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a b s t r a c t 

In many real–world cases, disjunction is expressed as the fusion of full alternatives and less relevant ones, which 

leads to an OR ELSE connective. Obviously, this connective, so-called intensified disjunction, should provide a so- 

lution lower than or equal to the MAX operator, and higher than or equal to the projection of the full alternative. 

Further, to cover the cases when higher satisfaction degrees to the less relevant alternative cause that it becomes 

the full alternative, non–continuous asymmetric disjunction is required. The dual observation holds for the fusion 

of constraints (hard conditions) and wishes (soft conditions) expressed by an AND IF POSSIBLE connective. In or- 

der to cover these requirements, the paper focuses on developing a full axiomatization of asymmetric disjunction 

and asymmetric conjunction by averaging functions. Next, the necessity and sufficiency for associative behaviour 

have been proven. Moreover, the non–dual cases are also documented. Finally, the obtained results are illustrated 

on examples, and their applicability is also discussed. 
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. Introduction 

In many real–world questions people do not consider OR operator as

ommutative. Instead of, they consider it as the left–right order of predi-

ates (alternatives), i.e. the first predicate is the full alternative, whereas

he other ones are less relevant alternatives [1] . An illustrative example

s the requirement: “go to the market and buy broccoli or cauliflower ”. The

ain focus should be on broccoli. If we find broccoli, the score is 1. If we

nd cauliflower, the score should be less than 1, but better than 0 (more

estrictive than disjunction). If we find neither broccoli nor cauliflower,

he score is 0. Finally, if we find both, the score is 1 (we are going to

ook broccoli and store cauliflower in the larder for the future use, so

his task is not considered as the EXCLUSIVE OR one). This observation

eads to the “or else ” interpretation, i.e. P 1 OR ELSE P 2 , which means

hat P 2 is not considered as a full alternative to P 1 [2,3] and therefore

o the function which values are lower than or equal to the MAX func-

ion (the lowest disjunctive function), and higher than or equal to the

rojection of the full alternative. The problem becomes more complex

hen the intensities of satisfying predicates P 1 and P 2 are considered

in our example, ripeness). Further, the higher satisfaction degree of the

ptional alternative might cause that it becomes the full alternative, i.e.

broccoli or else cauliflower, but if cauliflower is very ripe, then it becomes

he full alternative ”. 
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The dual observation holds for the AND operator, where we shift to

he “and if possible ” relaxation of conjunction, i.e. P 1 AND IF POSSI-

LE P 2 , where P 2 is not as restrictive as P 1 [2,4] . An example might

e: “searching for a non–expensive and if possible near to the beach hotel ”.

learly, a hotel should meet the fuzzy predicate is non–expensive (ex-

ressed by a monotone decreasing function) with a degree greater than

. If a hotel is far from the beach, then it is still acceptable, but with

 lower degree than a hotel which is non–expensive and near to the

each. If a hotel is not non–expensive, then it gets score 0, regardless

he extreme closeness to the beach. In this case, the function gets a value

hich might be greater than or equal to the MIN function (the highest

onjunctive function), and lower than or equal to the projection of P 1 .

his observation leads to “relaxed conjunction ”. 

In the aforementioned examples, P 1 and P 2 may be any type of predi-

ates, i.e. atomic or compound (e.g., quantified). Thus, we should deeply

xamine “intensified disjunction ” and “relaxed conjunction ” to offer the

athematical formalization for covering diverse real–world expecta-

ions and promising future topics, e.g., [5–8] . 

Both conjunctions and disjunctions, belong to the large class of ag-

regation functions, i.e. functions A : [0, 1] n → [0, 1] which are mono-

one and satisfy the boundary conditions 𝐴 (0 , … , 0) = 0 and 𝐴 (1 , … , 1) =
 , 𝑛 ∈ ℕ . The standard classification of aggregation functions is due to

ubois and Prade [9] . Namely, conjunctive aggregation functions are
2019 
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  
haracterized by A ( x ) ≤ min ( x ), disjunctive by A ( x ) ≥ max ( x ), averag-

ng by min ( x ) ≤ A ( x ) ≤ max ( x ), and remaining aggregation functions are

alled hybrid, where x is a vector, 𝐱 = ( 𝑥 1 , … , 𝑥 𝑛 ) . 
Observe that disjunction formalizes reasoning, where satisfaction of

ny of the predicates suffices, but more than one partially satisfied pred-

cate pushes the total score up [10] . The MAX function covers the for-

er: max (0 , 1) = 1 , or max (0 . 7 , 0 . 8 , 0 . 7) = 0 . 8 . A lower score than the max-

mum pushes a function into the averaging class (a solution between the

mallest and highest value among the elementary predicates). For the

atter, we have 𝐷(0 . 7 , 0 . 8 , 0 . 7) = 0 . 982 by the probabilistic sum to cover

he case: “if someone has high temperature, strong cough and significant

eakness, we are almost sure that he has a flu ”. In the soft computing

ropositional logic [11,12] , these functions are called hyper-disjunctive

 MAX is the smallest one among them), whereas functions between the

rithmetic mean and MAX are regular, or partial disjunctions (the solu-

ion is pushed towards the maximal value of atomic predicates, but not

eyond it), e.g., 𝑓 𝐷 (0 , 1) = 0 . 707 for the quadratic mean. Due to dual-

ty between the conjunction and disjunction the strongest conjunction

s MIN , or in the soft computing propositional logic it is the strongest

yper–conjunctive aggregator. 

To solve the aforementioned problems we are mostly interested in

he 2–dimensional averaging aggregation functions. We denote by  𝑣 2 
he class of all such functions. For more details we recommend mono-

raphs [10,13–15] . 

The extremal elements of  𝑣 2 are MAX (which is also called Zadeh’

 disjunction, OR operator) and MIN (Zadeh’ s conjunction, AND opera-

or). To characterize the disjunctive (conjunctive) attitude of members

f  𝑣 2 , one can consider the ORNESS measure 𝑂𝑅𝑁𝐸𝑆𝑆 ∶  𝑣 2 → [0 , 1]
iven by 

𝑅𝑁𝐸𝑆 𝑆 ( 𝐴 ) = 3 ⋅ ∫
1 

0 ∫
1 

0 
𝐴 ( 𝑥, 𝑦 ) 𝑑𝑦 𝑑𝑥 − 1 (1)

Analogously, the ANDNESS measure 𝐴𝑁 𝐷𝑁 𝐸𝑆𝑆 ∶  𝑣 2 → [0 , 1]
haracterizes the conjunctive attitude by 

𝑁 𝐷𝑁 𝐸𝑆 𝑆 ( 𝐴 ) = 2 − 3 ⋅ ∫
1 

0 ∫
1 

0 
𝐴 ( 𝑥, 𝑦 ) 𝑑𝑦 𝑑𝑥 (2)

More details regarding these measures can be found in, e.g., [16,17] .

bserve that for any n –ary aggregation function A : [0, 1] n → [0, 1]

ts dual A 

d : [0, 1] n → [0, 1] is given by 𝐴 

𝑑 ( 𝑥 1 , … , 𝑥 𝑛 ) = 1 − 𝐴 (1 −
 1 , … , 1 − 𝑥 𝑛 ) . Then, for any 𝐴 ∈  𝑣 2 , it holds 𝐴𝑁 𝐷𝑁 𝐸𝑆 𝑆 ( 𝐴 ) = 1 −
𝑅𝑁𝐸𝑆 𝑆 ( 𝐴 ) = 𝑂𝑅𝑁𝐸𝑆 𝑆 ( 𝐴 

𝑑 ) . 
The objective of this paper is a brief overview of the achieved results

n this field, and axiomatization of averaging functions in order to cover

he large scale of possibilities for asymmetric behaviour of disjunction

nd conjunction. The main focus is on asymmetric disjunction. Due to

uality, the achieved results may be applicable in asymmetric conjunc-

ion. The reminder of the paper is organized as follows: Section 2 is

edicated to the OR ELSE operators, whereas Section 3 is focused on the

ND IF POSSIBLE operators. Further, Section 4 demonstrates the results

n the illustrative situations and discusses their applicability. Finally,

ection 5 concludes the paper. 

. OR ELSE operators 

In the frame of two–valued logic, the left–right order of predicates

 1 , P 2 , ..., P n has been solved by the Qualitative Choice Logic (QCL) [18] .

n that approach, when P 1 is true, the solution gets value 1; when P 2 is

rue, the solution gets value 2; etc. If not a single predicate is satisfied,

he solution is 0. Although this approach is effective, it has to cope with

he following problems: 

• The comparison among tasks, e.g., when the first task contains four

predicates, the second task contains six predicates, and for both the

last predicate is met, it is hard to compare these two tasks. 
• Generally, it is suitable to work with the unit interval where the
worst case assumes value 0, whereas the best case assumes value 1. t

166 
In the case of many–valued logics, the literature offers two ap-

roaches to manage OR ELSE operator: bipolar and asymmetric. A bipo-

ar form of P 1 OR ELSE P 2 (the negation to the bipolar AND IF POSSIBLE

perator) consists of positive pole P 1 , which expresses the perfect values

full alternatives) and negative pole P 2 expressing an acceptable value

19] . The ordered pair of grades [ 𝜇𝑃 1 ( 𝑧 ) , 𝜇𝑃 2 ( 𝑧 )] expresses the satisfac-

ion of an element z to the bipolar OR ELSE connective. Apparently, the

exicographic order can be applied. The problem is non-considering in-

uence of P 2 for low degrees of P 1 . Let us have z 1 with degrees [0.2,

.95] and z 2 with degrees [0.22, 0.3]. By the lexicographic approach,

 2 is preferred, even though both are very similar in P 1 , but z 1 is sig-

ificantly better in P 2 . In this work, we examine this operator as an

symmetric disjunction in the sense of Bosc and Pivert [2] , where the

olution is an aggregated value of satisfying both: the full alternative

nd additional alternative. 

.1. The formalization of OR ELSE asymmetric disjunction 

Bosc and Pivert [2] proposed the following six axioms in order to

ormalize OR ELSE operator D , where x and y are the values of predicates

 1 and P 2 , respectively: 

A1 D is more drastic than OR operator: D ( x, y ) ≤ max ( x, y ), i.e. we are

crossing the border between averaging and disjunctive functions.

A2 D is softer than when only P 1 appears, because P 2 opens new

choices: D ( x, y ) ≥ x . 

A3 D is an increasing function in its first argument. 

A4 D is an increasing function in its second argument. 

A5 D has asymmetric behaviour, i.e. D ( x, y ) ≠D ( y, x ) for some ( x,

y ) ∈ [0, 1] 2 . 

A6 D is equivalent to x OR ELSE ( x OR y ): 𝐷( 𝑥, 𝑦 ) = 𝐷( 𝑥, 𝑥 ∨ 𝑦 ) . 

Note that, for the simplicity, sometimes we use the lattice connec-

ives notation ∨ = 𝑀𝐴𝑋 and ∧ = 𝑀 𝐼 𝑁 . 

The operator which meets these six axioms is expressed by the func-

ion 

( 𝑥, 𝑦 ) = max ( 𝑥, 𝐴 ( 𝑥, 𝑦 )) (3)

here 𝐴 ∈  𝑣 2 . 

As a typical example of OR ELSE operator (3) , Bosc and Pivert

2] have proposed a parametrized class of functions 

 𝐵𝑃𝑘 ( 𝑥, 𝑦 ) = max ( 𝑥, 𝑘 ⋅ 𝑥 + (1 − 𝑘 ) 𝑦 ) (4)

here k ∈ ]0, 1]. For the extremal value 𝑘 = 0 , we get disjunction ex-

ressed by the MAX function: max ( x, y ). 

The OR ELSE operators have the next transparent representation. 

heorem 1. A mapping D : [0, 1] 2 → [0, 1] is an OR ELSE operator if

nd only if D is a non–symmetric averaging aggregation function such that

( 𝑥, 𝑦 ) = 𝑥, whenever x ≥ y. 

roof. Axioms A1 and A2 ensure for any OR ELSE operator D its idem-

otency, i.e. 𝐷( 𝑥, 𝑥 ) = 𝑥 for all x ∈ [0, 1]. This fact together with the

onotonicity axioms A3 and A4 ensure 𝐷 ∈  𝑣 2 , i.e. D is an averaging

ggregation function. Clearly, if x ≥ y , then max ( 𝑥, 𝑦 ) = 𝑥 and x ≤ D ( x,

 ) ≤ x , where the first inequality is just the axiom A2, while the second

nequality follows from A1. Thus, 𝐷( 𝑥, 𝑦 ) = 𝑥, whenever x ≥ y . Finally,

5 concludes that D is a non–symmetric averaging aggregation function,

roving the necessity in Theorem 1 . The sufficiency is a matter of direct

erification of all six axioms A1–A6. □

We denote the class of all OR ELSE operators as  , and  

∗ =  ∪
 max } . The next corollary of Theorem 1 is obvious. 

orollary 1. 𝐷 ∈  

∗ if and only if 𝐷 = max ( 𝑃 𝐹 , 𝐴 ( 𝑃 𝐹 , 𝑃 𝐿 )) where 𝐴 ∈
 𝑣 2 and P F is the first projection, i.e. 𝑃 𝐹 ( 𝑥, 𝑦 ) = 𝑥 and P L is the last projec-

ion. 
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Fig. 1. The graphical interpretation of the asymmetric disjunction D expressed 

by geometric mean (6) . 

Fig. 2. The graphical interpretation of the operator (7) . 
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Fig. 3. The graphical interpretation of the non-continuous operator (9) . 
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By considering the Bosc–Pivert operators (4) , we see that

 𝐵𝑃𝑘 ( 𝑥, 𝑦 ) = max ( 𝑃 𝐹 , 𝑊 𝑘 ) where 𝑊 𝑘 ∈  𝑣 2 is the weighted arithmetic

ean, 𝑊 𝑘 ( 𝑥, 𝑦 ) = 𝑘 ⋅ 𝑥 + (1 − 𝑘 ) 𝑦 . 
As another non–trivial example, one can consider 

 

𝐺 
𝐵𝑃𝑘 

( 𝑥, 𝑦 ) = max ( 𝑃 𝐹 , 𝐺) (5)

here G is the weighted geometric mean. Analogously to (4) , we write

 

𝐺 
𝐵𝑃𝑘 

( 𝑥, 𝑦 ) = max ( 𝑥, 𝑥 𝑘 ⋅ 𝑦 (1− 𝑘 ) ) (6)

here k ∈ ]0, 1]. For 𝑘 = 0 . 5 we get 𝐷 

𝐺 
𝐵𝑃 0 . 5 ( 𝑥, 𝑦 ) = max ( 𝑥, 

√
𝑥𝑦 ) , see also

ig. 1 . 

The set  

∗ can be equipped by the standard partial order of binary

unctions, and then (  

∗ , ≤ ) is a complete distributive lattice with the top

lement MAX , and the bottom element P F . Moreover, for any n -ary aver-

ging aggregation form A : [0, 1] n → [0, 1] and 𝐷 1 , … , 𝐷 𝑛 ∈  

∗ , also the

omposite 𝐻 = 𝐴 ( 𝐷 1 , … , 𝐷 𝑛 ) , given by 𝐻( 𝑥, 𝑦 ) = 𝐴 ( 𝐷 1 ( 𝑥, 𝑦 ) , … , 𝐷 𝑛 ( 𝑥, 𝑦 ))
elongs to  

∗ . In particular,  

∗ is a convex class. Note that 𝐷 𝐵𝑃𝑘 ( 𝑥, 𝑦 ) =
 ⋅ 𝑥 + (1 − 𝑘 ) ⋅max ( 𝑥, 𝑦 ) is a convex combination of extremal elements

f  

∗ . 

Discussing the structure of  

∗ and related construction methods, we

iscuss, in back, OR ELSE operators from  , with the only exception

hen the only symmetric member of  

∗ , (i.e. MAX ) appears as the con-

idered output. As an example, consider 𝐷 1 , … , 𝐷 𝑛 ∈  

∗ , D 1 ≤ ⋅⋅⋅≤ D n 

nd 0 = 𝛼0 ≤ 𝛼1 ≤ ⋯ ≤ 𝛼𝑛 = 1 . Let us define the next ordinal sum D : [0,

] 2 → [0, 1] given by 

( 𝑥, 𝑦 ) = 𝐷 𝑖 ( 𝑥, 𝑦 ) whenever 𝛼𝑖 −1 ≤ max ( 𝑥, 𝑦 ) ≤ 𝛼𝑖 , 𝑖 ∈ 1 , … , 𝑛 ∧𝐷(0 , 0) = 0 
(7) 

hen, 𝐷 ∈  

∗ and if D ≠MAX , then D is an OR ELSE operator. 

Example 1. Let 𝐷 1 = 𝐷 𝐵𝑃 0 . 5 (4) , 𝐷 2 = 𝑀𝐴𝑋 , 𝛼1 = 𝛼 ∈]0 , 1[ . Then the

elated ordinal sum 𝐷 ∈  is an OR ELSE operator visualized in Fig. 2 . 

Note that for the high values of x or y , the operator (7) behaves

ike the standard symmetric OR operator (e.g., MAX ), while when both

alues x and y are small (not exceeding the threshold 𝛼), then OR ELSE

perator is applied (in this case, the Bosc–Pivert operator (4) or (6) ). In

ig. 2 the former is shown. In the next subsection, some particular OR

LSE operators are considered. 
167 
.2. Particular OR ELSE operators and their ORNESS parameters 

In general, OR ELSE operators need not be associative, which re-

uires a deeper discussion on how to aggregate more than two values.

owever, we have the next important result. 

heorem 2. An operator 𝐷 ∈  is associative and continuous if and only

f 

 = max ( 𝑃 𝐹 , 𝑚𝑒𝑑 𝑎 ) (8)

here 𝑎 = 𝐷(0 , 1) ∈ [0 , 1[ and med a ( x, y ) is the median of values x, a, y. 

roof. Let 𝐷 ∈  be associative and continuous. Then, denoting 𝑎 =
(0 , 1) , it holds 𝐷( 𝑎, 1) = 𝐷( 𝐷(0 , 1) , 1) = 𝐷(0 , 𝐷(1 , 1)) = 𝐷(0 , 1) = 𝑎 . Sim-

larly, 𝐷(0 , 𝑎 ) = 𝑎 . Due to monotonicity of D , 𝐷( 𝑥, 𝑦 ) = 𝑎 whenever

 ≤ a ≤ y , and hence 𝐷( 𝑥, 𝑦 ) = 𝑚𝑒𝑑 𝑎 ( 𝑥, 𝑦 ) on [0, a ] × [ a , 1]. Next, if x > a ,

( 𝑧, 1) = 𝑥 for some z ∈ ] a , 1] (this is due to the continuity of D ),

nd 𝐷( 𝑥, 1) = 𝐷( 𝐷( 𝑧, 1) , 1) = 𝐷( 𝑧, 𝐷(1 , 1)) = 𝐷( 𝑧, 1) = 𝑥 . As far as also

( 𝑥, 𝑥 ) = 𝑥, and D is monotone, we have 𝐷( 𝑥, 𝑦 ) = 𝑥 whenever a < x .

hus, 𝐷( 𝑥, 𝑦 ) = 𝑚𝑒𝑑 𝑎 ( 𝑥, 𝑦 ) if a < x ≤ y . Similarly, 𝐷( 𝑥, 𝑦 ) = 𝑦 = 𝑚𝑒𝑑 𝑎 ( 𝑥, 𝑦 )
f x ≤ y ≤ a , thus proving that 𝐷 = max ( 𝑃 𝐹 , 𝑚𝑒𝑑 𝑎 ) . Note that if 𝑎 = 1 ,
hen 𝐷 = 𝑀𝐴𝑋 ∉  and thus a ∈ [0, 1[. On the other hand, consider

 = max ( 𝑃 𝐹 , 𝑚𝑒𝑑 𝑎 ) , a ∈ [0, 1[. Clearly, D is continuous due to the conti-

uity of both functions P F and med a . 

To see the associativity one should check all six possible cases of ordi-

al structure of elements x, y, z ∈ [0, 1]. Some of them are trivial, e.g., if

 ≥ y ≥ z , then 𝐷 ( 𝐷 ( 𝑥, 𝑦 ) , 𝑧 ) = 𝐷( 𝑥, 𝑧 ) = 𝑥 and 𝐷( 𝑥, 𝐷( 𝑦, 𝑧 )) = 𝐷( 𝑥, 𝑦 ) = 𝑥,

.e. 𝐷 ( 𝐷 ( 𝑥, 𝑦 ) , 𝑧 ) = 𝐷 ( 𝑥, 𝐷 ( 𝑦, 𝑧 )) . In some other cases, the proof of associa-

ivity is much more complicated. Consider y ≥ z ≥ x . Then 𝐷 ( 𝑥, 𝐷 ( 𝑦, 𝑧 )) =
( 𝑥, 𝑦 ) = 𝑚𝑒𝑑 𝑎 ( 𝑥, 𝑎, 𝑦 ) . To see the value of D ( D ( x, y ), z ), one should con-

ider four different cases related to the position of the constant a : 

(i) if a ≤ x ≤ z ≤ y , then 𝐷 ( 𝐷 ( 𝑥, 𝑦 ) , 𝑧 ) = 𝐷( 𝑥, 𝑧 ) = 𝑥 = 𝑚𝑒𝑑( 𝑥, 𝑎, 𝑦 ) =
𝐷 ( 𝑥, 𝐷 ( 𝑦, 𝑧 )) ; 

(ii) if x ≤ a ≤ z ≤ y , then 𝐷 ( 𝐷 ( 𝑥, 𝑦 ) , 𝑧 ) = 𝐷( 𝑎, 𝑧 ) = 𝑎 = 𝑚𝑒𝑑( 𝑥, 𝑎, 𝑦 ) =
𝐷 ( 𝑥, 𝐷 ( 𝑦, 𝑧 )) ; 

(iii) if x ≤ z ≤ a ≤ y , then 𝐷 ( 𝐷 ( 𝑥, 𝑦 ) , 𝑧 ) = 𝐷( 𝑎, 𝑧 ) = 𝑎 = 𝑚𝑒𝑑( 𝑥, 𝑎, 𝑦 ) =
𝐷 ( 𝑥, 𝐷 ( 𝑦, 𝑧 )) ; 

(iv) if x ≤ z ≤ y ≤ a , then 𝐷 ( 𝐷 ( 𝑥, 𝑦 ) , 𝑧 ) = 𝐷( 𝑦, 𝑧 ) = 𝑦 = 𝑚𝑒𝑑( 𝑥, 𝑎, 𝑦 ) =
𝐷 ( 𝑥, 𝐷 ( 𝑦, 𝑧 )) . 

Similarly, the validity of the associativity equation in four remaining

ases can be shown. □

Note that there are also non–continuous OR ELSE operators which

re associative. As an example, one can consider the ordinal sum linked

o 𝐷 1 = 𝑃 𝐹 ≤ 𝐷 2 = 𝑀𝐴𝑋 and 𝛼1 = 𝛼 ∈]0 , 1[ given by 

( 𝑥, 𝑦 ) = 

{ 

𝑦 for 𝑦 > 𝑥 ∧ 𝑦 > 𝛼

𝑥 otherwise (9)

nd visualized in Fig. 3 . 

emark 1. (i) Note that Eq. (8) (a continuous associative OR ELSE

perator) can be seen as the Sugeno integral [20,21] on the space
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Fig. 4. The graphical interpretation of the smallest OR ELSE operator satisfying 

𝐷(0 , 1) = 𝑎 (12) . 
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Fig. 5. The graphical interpretation of the OR ELSE operator (14) . 
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 = {1 , 2} with respect to the capacity m a : X → [0, 1] given by 𝑚 𝑎 (∅) = 0 ,
 𝑎 ({1}) = 1 , 𝑚 𝑎 ({2}) = 𝑎, 𝑚 𝑎 ({1 , 2}) = 1 , i.e. 𝐷( 𝑥, 𝑦 ) = 𝑆𝑢 𝑚 𝑎 

( 𝑥, 𝑦 ) . 
(ii) Due to the axiomatic characterization of the Sugeno integral

22] , we see that an OR ELSE operator D is continuous and associa-

ive if and only if it is co–monotone maxitive and min–homogeneous,

.e. if 𝐷( 𝑥 1 ∨ 𝑥 2 , 𝑦 1 ∨ 𝑦 2 ) = 𝐷( 𝑥 1 , 𝑦 1 ) ∨𝐷( 𝑥 2 , 𝑦 2 ) whenever ( x 1 , y 1 ), ( x 2 ,

 2 ) are co–monotone, i.e. ( 𝑥 1 − 𝑦 1 ) ⋅ ( 𝑥 2 − 𝑦 2 ) ≥ 0 and 𝐷( 𝑐 ∧ 𝑥, 𝑐 ∧ 𝑦 ) =
 ∧𝐷( 𝑥, 𝑦 ) for all c, x, y ∈ [0, 1]. 

Klement et al. [23] have introduced discrete universal integrals re-

ated to an arbitrary fixed semicopula ⊗: [0, 1] 2 → [0, 1] (i.e. ⊗ is a bi-

ary aggregation function with neutral element 𝑒 = 1 , 𝑥 ⊗ 1 = 1 ⊗ 𝑥 = 𝑥

or each x ∈ [0, 1]). It is not difficult to see that for any such integral I :

0, 1] 2 → [0, 1] based on the above defined capacity m a , a ∈ [0, 1[, we

ave 𝐼 ∈  and 𝐼(0 , 1) = 𝑎 . For example, for a fixed semicopula ⊗ the

mallest universal integral I related to ⊗ and 𝑚 𝑎 is given by 

( 𝑥, 𝑦 ) = max ( 𝑥, min ( 𝑥, 𝑦 ) ⊗ 𝑎 ) = 

{ 

𝑥 for 𝑥 ≥ 𝑦 

𝑥 ∨ ( 𝑦 ⊗ 𝑎 ) otherwise (10)

For the greatest semicopula ⊗ = ∧ ( MIN operator), 𝐼 ∧ = 𝑆𝑢, which

s the above discussed Sugeno integral. Recall that if x < y , then

𝑒𝑑 𝑎 ( 𝑥, 𝑦 ) = 𝑥 ∨ ( 𝑦 ∧ 𝑎 ) . 
On the other hand, the smallest semicopula ∘ledS : [0, 1] 2 → [0, 1] is

iven by 

 Ⓢ 𝑦 = 

{ 

𝑥 ∧ 𝑦 for 𝑥 ∨ 𝑦 = 1 
0 otherwise (11)

.e. ∘ledS is the drastic product, Ⓢ = 𝑇 𝐷 [24] , that is 

𝑇 𝐷 ( 𝑥, 𝑦 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑥 for 𝑦 = 1 
𝑦 for 𝑥 = 1 
0 otherwise 

Then, fixing a ∈ [0, 1[, the related OR ELSE operator D is given by 

( 𝑥, 𝑦 ) = 

{ 

𝑎 for 𝑦 = 1 ∧ 𝑥 ≤ 𝑎 

𝑥 otherwise (12)

Note that D is the smallest OR ELSE operator such that 𝐷(0 , 1) = 𝑎 .

his case is shown in Fig. 4 . 

The next results follow from the axiomatization of the related

niversal integrals. Let us first recall the definition of co–monotone

dditivity [14] . A function F : [0, 1] 2 → [0, 1] is co–monotone ad-

itive whenever 𝐹 ( 𝑥 1 + 𝑥 2 , 𝑦 1 + 𝑦 2 ) = 𝐹 ( 𝑥 1 , 𝑦 1 ) + 𝐹 ( 𝑥 2 , 𝑦 2 ) for all co–

onotone pairs ( x 1 , y 1 ), ( x 2 , y 2 ) ∈ [0, 1] 2 such that ( 𝑥 1 + 𝑥 2 , 𝑦 1 +
 2 ) ∈ [0 , 1] 2 . Also as already observed, F is co–monotone maxitive

henever 𝐹 ( max ( 𝑥 1 , 𝑥 2 ) , max ( 𝑦 1 , 𝑦 2 )) = max ( 𝐹 ( 𝑥 1 , 𝑦 1 ) , 𝐹 ( 𝑥 2 , 𝑦 2 )) for all

o–monotone pairs ( x 1 , y 1 ), ( x 2 , y 2 ) ∈ [0, 1] 2 . 

orollary 2. Let 𝐷 ∈  . Then D is co–monotone additive if and only if

 = 𝐷 , see (4) , for some k ∈ ]0, 1] . 
𝐵𝑃𝑘 

168 
roof. The co–monotone additivity of D is equivalent to the fact that it

s the Choquet integral with respect to m a , 𝑎 = 𝐷(0 , 1) , i.e. 

( 𝑥, 𝑦 ) = 

{ 

𝑥 for 𝑥 ≥ 𝑦 

(1 − 𝑎 ) 𝑥 + 𝑎 ⋅ 𝑦 otherwise (13)

Clearly, if 𝑎 = 1 , then 𝐷 = 𝑀𝐴𝑋 ∉  , i.e. necessarily a ∈ [0, 1[. Evi-

ently, putting 𝑘 = 1 − 𝑎, Eq. (13) defines exactly the Bosc–Pivert oper-

tor D BPk . □

orollary 3. Let 𝐷 ∈  . Then D is co–monotone maxitive and positively

omogeneous if and only if 

( 𝑥, 𝑦 ) = 𝑥 ∨ ( 𝑎 ⋅ 𝑦 ) (14)

or some a ∈ [0, 1[, see Fig. 5 . 

roof. Observe that for any 𝐷 ∈  , 𝐷(1 , 𝑦 ) = 1 . Then, for any x ∈ [0,

], the positive homogeneity of D ensures 𝐷( 𝑥, 𝑥𝑦 ) = 𝑥𝐷(1 , 𝑦 ) = 𝑥, i.e.

( 𝑥, 𝑦 ) = 𝑥 whenever x ≥ y . Let 𝐷(0 , 1) = 𝑎 ∈ [0 , 1] . Then, for any y ∈ [0,

], 𝐷(0 , 𝑦 ) = 𝑦𝐷(0 , 1) = 𝑎𝑦 . Next, for any x ≤ y we have ( 𝑥, 𝑦 ) = ( 𝑥, 𝑥 ) ∨
0 , 𝑦 ) , and pairs ( x, x ) and (0, y ) are co-monotone. Then the co-monotone

axitivity of D ensures 𝐷( 𝑥, 𝑦 ) = 𝐷( 𝑥, 𝑥 ) ∨𝐷(0 , 𝑦 ) = 𝑥 ∨ 𝑎𝑦 . □

Observe that the Eq. (14) is just the Shilkret integral [25] with re-

pect to m a . 

The next introduced ORNESS parameter values for particular OR

LSE operators are obtained by computation and therefore we summa-

ize our result briefly. Note that for each 𝐷 ∈  , 0.5 ≤ ORNESS ( D ) < 1. 

Fixing the value 𝑎 = 𝐷(0 , 1) ∈ [0 , 1[ , we get the following results: 

(1) for 𝐷 ∈  given by Eq. (8) (Sugeno integral), 𝑂𝑅𝑁𝐸𝑆 𝑆 ( 𝐷) =
0 . 5 + 1 . 5 𝑎 2 − 𝑎 3 ; 

(2) for 𝐷 ∈  given by Eq. (13) (Choquet integral), 𝑂𝑅𝑁𝐸𝑆 𝑆 ( 𝐷) =
(1 + 𝑎 )∕2 , and hence, for the Bosc–Pivert operator (4) we have

𝑂𝑅𝑁𝐸𝑆 𝑆 ( 𝐷 𝐵𝑃𝑘 ) = 1 − 0 . 5 𝑘 ; 
(3) for 𝐷 ∈  given by Eq. (14) (Shilkret integral), 𝑂𝑅𝑁𝐸𝑆 𝑆 ( 𝐷) =

(1 + 𝑎 2 )∕2 . 

. AND IF POSSIBLE operators 

At the beginning of flexible querying, queries have been generally

een as conjunctions of atomic predicates to restrict the relevant sub-

et of data. These predicates (constraints) were considered as “negative

references ”, i.e. failing to meet the conditions disqualifies items. On

he other hand, “positive preferences ” express wishes or desires that

ight be satisfied. Obviously, if they are satisfied, it should positively

nfluence the overall matching degree by suitably aggregating “negative

references ” and “positive preferences ”. 

This category of aggregation, similarly to the OR ELSE discussed in

ection 2.2 , can be solved by the bipolar approaches. A way how bipolar

ueries can handle constraints (negative preferences) and wishes (posi-

ive preferences) is explained in, e.g., [26,27] . The aggregation of con-

traints and wishes of bipolar queries by the Bipolar Satisfaction Degree

s examined in, e.g., [4,28] . 



M. Hudec and R. Mesiar Information Fusion 53 (2020) 165–173 

 

v  

c  

a  

a

 

f  

x  

A

 

 

 

 

 

𝐶  

w

 

[

𝐶  

w  

p  

g  

m
 

o

𝐶  

w

 

a  

h  

s

T  

i

P

s  

𝐶  

l  

t  

i  

𝑥  

A  

𝐶  

w

 

p  

I

 

 

 

Fig. 6. The graphical interpretation of the AND IF POSS operator given by (18) . 

Fig. 7. The graphical interpretation of the non–continuous operator (19) . 
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In this work, we examine AND IF POSSIBLE operator (the abbreviated

ersion AND IF POS is used throughout this paper) as an asymmetric

onjunction suggested by Bosc and Pivert [2] , where the solution is an

ggregated value of satisfying both: the constraint (must be satisfied)

nd the wish (is fine if it is satisfied). 

Bosc and Pivert [2] proposed the following six axioms in order to

ormalize AND IF POS operator as an asymmetric conjunction C , where

 and y are the values of predicates P 1 and P 2 analogously to the axioms

1–A6 of Section 2.1 : 

B1 C is less drastic than AND operator: C ( x, y ) ≥ min ( x, y ), i.e. we are

crossing the border between conjunctive and averaging functions.

B2 C is more drastic than when only P 1 appears, because P 2 should

be considered: C ( x, y ) ≤ x . 

B3 C is an increasing function in its first argument. 

B4 C is an increasing function in its second argument. 

B5 C has asymmetric behaviour, i.e. C ( x, y ) ≠C ( y, x ) for some ( x,

y ) ∈ [0, 1] 2 . 

B6 C is equivalent to x AND IF POS ( x AND y ): 𝐶( 𝑥, 𝑦 ) = 𝐶( 𝑥, 𝑥 ∧ 𝑦 ) . 

The operator which meets these axioms is expressed by the function

( 𝑥, 𝑦 ) = min ( 𝑥, 𝐴 ( 𝑥, 𝑦 )) (15)

here 𝐴 ∈  𝑣 2 . 

As a typical example of AND IF POS operator (15) , Bosc and Pivert

2] have proposed a parametrized class of functions 

 𝐵𝑃𝑘 ( 𝑥, 𝑦 ) = min ( 𝑥, 𝑘 ⋅ 𝑥 + (1 − 𝑘 ) 𝑦 ) (16)

here k ∈ ]0, 1]. For the extremal value 𝑘 = 0 , we get conjunction ex-

ressed by the MIN function: min ( x, y ). When 𝑘 = 0 . 5 the second ar-

ument becomes the arithmetic mean, i.e. the function 𝐶 𝐵𝑃𝑘 ( 𝑥, 𝑦 ) =
in ( 𝑥, 1 2 ( 𝑥 + 𝑦 )) is obtained. 

For A in asymmetric conjunction (15) we can use any weighted ge-

metric mean. Considering Eqs. (5) and (15) we get 

 

𝐺 
𝐵𝑃𝑘 

( 𝑥, 𝑦 ) = min ( 𝑥, 𝑥 𝑘 ⋅ 𝑦 (1− 𝑘 ) ) (17)

here k ∈ ]0, 1]. For 𝑘 = 0 . 5 we get 𝐶 

𝐺 
𝐵𝑃 0 . 5 ( 𝑥, 𝑦 ) = min ( 𝑥, 

√
𝑥𝑦 ) . 

The axioms for OR ELSE and AND IF POS differ in the first, second

nd sixth axioms only, i.e. in (A1, A2, A6) and (B1, B2, B6). On the other

and, these axioms are related by the duality of aggregation functions,

ee the next crucial result. 

heorem 3. Let 𝐶 ∈  𝑣 2 . Then C is an AND IF POS operator if and only

f its dual C 

d is an OR ELSE operator. 

roof. Consider that C is an AND IF POS operator. Then obviously C 

d 

atisfies the axioms A3, A4 and A5. Due to B1, it holds 𝐶 

𝑑 ( 𝑥, 𝑦 ) = 1 −
(1 − 𝑥, 1 − 𝑦 ) ≥ 1 − min (1 − 𝑥, 1 − 𝑦 ) = max ( 𝑥, 𝑦 ) , i.e. C 

d fulfils A1. Simi-

arly, due to B2, 𝐶 

𝑑 ( 𝑥, 𝑦 ) = 1 − 𝐶(1 − 𝑥, 1 − 𝑦 ) ≤ 1 − (1 − 𝑥 ) = 𝑥, showing

he validity of A2 for C 

d . Finally, considering the axiom B6 to be sat-

sfied for C , we have 𝐶 

𝑑 ( 𝑥, 𝑦 ) = 1 − 𝐶(1 − 𝑥, 1 − 𝑦 ) = 1 − 𝐶(1 − 𝑥, min (1 −
, 1 − 𝑦 )) = 1 − 𝐶(1 − 𝑥, 1 − max ( 𝑥, 𝑦 )) = 𝐶 

𝑑 ( 𝑥, max ( 𝑥, 𝑦 )) , and hence also

6 is valid for C 

d . Summarizing, we see that 𝐶 

𝑑 ∈  . The reversed claim,

 ∈  implies C 

d is an AND IF POS operator, can be shown in a similar

ay. □

Based on Theorem 3 , one can directly rewrite all results and exam-

les introduced in Section 2 for OR ELSE operators for the case of AND

F POS operators. Denoting their class by  ⨙ , we have: 

(1) 𝐶 ∈  ⨙ if and only if 𝐶 = min ( 𝑃 𝐹 , 𝐴 ( 𝑃 𝐹 , 𝑃 𝐿 )) for some 𝐴 ∈  𝑣 2 ,

C ≠MIN ; 

(2) 𝐶 ∈  ⨙ is associative and continuous if and only if 

𝐶( 𝑥, 𝑦 ) = 

{ 

𝑥 for 𝑥 ≤ 𝑦 

𝑚𝑒𝑑 𝑐 ( 𝑥, 𝑦 ) otherwise 
where 𝑐 = 𝐶(1 , 0) ∈]0 , 1] (i.e. C is the Sugeno integral with respect

to the capacity m 

c given by 𝑚 

𝑐 ({1}) = 𝑐, 𝑚 

𝑐 ({2}) = 0 ; and then

𝐴𝑁 𝐷𝑁 𝐸𝑆 𝑆 ( 𝐶) = 1 − 1 . 5 𝑐 2 + 𝑐 3 ; 
169 
(3) 𝐶 ∈  ⨙ is co–monotone additive if and only if 𝐶 = ( 𝐷 𝐵𝑃𝑘 ) 𝑑 , i.e. 

𝐶( 𝑥, 𝑦 ) = 

{ 

𝑥 for 𝑥 ≤ 𝑦 

𝑘 ⋅ 𝑥 + (1 − 𝑘 ) 𝑦 otherwise 𝑘 ∈]0 , 1] 

(i.e. C is the Choquet integral with respect to the capacity m 

k ),

and then 𝐴𝑁 𝐷𝑁 𝐸𝑆 𝑆 ( 𝐶) = 1 − 0 . 5 𝑘 ; 
(4) 𝐶 ∈  ⨙ is co–monotone maxitive and positively homogeneous if

and only if 

𝐶( 𝑥, 𝑦 ) = 

{ 

𝑥 for 𝑥 ≤ 𝑦 

𝑦 ∨ 𝑐 ⋅ 𝑥 otherwise 𝑐 ∈]0 , 1] (18)

(i.e. C is the Shilkret integral with respect to the capacity m 

c ), and

then 𝐴𝑁 𝐷𝑁 𝐸𝑆 𝑆 ( 𝐶) = 1 − 

𝑐 2 

2 . Note that this AND IF POS oper-

ator is not a dual of OR ELSE operator given by formula (14) ,

i.e. it differs for all a ∈ [0, 1[, from 𝐷 

𝑑 ( 𝑥, 𝑦 ) = 𝑥 ∧ (1 − 𝑎 + 𝑎 ⋅ 𝑦 ) .
Obviously, D 

d is an AND IF POS operator which is neither co-

monotone maxitive nor positively homogeneous. Observe that

while co–monotone additivity, as well as associativity and con-

tinuity are preserved by duality, this is neither the case of co–

monotone maxitivity nor of positive homogeneity as is shown in

Fig. 6 . 

Similarly, one can introduce ordinal sums for AND IF POS operators.

s an example, considering duality to formula (9) one gets the class of

ND IF POS operators given by 

( 𝑥, 𝑦 ) = 

{ 

𝑦 for 𝑦 < 𝑥 ∧ 𝑦 < 𝑐 

𝑥 otherwise (19)

ith c ∈ [0, 1[, see Fig. 7 . Note that, the above operators are non–

ontinuous, but associative. 

. Illustrative examples and possible applicability 

This section provides short illustrative examples as well as real–word

ituations of the suggested approach, and a brief reflection upon the

ossible applicability. 

.1. Illustrative examples for OR ELSE 

Let us now consider the aforementioned case of the condition “ripe

roccoli (P ) or ripe cauliflower (P ) ”, where P and P are predicates,
1 2 1 2 
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Table 1 

OR ELSE connective expressed by the continuous Bosc–Pivert operators. 

Item x y A is arithmetic mean 

for 𝑘 = 0 . 5 (4) 

A is geometric mean 

for 𝑘 = 0 . 5 (6) 

I1 0 0 0 0 

I2 1 0 1 1 

I3 1 1 1 1 

I4 0 1 0.5 0 

I5 0.1 1 0.55 0.316 

I6 0.8 0.2 0.8 0.8 

I7 0.2 0.8 0.5 0.4 

I8 0.2 0.7 0.45 0.374 

I9 0.65 0.35 0.65 0.65 

I10 0.75 0.35 0.75 0.75 

I11 0.92 0.74 0.92 0.92 

I12 0.88 0.76 0.88 0.88 

w  

e

 

𝐷  

m  

O  

a  

g  

I

 

c  

1  

r  

b  

t  

s  

o  

(  

d  

t  

𝐴  

i

 

t  

m  

p  

l

 

m  

d  

n  

m  

t

 

o  

r  

𝛼  

b

i  

b  

E

 

s  

P  

h  

h

 

s  

p  

Table 2 

OR ELSE operator expressed by the non–

continuous function (7) . 

Item x y non–continuous 

for 𝛼 = 0 . 75 

I1 0 0 0 

I2 1 0 1 

I3 1 1 1 

I4 0 1 1 

I5 0.1 1 1 

I6 0.8 0.2 0.8 

I7 0.2 0.8 0.8 

I8 0.2 0.7 0.45 

I9 0.65 0.35 0.65 

I10 0.75 0.35 0.75 

I11 0.92 0.74 0.92 

I12 0.88 0.76 0.88 

Table 3 

OR ELSE operator related to the drastic product 

(12) . 

Item x y for 𝑎 = 0 . 75 for 𝑎 = 0 . 25 

I1 0 0 0 0 

I2 1 0 1 1 

I3 1 1 1 1 

I4 0 1 0.75 0.25 

I5 0.1 1 0.75 0.25 

I6 0.8 0.2 0.8 0.8 

I7 0.2 0.8 0.2 0.2 

I8 0.2 0.7 0.2 0.2 

I9 0.65 0.35 0.65 0.65 

I10 0.75 0.35 0.75 0.75 

I11 0.92 0.74 0.92 0.92 

I12 0.88 0.76 0.88 0.88 
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hich take into account the degrees of ripeness of the respective veg-

tables. Generally, P 1 and P 2 can be any kind of predicates. 

In the first example, we consider Bosc–Pivert disjunctions D BP 0.5 and

 

𝐺 
𝐵𝑃 0 . 5 , i.e. the cases when A is the arithmetic mean (4) or the geometric

ean (6) . The intensities of x and y , and the results are in Table 1 .

bviously, the geometric mean is a more restrictive function, where in

ddition, the value 0 is an annihilator, i.e. both values, x and y , should be

reater than 0 (compare I4 and I5 ). These two functions are continuous.

t is clear that all axioms (A1 – A6) hold. 

An example might be buying or renting a building for a smaller

ompany owning a 10-cars fleet. An attached garage of capacity for

0 cars is the ideal option ( 𝑃 1 (10) = 1 ). If it is not available, then 10

eserved street parking lots is the less preferable alternative. When a

uilding has a garage for 10 cars ( 𝑥 = 1 ), the solution is 1 regardless

he street lots. When a garage has five places ( 𝑥 = 0 . 5 ) and 10 reserved

treet lots are available ( 𝑦 = 1 ), then the solution is 0.75. But, when

nly four reserved street lots are available, then the solution is 0.45

the driver of the last car should compete for a free lot). To emphasize

ifficulties of street parking we can apply the geometric mean (6) . On

he other hand, when street parking is quite comfortable, we can apply

 ( 𝑥, 𝑦 ) = 

√
0 . 5 𝑥 2 + 0 . 5 𝑦 2 (the ORNESS measure for the quadratic mean

s greater than 0.5). 

Another possible real–world employment may be in the support for

he medical diagnosis queries like most of { P 1 , P 2 , P 3 , P 5 , P 7 } or else

ost of { P 2 , P 4 , P 6 , P 8 } should be met to have a high belief about a

articular illness, where P i is a fuzzy predicate like high temperature or

ow sedimentation . 

When we consider averaging functions logically [11] , then the arith-

etic mean is the only neutral function between the conjunction and

isjunction ( 𝐴 ( 𝑥, 𝑦 ) = [ 𝑥 ∧ 𝑦 + 𝑥 ∨ 𝑦 ]∕2 ). Thus, when the optional alter-

ative is more relevant, we can use an averaging function of ORNESS

easure lower than 0.5 in (3) . Otherwise, we can use an averaging func-

ion of ORNESS measure greater than 0.5. 

The next example is focused on the non–continuous case of OR ELSE

perators. Into the aforementioned example we add “if cauliflower is very

ipe, then it also becomes the full alternative ”. The solution is in Table 2 for

= 0 . 75 (7) where 𝐷 1 = 𝐷 𝐵𝑃 0 . 5 and 𝐷 2 = 𝑀𝐴𝑋 . The non–continuous

ehaviour is obvious when comparing items I7 and I8 . The predicate P 2 
s not as relevant as P 1 , unless it assigns high intensity and therefore

ecomes the full alternative. This function also meets the axioms of OR

LSE operator. 

Recall the aforementioned medical diagnosis query. We can imagine

ituations, which require non–continuous behaviour like: most of { P 1 ,

 2 , P 3 , P 5 , P 7 } or else most of { P 2 , P 4 , P 6 , P 8 } should be met to have a

igh belief about a particular illness, but when most of { P 2 , P 4 , P 6 , P 8 }

as (very) high truth value, then it becomes the full alternative. 

For the most restrictive case of OR ELSE operators we consider the

mallest semicopula expressed by the drastic product and managed by a

arameter a (12) . As a decreases, the solution decreases when 𝑦 = 1 and
170 
 ≤ a . This fulfils our requirement: if P 2 is ideally met but P 1 is weakly met

r rejected, then a limits the solution , i.e. when y is equal to 1, low values

f x are compensated by a (items I4 and I5 ), otherwise the solution is x

item I7 ), see Table 3 . For 𝑎 = 0 , 𝑥 = 0 and 𝑦 = 1 , the solution is 0. 

An optional alternative is weighted when it is fully satisfied. It holds

hen the full alternative is satisfied with a degree lower than or equal

o the value a . An example might be in the medical domain. A medicine

 1 is applied, but when it causes a measurable effect lower than a , a

edicine P 2 is the partial solution. Another example is in evaluating

ouses. When the distance to the nearest grocery shop is more or less

eyond the acceptable walking distance ( P 1 ) the suitability of accessible

ublic transport ( P 2 ) mitigates this drawback. 

The next example considers the case when y is influenced by the pa-

ameter a (14) . Apparently, when 𝑎 = 1 , we get the disjunction, whereas

or 𝑎 = 0 we have the first projection. For a ∈ ]0, 1[ the influence of y is

educed by parameter a without considering the common influence of

 like for instance is the case in the averaging functions in D BPk . The re-

ults for different parameters a are shown in Table 4 . For the low values

f a , the results are lower or equal than by D BP 0.5 . 

The importance of an optional alternative is adjusted by a ∈ [0, 1].

n example might be buying a house where a spacious basement is an

deal solution. But, when no basement is available or it is of a low space,

hen a spacious attic is an option. Usually, it is a harder task to ware-

ouse items into the attic. Parameter a indicates the unpretentiousness

or manipulating items into the attic (e.g., it assigns higher value for

 younger buyer and less steep stairs, but lower values for an elderly

uyer and a steep ladder). The graded predicates assume sizes of the

asement and attic. When a basement is insufficiently spacious, then a

pacious attic influences the solution. In the extreme case ( 𝑎 = 1 ), both

he basement and attic are full alternatives. 
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Table 4 

OR ELSE operator expressed as a co–

monotone and homogeneous function (14) . 

Item x y 𝑎 = 0 . 3 𝑎 = 0 . 7 

I1 0 0 0 0 

I2 1 0 1 1 

I3 1 1 1 1 

I4 0 1 0.3 0.7 

I5 0.1 1 0.3 0.7 

I6 0.8 0.2 0.8 0.8 

I7 0.2 0.8 0.24 0.56 

I8 0.2 0.7 0.21 0.49 

I9 0.65 0.35 0.65 0.65 

I10 0.75 0.35 0.75 0.75 

I11 0.92 0.74 0.92 0.92 

I12 0.88 0.76 0.88 0.88 

Table 5 

AND IF POS operator expressed by the continuous Bosc–Pivert operators. 

Item x y A is the arithmetic mean 

for 𝑘 = 0 . 5 (16) 

A is the geometric mean 

for 𝑘 = 0 . 5 (17) 

I1 0 0 0 0 

I2 0 1 0 0 

I3 1 0 0.5 0 

I4 1 0.1 0.55 0.316 

I5 1 1 1 1 

I6 0.95 0.35 0.65 0.577 

I7 0.95 0.41 0.68 0.624 

I8 0.41 0.95 0.41 0.41 

I9 0.65 0.35 0.5 0.477 

I10 0.75 0.35 0.55 0.512 

I11 0.9 0.8 0.85 0.848 

I12 0.92 0.74 0.83 0.825 
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Table 6 

AND IF POS operator expressed by the non–

continuous function dual to (7) , where 𝐶 1 = 
𝐶 𝐵𝑃0 . 5 and 𝐶 2 = 𝑀 𝐼 𝑁 . 

Item x y non–continuous for 

𝛼 = 0 . 4 

I1 0 0 0 

I2 0 1 0 

I3 1 0 0 

I4 1 0.1 0.1 

I5 1 1 1 

I6 0.95 0.35 0.35 

I7 0.95 0.41 0.68 

I8 0.41 0.95 0.41 

I9 0.65 0.35 0.35 

I10 0.75 0.35 0.35 

I11 0.9 0.8 0.85 

I12 0.92 0.74 0.83 

Table 7 

AND IF POS operator expressed by 

the drastic product (20) . 

Item x y for 𝑎 = 0 . 75 

I1 0 0 0 

I2 0 1 0 

I3 1 0 0.75 

I4 1 0.1 0.75 

I5 1 1 1 

I6 0.95 0.35 0.95 

I7 0.95 0.41 0.95 

I8 0.41 0.95 0.41 

I9 0.65 0.35 0.65 

I10 0.75 0.35 0.75 

I11 0.9 0.8 0.9 

I12 0.92 0.74 0.92 
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.2. Illustrative examples for AND IF POS 

An example covered by this operator is a problem of searching for a

otel by the condition: “low price (P 1 ) and if possible short distance (P 2 ) ”.

enerally, P 1 and P 2 can be any kind of predicates assuming values in

he unit interval. 

In the first example, we consider the Bosc–Pivert conjunction C BP 0.5 ,

.e. the cases when A is the arithmetic mean (16) and the geometric

ean (17) . The results are shown in Table 5 . Similarly to asymmetric

isjunction, the geometric mean is a more restrictive function where

he value 0 is the absorbing element, i.e. both values x and y should

e greater than 0, not only the constraint x (compare items I3 and I4 ).

hese two functions are continuous. It is clear from Table 5 that axioms

1 – B6 hold for both functions. 

Mathematically, we can adopt any averaging function in (15) includ-

ng the geometric mean. The averaging functions can be interpreted

ogically [11] and therefore are able to cover various requirements.

he geometric mean (similarly to the harmonic mean) covers the most

trict behaviour of AND IF POS in (0, 0), Fig. 1 . When the wish has in-

ensity greater than 0, the asymmetric behaviour is activated. Further,

q. (17) gives more importance to the wish than (16) . For instance, in

 romantic trip, the distance of a hotel is not so relevant as the price

nd amenities, but when the distance is long it disqualifies a hotel. The

NDNESS measure of the geometric mean is lower than 0.5, which as-

igns a bit more relevance to distance, whereas the ANDNESS measure

f the quadratic mean 𝐴 ( 𝑥, 𝑦 ) = 

√
0 . 5 𝑥 2 + 0 . 5 𝑦 2 covers the cases when

he distance plays a less significant role in the asymmetric conjunction.

The next example is related to the non–continuous case of AND IF

OS operator as the extension of the aforementioned task by “low price

nd if possible short distance, but when distance is not significantly short, it

ecomes a constraint ”. In this example, we have used the dual interpreta-

ion of (7) , where 𝐶 1 = 𝐶 𝐵𝑃 0 . 5 and 𝐶 2 = 𝑀 𝐼 𝑁 for 𝛼 = 0 . 4 . The solution

s in Table 6 for 𝛼 = 0 . 4 , i.e. a distance with the matching degree to the
171 
oncept short distance lower than 0.4 becomes a constraint, that is, if

ts matching degree is lower than that for a price, then it constraints

he solution, see items I6 and I7 . This function also meets all axioms

f AND IF POS operator, e.g., asymmetry is clear from items I7 and I8 ,

on–decreasingness is noticeable when comparing items I3 and I4 , or I9

nd I10 , etc. 

The real-world situation may be expressed in the following way. A

ustomer searching for a hotel says that the price must be low and it is

esirable that the distance is at least moderately short (e.g., 𝛼 between

.4 and 0.6), otherwise the distance should be considered as a constraint.

The next example is focused on the dual case to the smallest OR ELSE

perator (12) expressed as 

( 𝑥, 𝑦 ) = 

{ 

𝑎 for 𝑥 = 1 ∧ 𝑦 ≤ 𝑎 

𝑥 otherwise (20)

As a decreases, the solution decreases when 𝑥 = 1 and y ≤ a . This

ulfils our requirement: if P 1 is ideally met but P 2 is weakly met (lower

han a), then a limits the solution , i.e. when x is equal to 1, low values of

 are compensated by a (items I3 and I4 ), otherwise the solution is x ,

hich means that in this case this is the highest AND IF POS operator

e.g., items I9 and I10 ). These solutions are in Table 7 . Further, for 𝑎 = 0 ,
 = 1 and 𝑦 = 0 , the solution is 0, whereas for 𝑎 = 0 . 99 , 𝑥 = 1 and 𝑦 = 0 ,
he solution is 0.99. 

This case covers the situation when a customer expresses that the

rice (or a compound predicate covering several key attributes) is a cru-

ial constraint. When it is fully met, then the optional alternative, e.g.,

istance influences the solution. 

The last example considers the case when x is influenced by a pa-

ameter c . It is a non–dual case of (14) . For c ∈ ]0, 1[ the influence of

 is reduced by this parameter when x > y . The results for 𝑐 = 0 . 5 and

 = 0 . 8 in (18) are shown in Table 8 . 



M. Hudec and R. Mesiar Information Fusion 53 (2020) 165–173 

Table 8 

AND IF POS operator expressed as a co–

monotone and homogeneous function (18) . 

Item x y 𝑐 = 0 . 5 𝑐 = 0 . 8 

I1 0 0 0 0 

I2 0 1 0 0 

I3 1 0 0.5 0.8 

I4 1 0.1 0.5 0.8 

I5 1 1 1 1 

I6 0.95 0.35 0.475 0.76 

I7 0.95 0.41 0.475 0.76 

I8 0.41 0.95 0.41 0.41 

I9 0.65 0.35 0.35 0.52 

I10 0.75 0.35 0.375 0.6 

I11 0.9 0.8 0.8 0.8 

I12 0.92 0.74 0.74 0.74 
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Fig. 8. The graphical interpretation of the hybrid function (21) managing re- 

ward and penalty. 
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Let us consider low price and richness of amenities in searching for a

otel. The following situation is covered by this model. When a match-

ng degree to the low price is lower than or equal to the satisfaction

egree of offered amenities, the price limits the solution. In the oppo-

ite case, we consider richness of amenities or the reduced influence of

he price. 

.3. A reflection upon applicability and future perspectives 

Both asymmetric disjunction and asymmetric conjunction have a

igh applicability potential. A possible real–world application area is

n database querying and decision support systems, e.g., [29,30] . The

iverse situations are shown in Sections 4.1 and 4.2 . In this section, we

xamine further possibilities. 

The AND IF POS operator has also a high potential to mitigate the

mpty answer problem . For example, let a house builder search for a

uitable village for building holiday houses [31] . When he considers

 higher number of predicates (e.g., altitude above sea level around

000 m, small population density, medium area of village, low pollu-

ion and so on), they should be aggregated by conjunctive functions.

therwise, in the aggregation by averaging functions a significant part

f atomic predicates need not be satisfied, or is weakly satisfied, but

ompensated by high values of other predicates; whereas by disjunctive

unctions one fully satisfied predicate influences the solution (value 1 is

he absorbing element). However, by applying conjunctive functions, it

s highly presumable that not a single village meets (at least partially)

ll predicates. It leads to the so–called empty answer problem [32] . The

iterature offers several ways how to solve this problem, e.g., the re-

axation of atomic predicates [33] . It is a suitable way, when we have

 smaller number of atomic predicates. On the other hand, a customer

ight divide such number of atomic predicates into the two subsets:

ard conditions and soft conditions by the relative fuzzy quantifier most

f like: most of { P i } and if possible most of { P j } should be met. 

It is worth noting, that situations when the influence of the constraint

s reduced by a parameter c for the matching degrees of the constraint

igher than for the wish are solved by (18) . This case is a non–dual one

o the case of asymmetric conjunction (14) . The other kinds of asymmet-

ic conjunctions and their respective asymmetric disjunctions are dual. 

The last but not the least, this axiomatization might be a valuable

upport for the emerging field of explainable artificial intelligence. For

ore details about this topic we recommend [34,35] . Generally, the

achine learning methods are very data hungry [36] , i.e. they require a

arge amount of input–output data. The domain experts are usually not

amiliar with the mathematical formalization of their tasks, but they

re able to explain expected aggregation linguistically. From such ex-

lanation we can recognize evaluation patterns for the given situation

nd therefore choose a suitable subclass of aggregation functions. Thus,

 smaller amount of training input–output data for learning the most

tted functions and their parameters might suffice. The term explain-
172 
bility is decomposed into [35] : interpretability, comprehensibility and

eproducibility (given the data and specific requirements we can model

 function that explains the output). Hence, the all aspects of aggre-

ation functions, including asymmetry should be theoretically covered

nd if possible illustrated on the representative situations. 

This discussion has illustrated the robustness of our approach, in the

ense that we can cover diverse requirements. Firstly, we have shown

hat the asymmetric disjunction and asymmetric conjunction can be ex-

ressed by various functions, which cover the variety of real–word sit-

ations for fusion of predicates in our data intense society. Secondly,

his approach has a lower computation burden in comparison to the ap-

roaches which require comparisons among items, because each item

n Tables 1–8 is considered independently, i.e. no comparisons among

tems is required. Thirdly, this approach could improve the explainabil-

ty of the machine learning solutions when the considered problem re-

uires asymmetric evaluation. 

Finally, note that there is also an alternative approach to the asym-

etric disjunction and conjunction. Dujmovi ć [11] considers disjunc-

ive and conjunctive partial absorption, in which the influence of the

econdary input is expressed in the form of a reward (if it is high), or of

 penalty (if it is low). To exemplify this approach, we recall an example

rom [11] , where if the mandatory alternative is fully satisfied and the

ptional one is fully rejected, we apply penalty of 20%; whereas if the

ptional alternative is fully satisfied, then the solution is rewarded by

0%. As a numerical model for the above described problem, one can

onsider the aggregation function 

 ( 𝑥, 𝑦 ) = min (0 . 8 𝑥 + 0 . 3 𝑥𝑦, 1) (21)

btained by the linear interpolation from the boundary constraints

 ( 𝑥, 0) = 0 . 8 𝑥 and 𝐴 ( 𝑥, 1) = min (1 . 1 𝑥, 1) . Put 

𝑏 ( 𝑡 ) = 

{ 2 
3 for 𝑡 ∈ [0 , 10 11 ] 
𝑡 

5−4 𝑡 𝑡 ∈ [ 10 11 , 1] 
Then A ( x, y ) < x if y < b ( x ) and A ( x, y ) > x if y > b ( x ). Note that the

ggregation function has a hybrid attitude (it is neither conjunctive nor

isjunctive, nor averaging). Further, this function is neither a uninorm

only the right neutral element exists) nor a nullnorm (the absence of

n absorbing element), see Fig. 8 . Clearly, neither OR ELSE nor AND IF

OS operator can model the above example. 

. Conclusion 

The diverse ways of combining predicates is a challenging task in our

ata intense society, where we face the problems of aggregating satis-

action degrees to evaluate entities. Hence, practice searches for robust

athematical solutions to cover the tasks where aggregation plays the

rucial role. In order to contribute, the theoretical part of this work has

ecognized and formalized diverse requirements for asymmetric disjunc-

ion and conjunction, which are illustrated by the real–word situations.

In the asymmetric disjunction, we have extended Bosc–Pivert op-

rators by any averaging function. To cover the cases when a signifi-

antly satisfied less relevant alternative becomes the full alternative, we

ave formalized the non–continuous asymmetric disjunction by com-

osite aggregation of the MAX operator and any function of asymmetric
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ehaviour, e.g., the Bosc–Pivert operator. Further, we have proven the

equirement for the asymmetric disjunction to be associative and con-

inuous. Next, we explained the case, when an operator is co–monotone

axitive and homogeneous, which is required for the tasks when the

nfluence of an optional alternative is reduced by a parameter assum-

ng values from the unit interval. Finally, the ORNESS measure for the

xamined functions has been introduced. 

In the asymmetric conjunction, i.e. the aggregation of constraints

nd wishes, on the basis of duality to asymmetric disjunction we have ex-

ended the Bosc–Pivert operators by any averaging function and devel-

ped the formula to fulfil the requirement for non–continuity. Further,

e have recognized that duality does not hold for co–monotone maxi-

ivity and homogeneity, when the influence of a constraint is reduced

y a parameter assuming the values from the unit interval. Finally, the

NDNESS measure for the examined functions has been introduced. 

The developed equations are demonstrated on examples to illustrate

overing diverse needs. For each formalized asymmetric case we at-

ached an explanation to help the user to choose the most suitable asym-

etric connective for given situations. Real–world tasks as medical di-

gnosis, recommender systems and explainable machine learning might

enefit from the results of this work. 
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