N = 50 traded companies. Germany was selected as geographically closest major stock 

exchange. The CEE-3 countries also have strong real economic ties to Germany.  

The sample spans the time frame January, 2003 – December, 2012. This avoids the 

problematic transition period before 2000, which was characterized by privatizations and 

market irregularities in the CEE-3 countries. The sample includes a period of market crisis 

and two recessions. In contrast to many other network studies, the analysis is conducted on 

individual stock instead of stock market indices. This better corresponds to the idea, that stock 

market networks should capture the structure of the analyzed markets. This also allows 

avoiding several potential pitfalls, such as dealing with changes in the definition of market 

indices (e.g. the Czech PX index replaced the prior PX-D and PX-50 indices in March 2006).  

The daily prices were used to create the returns: 

)ln()ln( 1,,,  tititi PPr  (1) 

where ri,t is return and Pi,t market price at time t = 1, 2, ... for series i ∈ {1, 2, ..., N}. 

In order not to introduce spurious effects into the analysis, univariate ARMA-GARCH 

models have been fitted for all series. Table 1 gives details on all stocks from the respective 

markets, along with the ARMA-GARCH model specifications. The ARMA part is traditional, 

     titi LrLL ,, )(11)(1    (2) 

where 
ti ,  is the error term. The feasible GARCH specifications are listed in 

Appendix 1. The model fitting strategy was to fit ARMA-GARCH models which remove all 

autocorrelation from residuals and their squares, and then choose the most parsimonious 

model by the Bayesian information criterion (BIC).  

All series were checked for stationarity (for the results of unit-root testing, see 

Appendix 2). The ARMA-GARCH filtering was used in order to remove all information from 

the series that can be explained by prior returns. When working with the standardized 

residuals, all other identified effects are thus unambiguously a manifestation of the 

relationship between series and are not induced by autocorrelation within a single series. The 

calculated standardized residuals are then used to construct the stock market networks. 

A network is a graph G, defined by the set of vertices V(G), corresponding to the traded 

companies, and set of edges E(G) = {{u, v}; u ≠ v, u, v ∈ V(G) }. In this paper, we consider 



only correlation based networks, the edges are therefore undirected. However, it is useful for 

the edges to be weighted. The edge weights reflects the relationships of stock returns, and are 

given by the formula 

)1(2 ijijc   (3) 

where cij is the edge weight for the edge connecting vertices i,j ∈ V(G) and ρij is the 

Pearson correlation coefficient between stock returns of stocks i and j.  

As correlations are defined for all pairs of return series, it is theoretically possible to use 

them to create a complete graph on N = 50 vertices, having N(N – 1)/2 = 1225 edges. The 

analysis of this large number of edges is not only impractical, it is also not very useful, as we 

are retaining many (possibly non-significant) relationships.  

The literature defines several ways a suitable subgraph may be selected. In this paper, 

we will use three approaches: 

1. Minimum spanning trees (MST) defined by Mantegna (1999). The strategy is to 

select a subgraph, a so-called spanning tree, with minimal overall edge weights. 

A spanning tree is a connected acyclic subgraph – there exists a path between 

any two vertices, and there are no circles. The requirement for minimal sum of 

edge weights means, that given the stated conditions, the subgraphs contains the 

highest correlations possible. Less technically, the graph retains the most 

important relationships under the conditions of connectedness and acyclicity. An 

MST has N – 1 edges. 

2. Planar maximally filtered graph (PMFG) by Tumminello et al. (2005). These 

subgraphs replace the condition of MST, which requires no circles to be present 

with a condition of planarity, which requires that the graph may be embedded in 

an Euclidean plane without edges intersecting. This raises the number of edges 

to 3N – 6, and allow for richer structures to be preserved, such as cliques of the 

order 4. However, the economic reasoning behind requiring planarity is unclear. 

3. Threshold graphs (THR), e.g. Tse et al. (2010). Here the subgraph is created by 

comparing edge weights (or their transformations) to a pre-specified threshold, 

and retaining only those edges satisfying the threshold condition. These graphs 

pose no limitations on the structure of the network (unlike MST and PMFG). 

The threshold is usually chosen with respect to he size, or significance of the 

correlation coefficient between stock returns. 



In this paper we analyze all three kinds of subgraphs. Apart from creating the networks, 

it is also interesting to construct a model, which would explain the presence/absence of edges. 

Particularly, it would be interesting to see how the country and industry affiliation relate to 

the presence of edges between individual stocks.  

A framework that allows incorporating such exogenous factors into the modeling of 

edges is the Exponential random graph model (ERGM), as defined in the seminal work of 

Wasserman and Pattison (1996). Here the existence of edges and other networks structures is 

modeled by a logit-type model, which may (in simple cases) be modeled by maximum-

likelihood estimation, or by Markov chain Monte Carlo simulations. More formally, an 

ERGM focuses on the probability 
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where G is the constructed stock market network, g is a randomly created graph, θ is 

a vector of parameters and s(G) is a vector of graph characteristics, which might be node, 

edge and structure related (such as number of edges, vertex degrees, number of cliques etc.).  

The use of ERGM opens interesting options with respect to the modeling of the network 

– since the network encompasses both stocks from different countries, as well as different 

industries, it should allow for the estimation of both the country and industry effects. Thus, it 

should be possible to assess whether there are country/industry effects that explain the 

structure and strength of the relationships between stock returns of CEE-3 countries and 

Germany. 

 

  



 

Figure 1: Minimum Spanning Tree (MST) for the stock returns from CEE-3 and Germany 
Note: German stocks are color-coded pink, Poland is green, Hungary is blue and Czech stocks are yellow. 

 

 

 

Figure 2: Selected subgraphs of the MST 
Note: German stocks are color-coded pink, Poland is green, Hungary is blue and Czech stocks are yellow. 

  



3. Empirical results and discussion 

Figure 1 shows the calculated MST networks for the ARMA-GARCH filtered 

standardized residuals of stock returns for the whole sample period. Even after brief 

consideration it is clear that the network is strongly clustered by country, which is particularly 

true of Germany, Poland, and Hungary, with slight irregularities for the Czech Republic
1
.   

The MST also has subgraphs that are economically interesting. The articulation that 

connects all German stock to the CEE-3 stock is DBK (Deutsche Bank). It is itself connected 

to other German financial stocks, namely Commerzbank, Deutsche Boerse and Allianz, which 

is connected to Munich RE, creating a strong cluster of German financial companies.  

The aforementioned DBK is connected to the Czech ERSTE Bank, which is connected 

to Hungarian OTP Bank, which in turn connect to two other banks – Czech Komerční banka 

(KB), but also Polish PEO (Bank Polska Kasa Opieki). The financial cluster is completed by 

adding BRE (BRE Bank, currently mBank) and BHW (Bank Handl. w Warszawie).  

The financial cluster is very notable for two reasons: first, all the banks in the sample 

turn out as connected. This result is obtained after filtering the series with ARMA-GARCH, 

and then again by the algorithm creating the MST, which retains only 49 out of 1225 edges. 

Even then, the MST links all the banks together. This seems a rather strong evidence for 

clustering by industry. The second reason is, that the banks form the stocks which connect the 

individual country clusters – as explained before, all countries tend to create national cluster. 

But in all cases, these clusters are interlinked to other country cluster by stock from the 

financial sector, confirming its importance. 

Figure 2 also shows other interesting clusters. For example, Daimler AG (DAI), 

Bayerische Motoren Werke (BMW), Volkswagen (VOW3) and Continental AG (CON) 

present a cluster of three carmakers and a company delivering components and tires to the car 

industry. The last selected cluster contains Polish Kon. Naftowy Orlen (PKN), Czech ČEZ 

(CEZ), Hungarian MOL (MOL) and Polish Boryszew (BRS), which are all oil and energy 

related companies. 

These results clearly indicate that even though the filtering of the data might seem rather 

extensive, the results have reasonable economic interpretation. Industry and country 

clustering is also evident.  

 

                                                           
1
 Visualizations for PMFG and THR networks are shown in Appendix 3 and 4, due to their higher complexity 

given by the larger number of edges. 



 

Figure 3: Simulations of random graphs and their relation to the MST 

Note: The figure shows the distribution for the number of intra-country (left) and intra-industry (right) edges, 

obtained in Erdős and Rényi (1960; top), as well as Viger and Latapy (2005; bottom) simulations. The red lines 

represent the number of edges in the empirical MST. 

 

To test this more explicitly, we note that there are 43 out of 49 edges connecting 

vertices from the same country, and 22 edges connecting vertices from the same industry. To 

see, how likely a result like this would be, if the networks were created at random, two 

simulations have been performed. The first was the famous Erdős and Rényi model (Erdős 

and Rényi, 1960). This model generates random graphs on a selected number of vertices 

(here, N = 50) and given number of edges (here, 49).  

Although this may be considered a classical model, it has some disadvantages. First, the 

structure created in the simulation might necessarily not be a tree – while the empirical 

network is a MST. Also, the importance and connectivity of vertices might differ. Thus, 

another simulation was performed, which retains the degree sequence in all iterations (Viger 

and Latapy, 2005). By keeping the degree sequence constant, it follows that all generated 

random networks are trees, and thus precisely follow the structure of the empirical network. 



  

Table 2: ERGM for subgraphs MST, PMFG and THR 

 
MST 

 
PMFG 

 
THR 

 
Coef. 

Std. 

err.   
Coef. 

Std. 

err.   
Coef. 

Std. 

err.  

Edges -4.607 0.518 *** 

 

-3.192 0.259 *** 

 

-0.659 0.081 *** 

Country 2.806 0.461 *** 

 

2.349 0.241 *** 

 

2.331 0.153 *** 

Industry 1.958 0.327 *** 

 

1.431 0.230 *** 

 

0.647 0.190 *** 

Degree 1 2.715 0.574 *** 

        Degree 2 0.527 0.617 

         Degree 3 

    

3.230 0.562 *** 

    Degree 4         2.137 0.549 ***         

Note: *, **, and *** denote significance at the 10%, 5%, and 1% significance level, respectively. 

 

 

Figure 4: Relative frequency for MST ERGM models by vertex degree 
Note: The vertical axis depicts relative frequency. The boxplots describe the simulations created by the specified 

model. The thick line shows the vertex degrees of the empirical MST. 

 

The necessity for a simulation stems from the Cayley formula (Aigner and Ziegler, 

2010), which states that the number of trees in N = 50 vertices equals N
N-2

 = 50
48

, which is 

unfeasible. Figure 3 shows the simulations results, which clearly indicates the significance of 

both the country and industry effects.  

Another way to formally test the importance of both effects is the calculation of the 

ERGM. Table 2 gives the results of ERGM models. The explanatory variables contain the 

number of edges, country and industry factors. In case of MST and PMFG, structural 



parameters given by the frequency of given vertex degrees were also included. The specific 

degrees have been chosen by the Akaike information criterion (AIC).  

The results in Table 2 are again very reasonable. As all network structures have 

relatively few edges compared to the complete graph (the number of edges increases from 

MST, PMFG to THR), the coefficient by the number of edges is negative. The coefficients for 

Country and Industry factors are positive – hence, industry and country factor both matter, 

and their effect is positive.  

To conclude the analysis of both effects, we have to take into account the maximum 

potential total number of edges that may correspond to intra-industry and intra-country links. 

As the number of countries and industries is not the same, moreover, the distribution between 

groups is not the same; the analysis conducted so far does not make the two effects 

comparable. To make a reasonable comparison, we introduce two measures, called RCL 

(Relative Country Links) and RIL (Relative Industry Links).  

To define these measures, we first define the set of indices 

}4,3,2,1{IC  (5) 

}8,...,2,1{II  (6) 

The values of IC (indices of countries), namely 1, 2, 3, 4 represent the Czech 

Republic, Germany, Hungary and Poland (in that order). The values of II (indices of 

industries), e.g. 1, 2, ..., 8 represent Energy, Financial services, Industrial goods, Services, 

Consumer goods, Technology, Basic materials and Healthcare (in that order). 

Futher, set nkl for l ∈ IC the number of links from country l. Similarly, set not the 

number of stocks from individual industries. 

Lastly, define ZK(i, j, l, G), which for network G and any pair of vertices i, j ∈ V(G) 

and country index l ∈ IC has value 1 in case both vertices correspond to stock from country l, 

otherwise its value is 0. Similarly, function ZO(i, j, t, G) is set to 1 if both stock corresponding 

to vertices i and j in network G belong to the same industry t ∈ II, and 0 otherwise. 

The function RCL characterizes the number of edges from the same country within a 

network. For a given network (MST) we define )(GRCLMST

l   for fixed l ∈ IC:  

1
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Figure 5: Evolution of RCL a RIL for rolling MST during 2003 – 2012 
Note: The colored lines correspond to 32-week centered moving average. 

 

 

Figure 6: Evolution of RCL a RIL for rolling THR during 2003 – 2012 
Note: The colored lines correspond to 32-week centered moving average. 

For a network as a whole we set 
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The previous equation follows the idea, that for every group of stocks (partitioned by 

the country of origin) of nkl vertices there may be a maximum of nkl – 1 edges. As we are 

considering a MST, the subgraph induced by the vertices belonging to the country l has to be 



a tree – and the maximum number of edges is thus nkl – 1. )(GRCLMST

l  may therefore be 

interpreted as a ratio of the empirical and theoretically possible number of edges. )(GRCLMST  

is not just a summation of )(GRCLMST

l , in order to keep the interpretation of RCL as a 

percentage. 

Similarly, we may define )(GRILMST
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The calculations for MFG and THR networks can be found in Appendix 5. 

Figure 5 and 6 depict a rolling window analysis of RCL and RIL for the cases of MST 

a THR (results for PMFG are nearly identical to MST). The rolling analysis was conducted on 

the sample period of the years 2003 – 2012, the window length was one year (52 weeks). As 

can be seen, the difference for country/industry effects is quite dramatic for the case of MST. 

Empirically, country effects clearly dominate industry effects. The picture is less clear for the 

case of THR, where the effects are similar. As the main difference between MST and THR is 

mostly in the number of edges they retain (THR sometimes retains as much as half of the 

edges in the complete graph), we may conclude that the difference between country and 

industry effects is stronger when considering the most important relationships, as defined by 

MST. These differences tend to “average out”, as we include higher number of (potentially) 

less relevant link into the analysis. 

  



4. Concluding remarks 

In this working paper we explored a previously heavily researched topic of 

comparison of country and industry effects for portfolio diversification. Even as we do not 

construct stock portfolios per se, we use an alternative methodology based on stock market 

networks to compare these effects. 

First, we use the whole sample to construct MST, PMFG and THR networks. By 

analyzing particularly the MST, we identify interesting relationships, providing evidence for 

both country and industry clustering, with the finance sector dominating the inter-country 

relationships. Second, the apparent clustering identified by visual inspection is shown to be 

significant and non-random, as shown by the results of Erdős – Rényi (1960), as well as Viger 

– Latapy (2005) simulations. Third, the result is also confirmed by an ERGM model, where 

country and industry level factors are shown to significantly contribute to the way the 

networks are constructed. Fourth, we define the RIL and RCL indicators in order to reasonably 

compare the effects of industry/country linkage. By conducting a rolling window analysis we 

demonstrate the differences, with country factors dominating in case of MST.  
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Appendix 

Appendix 1: Specifications of the fitted GARCH models 
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 sGARCH (Bollerslev, 1986): δ = 2, γj = 0.  

 avGARCH (Schwert, 1990): δ = 1, γj = 0.  

 gjrGARCH (Glosten et al., 1993): δ = 2.  

 tGARCH (Zakoian, 1994): δ = 1.  

 Nonlinear ARCH (Higgins, 1992): γj = 0, βj = 0.  

 Log ARCH (Geweke, 1986; Pantula, 1986): δ → 0.  
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 sGARCH (Bollerslev, 1986): λ = δ = 2, η1j= η2j = 0.  

 avGARCH (Schwert, 1990): λ = δ = 1, |η1j|≤1. 

 gjrGARCH (Glosten, 1993): λ = δ = 2, η2j = 0.  

 tGARCH (Zakoian, 1994): λ = δ = 1, η2j=0, |η1j|≤1. 

 nGARCH (Higgins, 1992): δ = λ, η1j = η2j = 0.  

 naGARCH (Engle, 1993): δ = λ = 2, η1j = 0.  

 APARCH (Ding et al., 1993): δ = λ, η2j = 0, |η1j| ≤ 1.  

 ALLGARCH (Hentschel, 1995): δ = λ.  
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Note: vjt are exogenous regressors and εt-j are random deviates from the selected probability distribution 

(Normal, Student or GED). 

 

 

 



Appendix 2:Unit root testing results 

  BW Hobijn   Sul       BW Hobijn   Sul   

ERSTE 6 0.289 

 

0.239 

  

BMW 5 0.080 

 

0.081 

 PM 6 0.132 

 

0.128 

  

BAYN 5 0.062 

 

0.061 

 CEZ 8 0.298 

 

0.268 

  

BEI 4 0.133 

 

0.129 

 KB 7 0.045 

 

0.045 

  

CBK 8 0.397 * 0.393 * 

UNI 7 0.218 

 

0.222 

  

CON 8 0.143 

 

0.149 

 O2 8 0.230 

 

0.238 

  

DAI 6 0.077 

 

0.075 

 EGIS 7 0.079 

 

0.076 

  

DBK 7 0.198 

 

0.196 

 EST 5 0.172 

 

0.161 

  

DB1 6 0.232 

 

0.148 

 MOL 5 0.174 

 

0.165 

  

DPW 4 0.186 

 

0.177 

 MTK 6 0.104 

 

0.108 

  

DTE 7 0.061 

 

0.058 

 OTP 7 0.179 

 

0.174 

  

EOAN 8 0.353 * 0.351 * 

PAE 6 0.225 

 

0.193 

  

FME 12 0.102 

 

0.101 

 REG 3 0.142 

 

0.155 

  

FRE 2 0.201 

 

0.180 

 SYN 4 0.206 

 

0.182 

  

HEI 9 0.245 

 

0.183 

 KGHM 8 0.055 

 

0.056 

  

HEN3 5 0.243 

 

0.241 

 PEO 5 0.153 

 

0.158 

  

IFX 6 0.080 

 

0.076 

 PKN 7 0.164 

 

0.153 

  

SDF 4 0.076 

 

0.069 

 TPS 12 0.241 

 

0.240 

  

LIN 6 0.085 

 

0.085 

 ACP 6 0.279 

 

0.289 

  

LHA 6 0.144 

 

0.142 

 BHW 3 0.070 

 

0.071 

  

MRK 8 0.145 

 

0.113 

 BRE 5 0.105 

 

0.105 

  

MUV2 7 0.068 

 

0.069 

 BRS 9 0.127 

 

0.091 

  

SAP 5 0.094 

 

0.092 

 ADS 11 0.157 

 

0.159 

  

SIE 3 0.072 

 

0.066 

 ALV 5 0.097 

 

0.098 

  

TKA 8 0.141 

 

0.138 

 BAS 7 0.052   0.052     VOW3 6 0.073   0.071   

Note: Column BW denotes the bandwidth parameter in the estimate of covariance matrices. The columns 

denoted “Hobijn” give the test statistics for the test defined in Hobijn et al. (1994). Critical values for 10%, 5% 

and 1% significance are 0.348, 0.460 and 0.754. The columns denoted “Sul” give the test statistic for the test 

defined in Sul et al. (2005). Critical values for 10%, 5% and 1% significance are 0.347, 0.463 and 0.739. No 

statistics are significant at 5%. 

  



Appendix 3: Planar maximally filtered graph (PMFG) 

 

 

Appendix 4: Threshold graph (THR) 

 

 

  



Appendix 5: Definitions of RCL and RIL for graphs PMFG and THR 
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