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Abstract 
I estimate the Czech Treasury yield curve at a daily frequency from 1999 to the present. 
I use the parsimonious yield curve model of Nelson and Siegel (1987), for which I suggest 
a parameter restriction that avoids abrupt changes in parameter estimates and thus al-
lows for the economic interpretation of the model to hold. The estimation of the model 
parameters is based on market prices of Czech government bonds. The Nelson-Siegel 
model is shown to fit the Czech bond price data well without being over-parameterized. 
Thus, the model provides an accurate and consistent picture of the Czech Treasury yield 
curve evolution. The estimated parameters can be used to calculate spot rates and hence 
par rates, forward rates or the discount function for practically any maturity. To my know-
ledge, consistent time series of spot rates are not available for the Czech economy.  

1. Introduction 
The yield curve is a fundamental determinant of almost all asset prices. The yield 

curve also influences many economic decisions. The Ministry of Finance of the Czech 
Republic is by far the biggest issuer of bonds denominated in Czech koruna and thus 
the Treasury yield curve is a natural benchmark yield curve of the Czech economy. 
However, consistent yield curve estimates over a long time period are not available. 
I estimate, day by day, the Czech Treasury yield curve from the beginning of 1999 to 
the present. The yield curve can be expressed in terms of spot rates, par rates, for-
ward rates, or the discount function. 

I use the parametric model of Nelson and Siegel (1987) to infer the Treasury 
yield curve from government bond prices. The Nelson-Siegel model, which has only 
four parameters, enables us to estimate the yield curve, without being over-para-
meterized, when the number of observed bond prices is limited. Despite the par-
simonious number of parameters, the Nelson-Siegel model fits the data very well and 
thus provides an accurate picture of the Czech Treasury curve. 

Besides providing the daily time series of the Czech Treasury yield curve for 
past more than eleven years, I elaborate on estimation issues of the Nelson-Siegel model. 
I suggest a parameter restriction which avoids abrupt changes in parameter estimates 
and thus allows for the economic interpretation of the model to hold. 

This paper is inspired by Gurkaynak, Sack, and Wright (2006), who use the Nel-
son-Siegel model and its extension introduced by Svensson (1995) to estimate 
the U.S. Treasury curve from 1961 to the present. Slavík (2001) was the first to use 
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the Nelson-Siegel model to estimate the Czech Treasury yield curve from Czech 
government bond prices. Another example is Málek, Radová, and Štěrba (2006), who 
use the Svensson model to comment on the predictive ability of model-implied 
forward rates. The two authors estimate and assess the yield curve for only one and 
two particular dates, respectively. In contrast, I run the estimation routine for more 
than 2900 days and evaluate the estimation results from both the cross-section and 
time series perspectives. 

This paper is organized as follows. Section 2 reviews fundamental concepts of 
interest rates. Section 3 presents the Nelson-Siegel modeling framework, including 
a detailed discussion of the estimation issues. Section 4 provides an overview of our 
data. Section 5 demonstrates the yield curve estimation and defines estimation error 
measures. Section 6 presents the estimation results over the eleven year period – 
quality of fit, the evolution of the Treasury yield curve, Treasury rates versus swap 
rates – and also mentions the impact of the financial market crisis. Section 7 con-
cludes. Additionally, some more figures, which are not required for understanding 
the text, are presented in the appendix on the web site of this journal. The resulting 
data are posted as the data appendix to this paper. 

2. Yield Curve Basics 
This section reviews fundamental concepts and relations of interest rates that 

will be used in the subsequent discussion. More details can be found, for example, in 
Cairns (2004) or in Cipra (2000). 

2.1 The Discount Function, Zero-coupon Bonds, and Spot Rates 
The key element in asset pricing is the discount function, or the price of a zero- 

-coupon bond. Let δt (τ), the discount function, denote the price at time t of a zero- 
-coupon bond that pays 1 Czech koruna at the maturity date t+τ. We use τ to denote 
the time to maturity.  

The continuously compounded spot interest rate, or spot yield or zero-coupon 
yield for a zero-coupon bond maturing τ  periods ahead is related to the zero-coupon 
bond price by  

                                                 
( )ln ( )

( ) = t
tr

δ τ
τ

τ
−                                                     (1) 

and conversely the zero-coupon price, or the discount function, can be written in 
terms of the spot rate as  
                                                              ( )( ) = rt

t e τ τδ τ −                                              (2) 

Although continuously compounded interest rates may be mathematically 
convenient, interest rates are often expressed on a coupon-equivalent basis, in which 
case the compounding is assumed to be annual instead of continuous. The discount 
function is then expressed as  

                                                    
( )

1( ) =
1 ( )

t
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τδ τ

τ+
                                              (3) 
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where ( )ce
tr τ  is the coupon-equivalent or annually compounded spot interest rate. 

One can easily derive the relation between the continuously compounded yield and 
the annually compounded yield:  

                                                    ( )( ) = ln 1 ( )ce
t tr rτ τ+                                               (4) 

The yield curve, or the term structure of interest rates, at a given date t is 
unambiguously represented by a set of spot interest rates with different maturities. 

2.2 Coupon Bonds, Yield to Maturity, Par Rates, and Bootstrapping 
In practice, bonds are almost solely issued as coupon bonds. Given the dis-

count function, we can price any coupon bond by summing the price of its individual 
cash flows. For example, the price ( )t nP τ  at time t of a τn-period coupon-bearing bond 
that pays a face value of 100 Czech koruna at the maturity date nt τ+  and has n cou-
pon payments left, where each coupon payment has a nominal value of C Czech ko-
runa (C=100c, where c is the coupon rate) and the last coupon payment occurs at 
the maturity date, is as follows:  

                                          
=1

( ) = ( ) 100 ( )
n

t n t i t n
i

P Cτ δ τ δ τ+∑                                         (5) 

where ( ), = 1, ,t i i nδ τ K  are discount functions (zero-coupon bond prices) with matu-
rities 1, , nτ τK . 

Bond prices can be quoted in two different forms. The bond price Pt (τn) in (5) is 
called the dirty price. The dirty price is the actual amount paid when buying the bond. 
The clean price is an artificial price which is, however, the price most often quoted in 
the markets. It is equal to the dirty price minus the accrued interest. The accrued in-
terest is equal to the amount of the next coupon payment multiplied by the proportion 
of the elapsed period from the previous coupon payment or from the issue date in 
the case of the bond’s first coupon payment. The clean price is used because it does 
not jump at the time the coupon payment is paid out (or a bond goes ex-coupon). In 
contrast, the dirty price jumps at the time the coupon payment is paid out (or a bond 
goes ex-coupon), which leads to a saw-tooth evolution of the dirty price. For coupon 
bonds, yields to maturity are often quoted on markets. The yield to maturity is the con-
stant interest rate that discounts the bond’s cash flows so that they are equal to the price 
of the bond. Hence, the annually compounded yield to maturity yt for the coupon 
bond from equation (5) fulfills  

                                     
( ) ( )=1

100( ) =
1 1

n

t n
i ni t t

CP
y yτ ττ +

+ +
∑                                         (6) 

For coupon bonds, yields to maturity are often quoted on markets. But the pic-
ture they provide is imprecise. First, the yield to maturity is a measure of a bond’s 
implied internal rate of return if it is held to maturity. This measure implicitly as-
sumes that all coupon payments are reinvested at this same internal rate of return. 
Second, assume that the prices of two bonds with the same cash flow dates but dif-
ferent coupon rates are set according to (5), i.e., using the spot rates; then these  
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two bonds will have different yields to maturity. This ambiguity of the yield to matu-
rity is called the coupon effect. For these reasons, yields to maturity should not be 
used to represent the yield curve. Instead, spot rates or par rates should be used. 

The par interest rate, or par yield, is the coupon rate ( )t nc τ  at which a nτ -peri-
od coupon bond would trade at par, i.e., at its face value. Hence, according to the pric-
ing equation (5), it must satisfy  

                                       
=1

100 = 100 ( ) ( ) 100 ( )
n

t n t i t n
i

c τ δ τ δ τ+∑                                   (7) 

This implies that  
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An example of par rates, quoted on markets, is interest rate swaps. A swap is 
an agreement between two counterparties to exchange cash flows in the future. In 
interest rate swaps, one counterparty pays cash flow equal to interest at a prede-
termined fixed swap rate on a notional principal for a number of years. In return, it 
receives interest at a floating rate on the same notional principal for the same period 
of time. 

Let us observe a set of swap rate quotes for maturities 1 2= 1, = 2, , =n nτ τ τK  
years. These par rate quotes assume annual coupons. For example, (10)tc  denotes 
the par rate quote of a 10-year interest rate swap that matures in exactly 10 years at 
date t+10 and has 10 coupon payments on dates t+1, t+2,…, t+10. In this rather 
special case, when we have quotes of coupon rates related to all coupon payment 
dates, we can determine the discount function from the par rates by manipulating (8):  

                               ( )
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and ( ) ( )( )1 1= 1/ 1t tcδ τ τ+ . This recursive procedure, which converts par rates to dis-

count functions, is called bootstrapping. We can proceed further from (9) to deter-
mine the spot rates. In practice, we have to adjust (7) and (9) to take into account 
day-count conventions. 

2.3 Duration, Convexity, and Convexity Bias 
Duration is a central figure in fixed-income analysis. It is a weighted average 

of the times when the cash flows pay out, with weights equal to the cash flows dis-
counted by the yield to maturity:  
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where Pt (τn) is the price of the τn-period coupon bond, yt is the annually com-
pounded yield to maturity defined by (6), and τi measures time to maturity in years. 
Note that a zero-coupon bond has duration equal to its time to maturity. For a coupon 
bond, the effective time that the bond holder must wait to receive the notional 
principal is always longer than the duration. Equation (10) implies that for a given 
maturity and given set of spot rates (yield curve), the higher the coupon, the shorter 
the duration. Market practitioners often work with the following duration definition:  

                                                      =
1

M

t

DD
y+

                                                       (11) 

which is referred to as modified duration. Modified duration is used as a sensitivity 
measure of the price change relative to the yield to maturity change.1 In the context 
of spot rates, the yield to maturity change can be thought of as a parallel shift of 
the spot yield curve. The first-order Taylor expansion of the bond price (6) with 
respect to yt results in  

                                                   
( )
( )
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t
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≈ −                                                (12) 

where ( ) ( ) ( )Δ = , Δ ,n n t t n tP P y y P yτ τ τ+ −  and ( )( ) ( )= 1/ d dM
n n tD P P yτ τ−  is 

the modified duration. This first-order approximation, however, is accurate only for 
small changes in yield to maturity because the relation between price and yield to 
maturity is nonlinear. 

Convexity captures this nonlinearity. The second-order Taylor expansion of 
the bond price with respect to yt results in  
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( ) ( )2Δ 1Δ Δ
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where ( )( ) ( )2 2= 1/ d / dn n tC P P yτ τ  is the convexity of the bond. Convexity implies 

that the capital loss from an increase in interest rates will be smaller than the capital 
gain from a decline in interest rates. In particular, long-period bonds exhibit very 
high convexity,2 which tends to depress long-period interest rates. This impact of 
convexity is referred to as the convexity bias. The convexity bias can be one of 
the main reasons for the noticeable concave shape of the yield curve at long matu-
rities. 

2.4 Forward Rates 
Finally, the yield curve can also be unambiguously expressed in terms of 

forward rates rather than spot rates or par rates. Forward interest rates or forward 
yields are the interest rates between times 1t τ+  and 2t τ+  in the future ( 2 1>τ τ ) 

1 A price sensitivity measure is often the only purpose of duration in the area of interest rate derivatives. 
The original definition of duration as a weighted average of the times when the instrument’s cash flows 
pay out is then meaningless. 
2 Convexity increases roughly as the square of duration. 
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implied by current spot rates. In other words we are fixing the interest rate between 
times 1t τ+  and 2t τ+  in advance at time t. 

The continuously compounded forward rate ( )1 2,tf τ τ  can be synthesized from 
spot rates by a simple no-arbitrage argument – see, for example, Cairns (2004): 

                                      ( ) ( ) ( )2 2 1 1
1 2

2 1
, = t t

t
r r

f
τ τ τ τ

τ τ
τ τ

−
−

                                        (14) 

The instantaneous forward rate is defined as the limit  

                                               ( )1 2
2 1

( ) ,limt tf f
τ τ

τ τ τ
→

≡                                               (15) 

where 1=τ τ  denotes, in this case, the time to settlement of the instantaneous interest 
rate. Thus, we can express the instantaneous forward rate as a derivative of the spot 
rate with respect to the time to maturity:  

                                   ( ) ( )
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t t t
r

f r r
τ

τ τ τ τ τ
τ τ

∂∂
+

∂ ∂
                                    (16) 

This relation tells us that forward rates are above spot rates if the yield curve 
is upward sloping and below them if it is downward sloping. Conversely, the spot 
interest rate can be expressed as the average of the instantaneous forward rates with 
settlements between the trade date t and the maturity date t+τ:  

                                              
=

1( ) = ( )d
t

t tu t
r f u u

τ
τ

τ
+

∫                                                  (17) 

2.5 Day-Count Conventions  
Czech government bonds are issued as coupon bonds with coupon payments 

once a year. For calculating cash flow time periods, the 30E/360 day-count conven-
tion is used. The 30E/360 convention assumes that a year has 12 months of 30 days 
each. The time period τ between dates D1/M1/Y1 and D2/M2/Y2 (read Day/Month/Year) 
is then calculated as  

                            
( ) ( ) ( )2 1 2 1 2 1360 30

=
360

Y Y M M D D
τ

− + − + −
                             (18) 

If D1 is equal to 31, it is changed to 30 before plugging into (18). If D2 is 
equal to 31, it is changed to 30 before plugging into (18). The Prague interbank de-
posit market PRIBOR and Czech interest rate swaps use the Act/360 day-count con-
vention. Under this convention, the time period τ is calculated as the actual number 
of days between the two dates divided by 360. 

3. The Yield Curve Model 
If the Ministry of Finance issued a full spectrum of zero-coupon bonds every 

day, then we could simply observe the yield curve on the market. However, this is 
not the case. In the Czech Republic, only coupon bonds are issued by the Ministry of 
Finance and the number of bonds issued is very limited; the maximum number of 
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Czech government bonds traded on the market at the same time is 16. Hence, we 
need a yield curve model to infer spot rates from prices of existing bonds. Models 
proposed for estimating spot rates and hence forward and par rates fit some function 
of time to maturity and model parameters to observed coupon-bond prices. 

My main purpose in estimating the Czech Treasury yield curve is to provide 
a general and consistent picture of the evolution of interest rates. In this paper I rely 
on the Nelson-Siegel (Nelson and Siegel, 1987) and Svensson (Svensson, 1995) mod-
els, which I refer to as the Nelson-Siegel framework. These models are usually pre-
ferred when the primary goal of the yield curve estimation is to provide sufficiently 
smooth yield curves which consistently reflect the underlying macroeconomic con-
ditions and the investor’s risk preferences. These models are parsimonious in number 
of parameters but allow for sufficiently rich shapes of yield curves while largely ignor-
ing variations resulting from anomalous bond prices. Thus, it is not surprising that 
the Nelson-Siegel framework has become very popular among central banks and 
macroeconomic researchers. The Bank for International Settlements (BIS, 2005) re-
ports that nine out of thirteen central banks which report their yield curve estimates 
to the BIS use the Nelson-Siegel framework. 

Spline-based methods are another prominent approach to yield curve estima-
tion (see, for example, Waggoner, 1997). Spline-based methods allow one to fit coupon- 
-bond prices very precisely and hence they are considered the first-choice method if 
one is interested in small pricing anomalies. On the other hand, spline-based yield 
curves may not be smooth enough and may oscillate considerably from one day to 
another. This is an unappealing property if one is concerned with time-consistent 
yield curve estimation which is not affected by pricing anomalies. 

3.1 Nelson-Siegel Framework 
To simplify the notation, I drop the time subscript t in the forward rates, spot 

rates, and parameters in following sections. Nelson and Siegel (1987) assume that 
the instantaneous forward curve is the solution to a second-order differential equation 
with two equal roots:  
                                         0 1 2( ) =f e eλτ λττ β β β λτ− −+ +                                       (19) 

where ( )0 1 2= , , ,θ β β β λ  is a vector of parameters. Parameter λ is restricted to be 
positive. The forward rate (19) is a three-component exponential function. The first 
component, 0β , is a constant to which the forward rate tends as the time to settle-
ment tends to infinity. The second component, 1e

λτβ − , is a monotonically decreasing (or 
increasing, if 1β  is negative) exponential term, and the third component, 2 e λτβ λτ − , 
can generate a “hump”. 

To increase the flexibility and improve the data fit, Svensson (1995) extends 
the Nelson-Siegel model by adding another “hump” component and thus increasing 
the number of parameters to six:  

                                 0 1 2 3( ) =f e e eλτ λτ γττ β β β λτ β γτ− − −+ + +                             (20) 
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where ( )0 1 2 3= , , , , ,θ β β β β λ γ  is a vector of parameters. Parameters λ and γ are 
restricted to be positive. 

3.2 The Spot Rate Curve 
The spot rates of the Nelson-Siegel modeling framework are derived by in-

tegrating the forward rates (19) and (20) according to (17). For example, the cor-
responding Nelson-Siegel spot rate curve is  

                         0 1 2
1 1( ) = e er e

λτ λτ
λττ β β β

λτ λτ

− −
−⎛ ⎞ ⎛ ⎞− −

+ + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                             (21) 

Again, the spot rate (21) is a three-component exponential function. The first 
component, 0β , is a constant to which the spot rate tends as the time to maturity 

tends to infinity. The second component, ( ) ( )1
1 11 e λ τβ λτ−− , is monotonically decreas-

ing (or increasing, if 1β  is negative) and governs the slope of the yield curve. This 
component tends to 0 as the time to maturity tends to infinity and tends to 1β  as 

the time to maturity tends to 0. The third component, ( ) ( )( )2 1 e eλτ λτβ λτ− −− − , 

starts at 0, increases (or decreases, if 2β  is negative), and then tends back to 0 as 
the time to maturity tends to infinity. Thus, this component can be viewed as one that 
can generate a “hump”. The Svensson model adds another “hump” component, 

( )( )3 1 ( )e eγτ γτβ γτ− −− − , to the Nelson-Siegel spot rate equation (21). This com-

ponent allows us to fit a second “hump” of the spot rate curve. 
The functional form of the Nelson-Siegel and Svensson model components 

pins down the limits of instantaneous forward and spot rates:  

                           0 1 0(0) (0) = and ( ) ( ) =f r f rβ β β≡ + ∞ ≡ ∞                           (22) 

This implies that β0 must be restricted to be positive to avoid negative long- 
-period or, more accurately, infinite-period rates. 

I graphically demonstrate the model spot rate components for March 2, 2007 
in the right-hand chart of Figure 2. The components meet their theoretical interpre-
tation as level, slope, and “hump”. The left-hand chart of Figure 2 presents the cor-
responding spot, forward, and par rates (see Section 5.1). 

Diebold and Li (2006) offer a dynamic interpretation of the Nelson-Siegel 
model. If we assume λ to be constant over time, we can interpret the time-varying 

0, tβ , 1, tβ , and 2, tβ  as latent factors, and 1, ( )1 ( )eλτ λτ− , and ( )1 ( )e eλτ λτλτ− −− −  

are then the corresponding factor loadings. This interpretation is in line with the re-
sults of Principal Component Analysis (PCA). PCA applied to the yield curve shows 
that the first three main components (factors) usually explain over 99% of the vari-
ability in interest rates. The first three components are then called the level factor, 
slope factor, and curvature (“hump”) factor. This result is consistent across different 
data sets and time periods. According to this interpretation, the Nelson-Siegel model 
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can be considered a three-factor model and the Svensson model a four-factor model. 
For an example of PCA applied to the Czech swap curve, see Kladívko, Cícha, and 
Zimmermann (2007). 

Note that Diebold and Li (2006) do not use the Nelson-Siegel model to esti-
mate spot rates from coupon-bond prices, but rather model the dynamics of spot 
rates. Spot rates are the input data into Diebold and Li’s (2006) Nelson-Siegel-based 
model. In this context, the Nelson-Siegel framework is becoming increasingly popu-
lar. See, for example, Diebold, Rudebusch, and Aruoba (2006) for a dynamic macro- 
-finance Nelson-Siegel model, or Christensen, Diebold, and Rudebusch (2010) for 
an arbitrage-free Nelson-Siegel yield curve model. 

3.3 Estimating the Yield Curve Model 
In estimating the forward rate curve and hence the spot rate curve, I set up 

an objective function that minimizes the weighted sum of the squared deviations 
between the observed and the model-implied prices of coupon bonds:  

                                       
2

1

ˆ
minargˆ ∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

N

i
M
ii

ii
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θ
θ                                           (23) 

where N is the number of observed bonds, Pi is the observed dirty price of the cou-
pon bond, îP  is the model-implied price (estimated price) of the coupon bond, and 

(1/PiDi
M) is an optimization weight. The model-implied price îP  is calculated by plug-

ging the model spot rates (for example, given by (21) for the Nelson-Siegel model) 
into the discount function (2) and then summing the bond’s cash flows according to 
(5). The time fraction of cash flows is computed according to (18). Thus, I infer con-
tinuously compounded spot rates under the 30E/360 day-count convention. 

I set the optimization weights equal to the inverse of modified duration de-
fined by (11) multiplied by the observed dirty price of the coupon bond. Using these 
weights, we utilize the relation (12) and approximately minimize the sum of the squar-
ed deviations between the observed and the model-implied yields to maturity. 
Modified versions of this first-order approximation are typically employed when 
estimating bond yields from bond prices. Different authors choose slightly different 
weights. For example, Gurkaynak et al. (2006) set weights equal to 1 / M

iD . See BIS 
(2005) for other weight specifications. 

It is possible to directly minimize the sum of the squared deviations between 
the observed and the model-implied yields to maturity. This results in virtually 
the same parameter estimates, but it is computationally inconvenient because cal-
culating the yield to maturity involves numerical root-finding, which must be run  
in each iteration of the objective function minimization. Direct minimization of 
the squared yield-to-maturity errors takes approximately three to eight times longer 
for the Czech data set depending on the number of observed bonds. 

The estimation based on fitting yields to maturity implies a roughly equal 
mismatch of predicted versus observed yields to maturity, irrespective of maturity. 
The other estimation strategy is to minimize the unweighted sum of the squared 
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deviations between the observed and the model-implied prices. However, this strate-
gy can easily end up with a large mismatch of predicted versus observed yields to 
maturity at the short end of the yield curve. This is because of the smaller duration of 
short-period bonds, which makes their yields to maturity more sensitive to price 
changes. The pros and cons of fitting yields to maturity versus fitting prices are dis-
cussed in Slavík (2001) and Svensson (1995). Since in this paper we are concerned 
with interest rates and not prices, I choose to minimize the squared deviation of 
the yields to maturity. 

3.4 Objective Function Optimization 
The objective function (23), or its “yield to maturity analogue”, represents 

a nonlinear least squares problem, and since the estimated bond price îP  is calculated 
as the sum of the bond’s cash flows, there is no possibility for a simplifying transfor-
mation such as the logarithmic transformation. The implementation of the Nelson- 
-Siegel framework is known to suffer from the following problems (see, for example, 
Cairns and Pritchard, 2001; Gimeno and Nave, 2009; Gurkaynak et al., 2006): 

1. The objective function has multiple local minima.  
2. The optimization algorithms are sensitive to the initial parameter values, espe-

cially to the “more nonlinear” λ and γ. This is not surprising given the multi-
ple local minima.  

3. Different combinations of parameter values can produce an equally good fit to 
the observed data.  

4. The estimated parameters can abruptly change in value from one day to an-
other. Again, this is to be expected given the possibility of equally good fits 
for different combinations of parameter values.  

I discuss the first two problems in this section and the remaining two problems in 
Section 3.5. 

I rely on the Matlab lsqnonlin routine in my implementation. Lsqnonlin is 
a trust-region-reflective algorithm designed for solving nonlinear least-squares prob-
lems. The algorithm is developed in Coleman and Li (1996). It enables the setting of 
lower and upper bounds for the variables to be optimized, which is handy for Nelson- 
-Siegel and Svensson model estimation. 

I run a simple simulation exercise to design and test the optimization proce-
dure. First, I estimate the Nelson-Siegel model parameters from the given data set of 
Czech government bond prices. Second, I price the real existing Czech government 
bonds using the spot rates implied by the estimated parameters. Thus, I create syn-
thetic Czech government bond prices. Finally, I re-estimate the model parameters 
from the synthetic Czech government bond prices and compare the re-estimated 
parameters with the original ones. I use the weighted price approach, i.e., the objec-
tive function (23). I run this simulation exercise for each settlement date available, 
which implies testing the estimation algorithm for different yield curve shapes and 
for different numbers of bonds. 

The simulation exercise confirms that the optimization algorithm lsqnonlin  
is most sensitive to the initial value of λ. However, once the true λ is identified, 
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the lsqnonlin routine converges to the true values of β0, β1, and β2 very robustly. 
The results of the simulation exercise suggest that lsqnonlin succeeds in finding 
the global minima. Based on the results of the simulation exercise, I create the fol-
lowing sets of initial parameters:  
 – Set the initial values of β0 and β1 according to the relation (22), in which r(0) is 

replaced with the shortest-period yield to maturity observed and r (∞)is replaced 
with the longest-period yield to maturity observed.  

 – Create a grid of different initial values of λ. The grid does not need to be very 
dense; a 5-point grid is sufficient for our data set. The maximum value of the grid 
equals 15, which implies that the “hump” component achieves its maximum for 
the maturity of 0.12 years. 

 – Set the initial value of β2 equal to 0. This assumes no “hump” component.  
The parameter estimates follow from the set of initial parameters for which 

the objective function reaches its lowest value. 
I also run the simulation exercise for the Svensson model and the results are 

qualitatively the same, i.e., once the true λ and γ are identified, lsqnonlin robustly 
converges to the true betas. The initial parameters for the Svensson model are created 
accordingly. 

3.5 Catastrophic Jumps and Parameter Restrictions 
As already noted in the previous section, parameter estimates of the Nelson- 

-Siegel framework can abruptly change in value from one day to another. Cairns and 
Pritchard (2001) refer to such changes as catastrophic jumps. For example, β0, which 
determines the infinite-period spot rate, jumps down from 5% to 0% one day and 
jumps back to 5% the next day. To fit the short end of the yield curve, β1 must also 
jump, because β0+ β1 pins down the instantaneous spot rate. 

Catastrophic jumps also appear in Gurkaynak et al. (2006), as we can see from 
their parameter estimates.3 For example, for June 9, 2006 Gurkaynak et al. (2006) 
provide parameter estimates of the Svensson model such that the β0 estimate is basi-
cally 0 and the second “hump” component fits the long-period rates. Gurkaynak et al. 
(2006) state (p. 2299) that large jumps can appear in the parameter estimates (prob-
lem #4 from the previous section) but that the changes in the predicted spot rates are 
quite muted (problem #3 from the previous section). 

However, catastrophic jumps in the β0 and β1 estimates preclude the economic 
interpretation of the model in terms of level, slope and, “hump”. It is not reasonable 
to assume that long-period rates abruptly change from one day to another. Note that 
forward rates are especially sensitive to catastrophic jumps (see, for example, Fig- 
ure 8 in Gimeno and Nave, 2009). Forward rates may already be affected in the ma-
turity range in which we have estimation data points. Figure 1A in Appendix on 
the web site of this journal illustrates the impact of catastrophic jumps on forward 
rates. Therefore, it is desirable to avoid catastrophic jumps. 

The problem of catastrophic jumps is data driven. For some combination of 
data points, the β0 estimate goes to zero and the “hump” component fits the long- 
3 Gurkaynak et al. (2006) regularly update their parameter estimates on the internet: 
http://federalreserve.gov/econresdata/researchdata.htm. 
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-period rates of the spot rate curve. The “hump” component loading of the spot rate 
curve, ( ) ( )1 e eλτ λτλτ− −− − , starts at 0, increases to a maximum value of approxi-

mately 0.30 and then decreases back to 0 as the time to maturity tends to infinity. 
The “hump” component loading is multiplied by parameter β2, which scales its mag-
nitude and determines its sign. The Svensson model is more vulnerable to catastro-
phic jumps because it has an additional “hump” component governed by parameters γ 
and β3. 

Catastrophic jumps in the β0 estimates, and thus the β1 estimates, are allowed 
when λ is relatively small and β2 can take relatively large values. The parameter λ 
determines the speed of peaking of the “hump.” Large values of λ generate a quickly 
peaking “hump” at short maturities, while small values of λ generate a slowly in-
creasing “hump” which peaks at long maturities and thus may fit most of the shape of 
the spot rate curve. Also note that λ governs the steepness of the curve. Small values 
of λ produce slow decay, which better captures rather flat curves, while large values 
of λ produce fast decay, which is suitable for rather steep curves. See Figure 2A in 
Appendix on the web site of this journal for an illustration of the “hump” and slope 
component loadings for different λ values. 

The remedy I suggest for catastrophic jumps in the β0 estimates is to set a lower 
bound for the λ (and γ) values. For the given maturity, maxτ , of the longest-period 
bond used in the estimation, I suggest to set a lower bound minλ  for the λ values in 
such a way that the “hump” component evaluated at minλ  reaches its maximum at 
one half of the longest maturity, but at most at the 10-year maturity. Thus, minλ  
fulfills4  

     
{ } { }

1 exp 1arg max exp = min , 10
2

min
min max

minτ

λ τ
λ τ τ

λ τ

⎛ ⎞− − ⎛ ⎞⎜ ⎟− − ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
              (24) 

I have determined this lower bound empirically and it prevents, at least for our 
data set, catastrophic jumps in the β0 and β1 estimates. 

When λ is restricted from below by (24) and β0 is restricted to be positive, I re-
fer to the model as the restricted Nelson-Siegel model, while if λ and β0 are only re-
stricted to be positive, I refer to the model as the unrestricted Nelson-Siegel model. 
I place no restrictions on β1 and β2. 

Naturally, the restriction of the λ domain reduces the flexibility of the model 
and thus may worsen the quality of the fit. However, I document in Section 6.1 that 
for our data set the restricted Nelson-Siegel model does not perform much worse than 
the unrestricted Nelson-Siegel model. 

An alternative to the λ restriction could be to impose a penalty for β0 into 
the objective function. For example, β0 could be linked (in the least squares sense) 

4 The lower bound, minλ , is an implicit function of maxτ and must be solved numerically. For example, if
the longest-period bond in the data set has a maturity of 5 years, minλ  is equal to 0.713, i.e., the “hump” 
component reaches its maximum at 2.5-year maturity. If the longest-period bond in the data set has a ma-
turity of 30 years, minλ  is equal to 0.1793, i.e., the “hump” component reaches its maximum at 10-year 
maturity. 
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with the yield to maturity of the longest-period bond. This procedure may solve ca-
tastrophic jumps in the β0 and β1 estimates, but my simulation exercise reveals that 
imposing this penalty leads to bias in the parameter estimates. 

Gimeno and Nave (2009) find stable parameter values and also reduce the risk 
of objective function convergence to local minima for the Nelson-Siegel and Svensson 
models using genetic algorithms. They ran their analysis on daily Spanish government 
bond data and also note catastrophic jumps when using traditional optimization 
methods. Note that that Gimeno and Nave’s (2009) catastrophic jumps in the β0 es-
timates do not appear as severe as the catastrophic jumps in the β0 estimates in our 
data set. They set up a genetic algorithm and show that they eliminate the catas-
trophic jumps and improve the quality of the fit. Gimeno and Nave (2009) use 
the weighted-price approach with an objective function similar to (23), although 
using slightly different weights. 

I set up the genetic algorithm implemented in the Matlab Global Optimization 
Toolbox according to the parametrization of Gimeno and Nave (2009) given on 
pp. 2241–2245 and estimate the Nelson-Siegel model for several settlement days (se-
lecting different yield curve shapes and different numbers of bonds) for our data set. 
However, I do not obtain lower objective function values than by using the deter-
ministic lsqnonlin algorithm run from the sets of initial parameters outlined in 
the previous section. Moreover, the genetic algorithm takes much longer (on average 
hundreds of times longer) and also the genetic algorithm is a stochastic algorithm, 
which means that on each run it may converge to different parameter estimates. 

I note that the Matlab fminsearch algorithm, which Gimeno and Nave (2009) 
use as a benchmark algorithm (p. 2246), is an implementation of the direct search 
method that does not use gradients and is not designed for nonlinear least squares 
problems. According to my simulation exercise, the lsqnonlin routine would be a more 
suitable benchmark algorithm. 

4. Data Set  
4.1 Bond Price Data 

I use Czech government bond prices collected by the Prague Stock Exchange 
(PSE). For every outstanding bond, the PSE averages the end-of-day price quotes 
delivered by the Czech government bond market makers on each business day.5 
The PSE started to do so on July 14, 1997. In this paper, I present results based on 
the average of bid and ask prices, i.e., on mid prices. 

While the PSE data set starts in mid-1997, I run the yield curve estimation 
from January 4, 1999 (the first business day in 1999). The reason is the insufficient 
number of bonds available before 1999. I am forced to exclude all bonds issued be-
fore January 1, 1998 because they were issued under a different taxation policy. 
The taxation policy influences the bond price and thus bonds with different taxation 
policies cannot be put together into one yield curve. At least four bonds should be 
used to identify the four parameters of the Nelson-Siegel model and four bonds are 
available shortly before the end of 1998. 

5 The rules – entitled “Determination of an Average Reference Price for a Bond” – are, at the time of 
writing this paper, downloadable from: ftp://ftp.pse.cz/Info.bas/Eng/Rules/bond_price.pdf. 



320                                           Finance a úvěr-Czech Journal of Economics and Finance, 60, 2010, no. 4 

Figure 1  The upper chart displays the number of bonds used in the estimation. 
The lower chart displays the maximum maturity of the bonds. 

               
 

Czech government bonds are issued through primary auctions by the Ministry 
of Finance of the Czech Republic. Since 2000, each Czech government bond issue 
has been re-opened several times. The re-openings (tranches) make it possible to reach 
a fairly large total amount of each bond issue. A larger total amount issued should 
support the market liquidity of the bond. Starting January 4, 1999, I include in the es-
timation all government bonds with the following exceptions:  

 – I exclude all bonds with less than 180 days to maturity, since their price quotations 
often cannot be considered to represent real prices.  

 – I exclude all bonds before they reach 30 days after the issue date. This rule con-
cerns only the first tranche for the given bond. Again, in some cases the price 
quotes of new bond issues behave oddly for the first few weeks.  

 – I exclude the 6.08%/2001 bond (issue number 27), since this bond appears to be 
constantly overpriced. This becomes obvious by just visually checking the yield to 
maturity curves – the yield to maturity of this bond is visibly too low. When used 
in the estimation, its observed yield lies as much as 60 basis points below the fit-
ted yield and the difference between the observed and fitted yield stays negative 
for the whole life of the bond considered in the estimation. I am not able to pro-
vide an explanation for the odd behavior of this bond.  

 – I exclude the 4.85%/2057 bond (issue number 54). This 50-year bond is a low- 
-volume issue which is not actively traded on the market.  

 – I also exclude floating interest rate bonds, since their use in yield curve estimation 
is not straightforward.  

All the bonds used in the estimation are listed in Table 3 in Appendix A. 
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In my opinion, the PSE data set is created carefully with a relatively small 
number of errors. I am forced to completely exclude four business days from the data 
set. For August 13, 2002, January 25, 2007, October 14, 2008, and September 9, 2008 
too many bond price quotes are missing. In the rest of the PSE data set which is 
needed for the estimation, I have found 122 bond price quotes missing. Fortunately, 
the missing observations are just one-day (112 cases) or two-day (5 cases) price quote 
skips. I replace the missing price quote with its value from the preceding day. I have 
checked the PSE price quotes with available Reuters and Bloomberg data sets and 
found no substantial differences. Note that neither Reuters nor Bloomberg possesses 
complete bond price data over such a long period of time. 

In total, I use 33,517 bond price observations spanning a period of 2,922 busi-
ness days. In Figure 1, I plot the number of bonds used in the estimation and the cor-
responding maximum time to maturity of the bonds. 

4.2 Short End of the Yield Curve 
It is important to fit the short end of the Nelson-Siegel parametric yield curve. 

Otherwise, in some cases the short end can end up with unreasonable values, such  
as negative rates or extremely high rates. We have excluded all bonds with less than 
6 months to maturity. Moreover, for 638 days of our data set, the shortest-period bond 
has more than one year to maturity. Thus, we have a lack of data points at the short end 
of the yield curve. Even if the estimated short-period interest rates are not to be used by 
the model users, they are employed in the estimation routine to discount coupon cash 
flows. Thus, it is important to keep their values in a reasonable range. 

I use the arithmetic average of PRIBOR and PRIBID rates, which I refer to as 
PRIBOR MID. I use maturities of one week (1W), two weeks (2W), one month (1M), 
and three months (3M). I transform the PRIBOR MID rates into PRIBOR zero-coupon 
bond prices to be able to use them in the objective function (23). But the PRIBOR 
market is a different market than the government bonds market. This has become 
plainly evident during the recent financial turbulence. The PRIBOR market has a de-
manded a risk (credit) premium relative to government debt securities. Therefore, 
I underweight PRIBOR zero-coupon bonds in the objective function (23). I set their 
modified durations to be equal to the smallest modified duration among the govern-
ment bonds. For our data, the smallest modified duration of government bonds 
implies the shortest maturity. Thus, the longer the maturity of the shortest-period 
bond, the smaller weight is attached to PRIBOR zero-coupon bonds in the objective 
function. The result is that the PRIBOR MID rates are not fitted as precisely and 
the short end of yield curve is reasonable. Additionally, using four more data points 
increases the degrees of freedom of the model. 

Of course, it could be more appropriate to use, for example, Czech Treasury 
bill rates for the short end of the yield curve. Unfortunately, this data is not available 
on a daily basis. PRIBOR rates are probably the only credible and consistent source 
of Czech short-maturity interest rates available on a daily basis. 

5. Estimation Example and Error Measures 
5.1 Example of Yield Curve Fitting 

In the left-hand chart of Figure 2, I present spot, instantaneous forward, and 
par rates estimated with the Nelson-Siegel model on March 2, 2007. I have chosen 
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Figure 2  Nelson-Siegel model for March 2, 2007. The right-hand chart plots the com-
ponents of the Nelson-Siegel model. The left-hand chart captures 
the estimated spot, par, and forward rates (annually compounded). The model 
is estimated using the objective function (23). The numbers displayed under 
the yield to maturity marks are the issue numbers of the bond. The issue 
number is a unique identifier which is incremented by one for every new 
Czech government bond issue. See Table 3 in Appendix A for a list of 
the bonds used in the estimation. The triangle marks denote the observed 
PRIBOR MID rates. The 1W, 2W, 1M, and 3M PRIBOR MID rates were employed 
in the model estimation. 

 

              
 
this settlement date arbitrarily from the time period between the issue of the 30-year 
bond (issue number 49) in 2007 and the start of the financial crisis in 2008. 

The inferred rates are transformed, using relation (4), to annual compounding, 
which is usually preferred by market practitioners. There were 13 government bonds 
available on March 2, 2007 with a maximum maturity of 29.7 years and a minimum 
maturity of 1 year. 

We can visually check the fit by comparing the observed (dots) and fitted 
(boxes) yields to maturity. The difference between the observed yield to maturity and 
the fitted (model-implied) yield to maturity is the estimation error. In other words, 
the error is the residual between the observed and fitted value. The observed 1W, 
2W, 1M, and 3M PRIBOR MID rates are displayed as triangle marks. We can see from 
the left-hand chart of Figure 2 that the Nelson-Siegel yield curve model does a good 
job of fitting the entire cross-section of yields to the maturity of government coupon 
bonds. The fit is the worst for the 6.55%/11 bond (issue number 36), which appears 
to be overpriced relative to the neighboring bonds. 

5.2 Error Measures 
The estimation error can be also expressed as the difference between the ob-

served and fitted (model-implied) prices. The estimation error may indicate that 
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Table 1  This table reports the Root Mean Squared Error (RMSE) and the Maximum 
Absolute Error (MaxAE) for both the price and yield to maturity errors. 
The number in parentheses next to the MaxAE value is the corresponding 
issue number of the bond. Yield to maturity errors are measured in basis 
points. Price errors are measured in Czech hellers for a 100 Czech koruna 
notional principal. One heller is one hundredth of a Czech koruna. 

  Yield to Maturity Price 
Settlement  RMSE MaxAE RMSE MaxAE 
2 March 2007  3.2 5.9 (36) 24 51 (49) 

 
the bond is mispriced. Furthermore, the error represents idiosyncratic noise, which is 
not captured by the model. Traditionally, idiosyncratic noise is assigned to liquidi- 
ty issues, non-synchronous quotes, or data errors for different bonds. I suspect that 
the largest portion of the idiosyncratic noise in our data set is due to liquidity issues, 
which may be the reason for the bond prices being less connected to one another. 
This becomes pronounced at the beginning of the financial crisis in 2008. I revisit 
this issue in Sections 6.1 and 6.2. 

To summarize the estimation error, I report the Root Mean Squared Error 
(RMSE) and the Maximum Absolute Error (MaxAE). The RMSE and the MaxAE for 
the yields to maturity are calculated as follows:  

                                  $( )2

=1

1RMSE =
n

i i
i

y y
n

−∑  

                                  ${ }MaxAE = | | , = 1, ,max i i
i

y y i n− K  

where n is the number of government bonds for a given settlement date, yi is the ob-
served yield to maturity, and ŷi is the fitted yield to maturity. Price errors are cal-
culated by replacing the yield to maturity values with price values. Note that I do not 
include the PRIBOR rates in the estimation error measures. 

The error measures for March 2, 2007 are reported in Table 1, which confirms 
the plausible fit apparent from the left-hand chart of Figure 2. The worst yield to 
maturity fit, i.e., the yield to maturity MaxAE, of 5.9 basis points is for the 6.55%/11 
bond (issue number 36), while the worst price fit, i.e., the price MaxAE, of 51 hel-
lers6 is for the 4.20%/36 bond (issue number 49). This discrepancy is due to the non-
linear relation between yields to maturity and prices as discussed in Section 2.3.  

6. Estimating the Czech Treasury Yield Curve from 1999 to the Present 
I run, day by day, the cross-section estimation of the yield curve described in 

Section 3 from January 4, 1999 to August 24, 2010. I use the restricted Nelson-Siegel 
model. The evolution of the parameter estimates is captured in Figure 3. There are no 
catastrophic jumps in the β0 and β1 estimates. However, on some days, especially at 
the beginning of our data set and during the last two years, the β2 and λ estimates 
abruptly change in value. I present the parameter estimates of the unrestricted Nel-
son-Siegel model for which catastrophic jumps in β0 and β1 appear, in Figure 3A in 
 

6 One heller is one hundredth of a Czech koruna. 
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Figure 3  Evolution of the parameter estimates of the restricted Nelson-Siegel model. 
The β0, β1, and β2 parameters are in percent. The parameters are estimated 
as discussed in Section 3. 

                
 

Appendix on the web site of this journal. Figure 4A in Appendix on the web site of 
this journal compares the evolution of the β0 estimates and the β0 + β1 estimates of 
the restricted Nelson-Siegel model with the yields to maturity of the longest-period 
bond and the shortest-period bond, respectively. Figure 5A in Appendix on the web 
site of this journal captures the same as Figure 4A but for the unrestricted Nelson- 
-Siegel model.  

Since March 2000, we have six bonds available and thus it is possible to iden-
tify the six-parameter Svensson model. But the Svensson model appears to be over- 
-parameterized for our data set. The estimation of the Svensson model often con-
verges to very close values of λ and γ. This implies multicollinearity and means that 
the second “hump” component of the Svensson model is redundant. As suggested in 
Svensson (1995), it is possible to impose a penalty for the λ and γ parameters into 
the objective function. Another possibility would be to simply restrict the domain of 
λ and γ values so that they do not overlap. Neither of these two restrictions is actually 
meaningful for our data set – the Svensson model only slightly outperforms the Nel-
son-Siegel model in terms of the error measures. 

6.1 Error Measures Evolution 
I illustrate the day by day evolution of the Root Mean Squared Error (RMSE) 

and the Maximum Absolute Error (MaxAE) for yields to maturity in Figure 4.  
Figure 4 shows that the fit improves at the beginning of 2001 and stays gen-

erally very good until the end of the third quarter of 2008. The fit worsens during 
the financial market crisis, which started in 2008. 

The longitudinal statistics of the error measures are relatively low. The aver-
age MaxAE is just 11.6 basis points. The maximum MaxAE, i.e., the maximum 
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Figure 4  The top chart displays the Root Mean Squared Error (RMSE) for yields to 
maturity. The bottom chart displays the Maximum Absolute Error (MaxAE) 
for yields to maturity. Both errors are measured in basis points. 

               
 
absolute value of the residual between the observed and the fitted yield to maturity, is 
47.6 basis points for the 4.10%/11 bond (issue number 54) on December 30, 2009. 
The yield curve estimate for December 30, 2009 is provided in Figure 6A in Ap-
pendix on the web site of this journal. On this day, the yields to maturity of the two 
neighboring bonds, at the short end of the yield curve, move in a different direction – 
the 4.10%/11 bond jumps up more than 30 basis points, whereas the 2.55%/10 bond 
drops more than 30 basis point. The yields to maturity of both bonds revert back 
close to their December 29, 2009 values during the first two business days of 2010. 
The average RMSE is only 6.2 basis points. The RMSE reaches its maximum of 
26.4 basis points on July 21, 2009. The yield curve estimate for July 21, 2009 is pro-
vided in Figure 7A in Appendix on the web site of this journal. On this day, the yields 
to maturity are considerably divorced one from another. This inconsistent pricing of 
bonds is a typical picture of the Czech government bond market during the financial 
market crisis. 

The longitudinal statistics of the error measures for both the restricted and 
the unrestricted Nelson-Siegel model and also for the unrestricted Svensson model 
are reported in Table 2. Imposing the lower bound (24) on the Nelson-Siegel model 
worsens the average RMSE only by about 0.3 basis points and it actually reduces 
the maximum MaxAE. The unrestricted Svensson model, which is frequently over- 
-parameterized in our data set, does only about 1.2 basis points better in terms of 
the average RMSE compared to the unrestricted Nelson-Siegel model. The evolution 
of the error measures follows the same pattern for all three models compared. Im-
posing restrictions on the Svensson model, of course, brings its error measures even 
closer to the Nelson-Siegel model.  
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Table 2  This table reports the longitudinal error measures for both the restricted and 
the unrestricted Nelson-Siegel model and the unrestricted Svensson model 
(λ, γ, β0 > 0). The error measures are for yields to maturity and are measured 
in basis points. Note that the Nelson-Siegel model has an estimation period 
about 14 months longer than the Svensson model. Therefore, the reported 
Avg RMSE for the Nelson-Siegel model must be reduced by about 0.1 basis 
point to be comparable with the Avg RMSE of the Svensson model. 

  Avg 
RMSE 

Max 
RMSE 

Avg 
MaxAE 

Max 
MaxAE 

restricted Nelson-Siegel  6.2 26.4 11.6 47.6 
unrestricted Nelson-Siegel 5.9 26.0 11.5 55.3 
unrestricted Svensson  4.6 22.3    9.3 46.8 

 

6.2 Impact of the Financial Crisis 
The Czech bond market had already become nervous at the end of the first 

quarter of 2008, as documented by the spread of bond price quotes shown in the top 
chart of Figure 5. This chart displays the daily average price spread between the ask 
and bid prices.7  

The average spread had been very stable around 30 hellers (standard deviation = 
= 1.3 hellers) for a 100 koruna notional principal from the beginning of our sampling 
period until March 2008, when it jumped to 42 hellers and oscillated around 45 hel-
lers (standard deviation = 1.8 hellers) for the next six months. On October 8, 2008 
the average price spread soared to 2.29 koruna and stayed very high, ranging from 
1.04 koruna to 2.52 koruna (standard deviation = 32.1 hellers) until the end of 2009. 
From the beginning of 2010 to the last day of our data set the average price spread 
oscillated around 82 hellers. 

The large difference between the ask and bid price quotes indicates the un-
certainty of the market and its unwillingness to trade, which turns into inconsistent 
pricing of bonds. The linear regression of the RMSE (basis points) on the average 
price spread (hellers) over our entire data set has an R2 of 42% and a slope coefficient 
of 0.067 (p-value <0.001). The relation between the RMSE and the average price 
spread is significant on different subsamples of the data set. We can expect the er- 
ror measures to decline and the price spread to decrease to a reasonable level when 
the bond market starts to be fully functional. Also note that the λ and β2 estimates 
suffer from catastrophic jumps during the financial crisis years. Again, we can expect 
that the λ and β2 estimates will ultimately stabilize. The parsimonious Nelson-Siegel 
framework appears to be particularly suitable for the yield curve fitting during the fi-
nancial crisis, when the pricing anomalies across the bonds are substantial. As al-
ready noted, the Nelson-Siegel framework does not fit each data point exactly, but 
rather smoothes the data points with a yield curve which reflects the underlying eco-
nomic situation. 

The price spread is clearly related to market liquidity. Traded values could be 
another measure of market liquidity. I present the monthly traded values in billions of 
Czech koruna for all government bonds used in the model estimation in the bottom 
 

7 The average price spread for a given date is calculated as the unweighted arithmetic average of the dif-
ferences between the ask and bid price quotes of all bonds that are used in the estimation on that date. 
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Figure 5  The top chart displays the average price spread between the ask and bid 
prices of government bonds. The bottom chart displays the monthly traded 
values of government bonds in billions of Czech koruna. Both charts only 
consider government bonds used in the model estimation. 

              
 
chart of Figure 5. The traded values are provided by the Prague Stock Exchange and 
cover the vast majority of Czech government bond trades. An increase in the traded 
values at the beginning of 2001 is apparent from this chart. The increase in traded 
values may explain the improvement of the error measures at the beginning of 2001 
because the higher market activity might have decreased the pricing anomalies across 
various bonds. However, the traded values did not, surprisingly, decrease during the fi-
nancial crisis compared to the last three pre-crisis years. Thus, the significance of 
the relation between the error measures and the traded values is not robust on dif-
ferent subsamples of our data set. 

6.3 Individual Yield to Maturity Errors 
I dig deeper into the estimation error and plot the evolution of the yield to 

maturity errors for each bond used in the estimation in Figure 9 in Appendix B. As 
we estimate the yield curve day by day and do not take into account the time series 
behavior of the yield curve, which is strongly persistent for all maturities, the estima-
tion errors are strongly autocorrelated. The averages of the lag 1 (one day), lag 5 (one 
week), and lag 20 (one month) sample autocorrelations are 0.91, 0.79, and 0.52, 
respectively. It is desirable that the errors oscillate around zero, i.e., that they do not 
exhibit any systematic behavior.8 Some bonds show relatively long intervals when 
the estimation error stays constantly positive or negative (issue numbers 25, 29, 36, 
46, 49, 50, 52, and 58). This is unwelcome, but because of the small number of bonds 
available, I have decided not to exclude these bonds from the estimation. Again, it is 
 

8 Systematic overpricing was the reason for excluding the 6.08%/2001 bond (issue number 27) from the es-
timation (see Section 4.1). 
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Figure 6  Estimated zero-coupon yield curves (continuously compounded). For each 
curve, the shortest maturity is one year and the longest maturity is given 
by the maximum maturity of the bond used in the estimation. 

                     
 
apparent from Figure 9 that since the current financial market crisis the errors have 
been rising for every outstanding bond. I do not present the price error measures  
or individual price errors in this paper, since they do not bring any new insight into 
the estimation results. I can provide them upon request. 

6.4 Estimated Spot Rates 
From the estimated parameters, I calculate spot rates and hence forward and 

par rates for each day of our data set. The estimated spot, forward, and par rates are 
posted in the data appendix on the web site of this journal. I provide a three-dimen-
sional plot of the estimated spot rates in Figure 6.  

The three-dimensional plot presents the estimated spot yield curves, day after 
day, from January 4, 1999 to August 24, 2010. For each yield curve, the shortest 
maturity is one year and the longest maturity is given by the maximum maturity  
of the bond used in the estimation, or more precisely, the maximum maturity of 
the bond is rounded to the nearest integer toward infinity. Of course, it is possible to 
calculate spot rates for maturities beyond the maturity range used in the estimation. 

Furthermore, I slice the three-dimensional plot to capture the time series of 
the estimated spot rates for selected maturities in Figure 7. The blank space in 
the time series occurs when the maturity is not covered by the bonds used in the esti-
mation. The horizontal line represents the unconditional mean of the rates.  

Since 1999, the Czech spot rates exhibit a downward trend with some upward 
spikes and an approximate one-year upward trend (from mid-2003 to mid-2004) be-
fore bottoming out in mid-2005. From mid-2005 to mid-2008, the rates revert back to 
their unconditional means. This supports the mean-reverting property of interest rates 
– one of the most important stylized facts of interest rate behavior. It also gives some 
hope for rejection of the unit root in interest rate processes, which is an essential 
requirement for basically any interest rate time series modeling. In the first quarter of 
2010, the rates start to decrease once again. 



Finance a úvěr-Czech Journal of Economics and Finance, 60, 2010, no. 4                                      329 

Figure 7  Estimated spot rates (continuously compounded) for selected maturities. 
The horizontal line represents the unconditional mean of the rates. 

                 
 

The slope, measured as the 5-year rate the minus 1-year rate, has been positive 
since the beginning of February 1999. The yield curve is inverted for the maturity 
range 1 to 5 years only in January 1999. At the beginning of 2009, the slope of the yield 
curve increases very sharply, as the 1-year rate decreases and the 5-year rate quickly 
rises. The slope stays at unprecedentedly high levels until the end of our data set (see 
Figure 8A in Appendix on the web site of this journal). 

6.5 Estimated Par Rates versus Swap Rates 
As mentioned in Section 2.2, interest rate swaps are an example of par rates 

quoted on the financial markets. The swap yield curve is often considered to be 
another benchmark yield curve (besides the Treasury yield curve) of the economy. 
The swap rates and Treasury rates can be compared with each other to measure 
the credit risk (the possibility of default) of the country. A swap contract entails some 
credit risk, but the potential losses from defaults on a swap are much smaller than 
the potential losses from defaults on a bond with the same notional principal. This is 
because the value of the swap is usually only a small fraction of the value of the bond. 

I transform the estimated spot rates into discount functions according to (2) 
then bootstrap using (8) to get the Treasury par rates. I use end-of-day swap rate 
quotes from Bloomberg. The swap rates and PRIBOR rates use the ACT/360 day- 
-count convention. Thus, I multiply the swap rate quotes by 365/360 to adjust them 
approximately to the 30E/360 day-count convention for bonds. I plot the Treasury 
par rates versus swap rates and their spreads in Figure 8.  

The first two left-hand charts plot the 3-year and 10-year swaps together with 
the corresponding Treasury par rates. The bottom chart plots the 3-month Treasury 
rate and the 3-month PRIBOR MID rate. As the Treasury and swap rate time series 
 



330                                           Finance a úvěr-Czech Journal of Economics and Finance, 60, 2010, no. 4 

Figure 8  The first two left-hand charts show the 3-year and 10-year swaps together with 
the corresponding Treasury par rates. The bottom chart shows the 3-month 
Treasury rate together with the corresponding 3-month PRIBOR MID rate. All 
rates are annually compounded. The right-hand charts provide a detailed 
look at the corresponding spreads. 

              
 
copy each other very closely, I present the corresponding spreads in the right-hand 
charts. The spreads, calculated as the Treasury rate minus the swap rate, document 
several issues. 

First, the estimated Treasury par rates follow the dynamics of the quoted swap 
rates very precisely for all maturities, which confirms the quality of the estimated 
Treasury rates. 

Second, the spreads rise substantially during the financial market crisis. 
The spreads had already started to rise in March 2008. For example, the average  
10-year spread is 4.6 basis points for February 2008, whereas it is 23 basis points for 
March 2008. The 10-year spread reaches its all-time maximum of 186.7 basis points 
on March 23, 2009, shows a decreasing trend until the end of 2009, and rises again 
during the first half of 2010. The widening spread opens a debate about which yield 
curve should be considered as the risk-free benchmark yield curve.9 In my view, 
the Czech Treasury curve is the principal risk-free benchmark curve of the Czech 
economy. The reason is straightforward: an interest rate swap is just an agreement to 
exchange payments; it is not an instrument for investing money. Money must be 
invested in some asset and Czech Treasury bonds naturally have the lowest credit 
risk among any investment instruments denominated in Czech koruna. 

Third, the lows of the spread between the 3-month Treasury rate and the 3-month 
PRIBOR MID rate, which are present since the end of 2008, indicate an increase in 
the credit/liquidity premium on the Czech money market during the financial crisis. 
9 For example, this issue is important for the Czech Society of Actuaries. The risk-free benchmark yield curve 
is used in the liability adequacy test. For an ongoing discussion on this topic visit http://www.actuaria.cz. 
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7. Conclusion 
I have estimated the Czech Treasury yield curve from 1999 to the present at 

a daily frequency. I rely on the simple and parsimonious model of Nelson and Siegel 
(1987), for which I suggest a lower-bound restriction on one of the model para-
meters. This restriction prevents abrupt changes in the parameter estimates and thus 
allows for the economic interpretation of the model to hold. The model fits the Czech 
government bond price data well without being over-parameterized and thus provides 
an accurate and consistent picture of the Czech Treasury yield curve evolution. 

I pay close attention to estimation issues. I run a simulation exercise to verify 
that the suggested estimation strategy provides credible parameter estimates. I ana-
lyze the estimation error, discuss the impact of the recent financial crisis, and com-
ment on the Czech Treasury yield curve evolution. 

Despite being a fundamental economic variable, the estimated Czech Treasury 
yield curve is not available. I fill this gap and create time series of spot and hence 
forward and par interest rates, extending back into the past as much as possible. 
The data appendix on the web site of this journal provides estimated spot rates (con-
tinuously compounded), instantaneous forward rates (continuously compounded), 
and par rates (coupon equivalent) at daily frequency from January 4, 1999. The es-
timated parameters are also included in the data appendix, so interest rates of prac-
tically any maturity can be calculated. The Matlab implementation of the Nelson- 
-Siegel and Svensson model is available upon request from the author.  

 
APPENDIX 

A. Czech Government Bonds Used in Yield Curve Estimation 
Table 3 lists all bonds used in the estimation of the Czech Treasury yield 

curve from 1999 to the present. The issue number is a unique identifier which is in-
cremented by one for every new Czech government bond issue. The total amount 
issued is reported in billions of Czech koruna. Note that the Ministry of Finance has 
been buying government bonds in the primary auctions on its own account in recent 
years. Thus, the total amount issued does not necessarily exactly match the total 
amount sold to primary dealers in the primary auctions. Note also that the total amount 
issued will rise further for the 3.40%/2015 bond (issue number 60), the 2.80%/ 
/2013 bond (issue number 59), the 5.70%/2024 bond (issue number 58), and the 5.00%/ 
/2019 bond (issue number 56), as these bond issues are still being re-opened at the time 
of writing this paper. 

B. Yield to Maturity Errors for Individual Bonds 
Figure 9 displays the yield to maturity errors in basis points, i.e., the residuals 

between the observed and the fitted (model-implied) yields to maturity. The bond can 
be identified by the issue number shown in the legend. 



332                                           Finance a úvěr-Czech Journal of Economics and Finance, 60, 2010, no. 4 

Table 3 

ISSIN Issue Date Maturity Date Coupon 
Rate (%) 

Issue  
Number 

Total  
Amount Issued 

(CZK bn) 

CZ0001002737 01/03/2010 01/09/2015 3.4 60 30 

CZ0001002729 01/02/2010 16/09/2013 2.8 59 33 

CZ0001002547 25/05/2009 25/05/2024 5.7 58 61 

CZ0001002471 23/03/2009 11/04/2019 5.0 56 87 

CZ0001002158 28/01/2008 11/04/2011 4.10 54 56 

CZ0001001945 18/06/2007 12/09/2022 4.70 52 55 

CZ0001001903 30/04/2007 11/04/2017 4.00 51 69 

CZ0001001887 16/04/2007 18/10/2012 3.55 50 70 

CZ0001001796 04/12/2006 04/12/2036 4.20 49 20 

CZ0001001754 27/11/2006 27/11/2009 3.25 48 50 

CZ0001001309 26/09/2005 26/09/2008 2.30 47 49 

CZ0001001317 12/09/2005 12/09/2020 3.75 46 69 

CZ0001001242 18/07/2005 18/10/2010 2.55 45 57 

CZ0001001143 11/04/2005 11/04/2015 3.80 44 62 

CZ0001000863 02/08/2004 02/08/2007 3.95 43 23 

CZ0001000855 22/03/2004 22/03/2009 3.80 42 49 

CZ0001000822 18/08/2003 18/08/2018 4.60 41 47 

CZ0001000814 16/06/2003 16/06/2013 3.70 40 65 

CZ0001000798 17/03/2003 17/03/2008 2.90 39 41 

CZ0001000780 20/01/2003 20/01/2006 3.00 38 30 

CZ0001000772 26/10/2001 26/10/2006 5.70 37 28 

CZ0001000764 05/10/2001 05/10/2011 6.55 36 50 

CZ0001000756 14/09/2001 14/09/2004 6.05 35 29 

CZ0001000749 26/01/2001 26/01/2016 6.95 34 35 

CZ0001000731 14/04/2000 14/04/2010 6.40 33 21 

CZ0001000723 17/03/2000 17/03/2007 6.30 32 20 

CZ0001000707 18/02/2000 18/02/2005 6.75 31 22 

CZ0001000715 05/02/2000 05/02/2004 7.95 26 5 

CZ0001000681 21/01/2000 21/01/2003 6.90 30 18 

CZ0001000640 05/11/1999 05/11/2001 6.50 29 7 

CZ0001000632 06/08/1999 06/08/2004 7.30 28 5 

CZ0001000582 06/11/1998 06/11/2000 10.85 25 5 

CZ0001000574 07/08/1998 07/08/2003 10.90 24 5 

CZ0001000566 15/05/1998 15/05/2000 14.75 23 5 

CZ0001000558 06/02/1998 06/02/2003 14.85 22 5 
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Figure 9a  

          
 
Figure 9b  
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Figure 9c  

          
 
Figure 9d  
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