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Abstract. There are many methods for finding a particular solution to a
nonhomogeneous linear ordinary differential equation (ODE) with constant
coefficients. The method of undetermined coefficients, Laplace transform
method and differential operator method are generally known. The latter
mentioned method sometimes uses the Maclaurin expansion of an inverse
differential operator but only in the case when the obtained series is con-
vergent. The present work deals also with how to find a particular solution
if the corresponding infinite series is divergent using only the terms of that
series and the method of summation of divergent series.

1. Introduction

The history of divergent series goes back to L. Euler, who had an idea that
any divergent series should have a natural sum, without first defining what
is meant by the sum of a divergent series, which led to confusing and con-
tradictory results, until A. L. Cauchy gave a rigorous definition of the sum
of a (convergent) series. In 1890, E. Cesáro realized that one could give a
rigorous definition of the sum of some divergent series. In the years after,
several other mathematicians gave other definitions of the sum of divergent
series, although these are not always compatible: different definitions can give
different answers for the sum of the same divergent series; so, when talking
about the sum of a divergent series, it is necessary to specify which summation
method we are using [15]. A historical turning point in the study of divergent
series was the publication of the G. H. Hardy monograph Divergent series [6].
At present, there are many publications in this field, including their appli-
cations [2], [9]. In this paper we have applied the Euler summation method
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of divergent series. Algorithms were implemented in the wxMaxima. The
wxMaxima program is an interface for working with the freely downloadable
open source CAS (computer algebra system) program Maxima. In order to
be able to apply this method in all cases, we have established and proved one
new theorem (Theorem 2) and given its consequence. This method, like the
method of undetermined coefficients, can be used only in special cases, if the
right-hand side of the differential equation is typical, i.e. it is a constant, a
polynomial function, exponential function eαx, sine or cosine functions sinβx
or cosβx, or finite sums and products of these functions (with constants α
and β).

2. Maclaurin expansion of a rational function

We are interested in the Maclaurin series of a rational function.

Theorem 1. Let us consider a rational function which is defined at zero, with
the conventional normalization

R[L/M ](t) =
p0 + p1t+ · · ·+ pLt

L

1 + q1t+ · · ·+ qM tM
(2.1)

Let
C(t) = c0 + c1t+ c2t

2 + · · · (2.2)

be a Maclaurin series of the rational function (2.1). Then

cn = q · (cn−M , cn−M+1, . . . , cn−1) + pn, n = 0, 1, 2, . . . (2.3)

where q = (−qM ,−qM−1, . . . ,−q1) , cn = 0 for n < 0 and pn = 0 for n > L
and product q · (cn−M , cn−M+1, . . . , cn−1) is a dot product.

Proof. The statement follows from the identity

p0 + p1t+ · · ·+ pLt
L =

(
1 + q1t+ · · ·+ qM t

M
) (
c0 + c1t+ c2t

2 + · · ·
)

(2.4)

after expanding the right-hand side (2.4) and comparing coefficients for the
same powers of t we get

qMcn−M + qM−1cn−M+1 + · · ·+ q1cn−1 + cn = pn

From this it immediately follows that

cn =−qMcn−M − qM−1cn−M+1 − · · · − q1cn−1 + pn
= (−qM ,−qM−1, . . . ,−q1) · (cn−M , cn−M+1, . . . , cn−1) + pn
= q · (cn−M , cn−M+1, . . . , cn−1) + pn

n = 0, 1, 2, . . . �

Example 1. Find the coefficients of the Maclaurin series of the function

R[2/4](t) =
1 + t+ 4t2

1− 2t+ 2t2 + 4t3 + 4t4
(2.5)
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We have q = (−4,−4,−2, 2). Then

c0 = q · (c−4, c−3, c−2, c−1) + p0 = (−4,−4,−2, 2) · (0, 0, 0, 0) + 1 = 1

c1 = q · (c−3, c−2, c−1, c0) + p1 = (−4,−4,−2, 2) · (0, 0, 0, 1) + 1 = 3

c2 = q · (c−2, c−1, c0, c1) + p2 = q · (0, 0, 1, 3) + 4 = 8

c3 = 6, c4 = −20, c5 = −96, c6 = −208, c7 = −168, c8 = 544

We have the Maclaurin series of (2.5):

1 + t+ 4t2

1− 2t+ 2t2 + 4t3 + 4t4

= 1 + 3t+ 8t2+ 6t3 − 20t4 − 96t5 − 208t6 − 168t7 + 544t8 + · · ·
(2.6)

Remark 1. It is interesting to note that the sequence {cn} in (2.2) is homoge-
neous linear recurrence with constant coefficients with initial conditions.

Lemma 1. Let t1, t2, . . . , tM be roots of the denominator in (2.1). Then, the
series (2.2) converges for all t ∈ R for which

|t| < r = min{|t1| , |t2| , . . . , |tM |}. (2.7)

Example 2. The series in (2.6) converges for t ∈ R for which |t| <
√

3−
√
5

2 .

3. Padé approximant

A Padé approximant is the “best” approximation of a function by a rational
function of given order. Padé approximants are usually superior to Maclaurin
series when functions contain poles, because the use of rational functions al-
lows them to be well-represented. It often gives better approximation of the
function than truncating its Maclaurin series, and it may still work where the
Maclaurin series does not converge.

In [1], [13] an algorithm to determine the Padé approximant of functions
that are expressed by Maclaurin expansion is described. This technique can
be used for finding a rational function if we know its Maclaurin expansion. A
necessary condition for this is to know the upper estimate (as small as possible)
of the degrees of a polynomial in the numerator and the denominator. In
general, without knowledge of this requirement, an accurate estimate of the
rational function is not possible. Incorrectly estimating at least one of the
degrees of polynomials, we would only approximate the searched for rational
function. However, when accurately estimating the degree of the numerator
and the denominator, or even when estimating when at least one degree would
exceed the true value, we always get the same accurate estimate of the sought
after rational function, whose Maclaurin expansion we know. If we estimate
the degree of the numerator L and the denominator M , then to determine
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the rational function we need a Maclaurin expansion to the degree L + M ,
inclusive.

There are many effective methods for determining the rational function of
its Maclaurin expansion. One of them is described in the mentioned works [1],
[13]:

R[L/M ](t) =

∣∣∣∣∣∣∣∣∣∣∣

cL−M+1 cL−M+2 · · · cL cL+1
...

...
. . .

...
cL cL+1 · · · cL+M−1 cL+M

L∑
j=M

cj−M t
j

L∑
j=M−1

cj−M+1t
j · · ·

L∑
j=1

cj−1t
j

L∑
j=0

cjt
j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
cL−M+1 cL−M+2 · · · cL cL+1

...
...

. . .
...

cL cL+1 · · · cL+M−1 cL+M
tM tM−1 · · · t 1

∣∣∣∣∣∣∣∣∣

(3.1)

where cn = 0 for n < 0 and qn = 0 for n > M.
The element in the last row, in the k-th column, in the numerator is
L∑

j=M−k+1

cj−M+k−1t
j .

Let us interpret the described algorithm on the series on the right side in
(2.6)

1 + 3t+ 8t2 + 6t3 − 20t4 − 96t5 − 208t6 − 168t7 + 544t8 + · · · (3.2)

Suppose that we have estimated the degree of the polynomial of the denomi-
nator L = 4 and numerator M = 3.

Then using (3.1) we have

R[3/4](t) =

∣∣∣∣∣∣∣∣∣∣
1 3 8 6 −20
3 8 6 −20 −96
8 6 −20 −96 −208
6 −20 −96 −208 −168
0 t3 t2 + 3t3 t+ 3t2 + 8t3 1 + 3t+ 8t2 + 6t3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 3 8 6 −20
3 8 6 −20 −96
8 6 −20 −96 −208
6 −20 −96 −208 −168
t4 t3 t2 t 1

∣∣∣∣∣∣∣∣∣∣
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=
14400t2 + 3600t+ 3600

14400t4 + 14400t3 + 7200t2 − 7200t+ 3600
=

4t2 + t+ 1

4t4 + 4t3 + 2t2 − 2t+ 1
(3.3)

We have got the same rational function as in (2.5). We have estimated the
degree of the polynomial of the numerator as 3. After the calculation we can
see that it is only 2. Note that we would get the same result for L = 2, but
also for L > 2 and M > 4. When estimating L < 2 or M < 4, we get only an
approximate estimate of the rational function.

4. Differential operator and matrix differential operator

It is sometimes convenient to adopt the notation Dy, D2y, D3y, . . . , Dny

to denote
dy

dx
,
d2y

dx2
,
d3y

dx3
, · · · , d

ny

dxn
. The symbols Dy, D2y, . . . are called dif-

ferential operators [3], [4] and have properties analogous to those of algebraic
quantities [7].

Problems of the operator calculus for solving linear differential equations
are well dealt with in several publications, e.g., in publications [3], [7], [12].
Using the operator notation, we shall agree to write the differential equation(

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0

)
y = f(x), an 6= 0, ai ∈ R (4.1)

as (
anD

n + an−1D
n−1 + · · ·+ a1D + a0I

)
y = f(x) (4.2)

where I is the identity operator.

Remark 2. The identity operator I maps a real number to the same real
number Ir = r [14]. To simplify writing, we will omit it in the following
formulas.

We will also use a concise notation for (4.2).

φ(D)y = f(x), (4.3)

where

φ(D) = anD
n + an−1D

n−1 + · · ·+ a1D + a0 (4.4)

is called an operator polynomial in D. If we want to emphasize the degree of
the polynomial operator (4.4), we shall write it in the form φn(D).

Definition 1. If S = {v1,v2, . . . ,vn} is a set of vectors in a vector space V,
then the set of all linear combinations of v1,v2, . . . ,vn is called the span of
v1,v2, . . . ,vn and is denoted by span(v1,v2, . . . ,vn) or span(S).

Let G be a vector space of all differentiable functions. Consider the subspace
V ⊂ G given by

V = span
(
f1(x), f2(x), . . . , fn(x)

)
, (4.5)
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where we assume that functions f1(x), f2(x), . . . , fn(x) are linearly indepen-
dent. Since the set B = {f1(x), f2(x), . . . , fn(x)} is linearly independent, it is
a basis for V.

The functions fi(x), i = 1, 2, . . . , n expressed in basis B using base vector
coordinates are usually written

[f1(x)]B =


1
0
...
0

 , [f2(x)]B =


0
1
...
0

 , . . . , [fn(x)]B =


0
0
...
1


The vector [fi(x)]B has in the i-th row 1 and 0 otherwise.

Further, assume that the differential operator D maps V into itself.
Let

D(fi(x)) =

n∑
j=1

cijfj(x), i = 1, 2, . . . , n,

where cij ∈ R, i, j = 1, 2, . . . , n are constants. Then

[D (fi(x))]B =


ci1
ci2
...
cin

 , i = 1, 2, . . . , n

and (see [11])

[D]B = [[D (f1(x))]B ...
.
[D (f2(x))]B ...

. · · · .... [D (fn(x))]B]

=


c11 c21 · · · cn1
c12 c22 · · · cn2
...

...
. . .

...
c1n c2n · · · cnn

 (4.6)

If

f(x) =

n∑
i=1

αifi(x), αi ∈ R, i = 1, 2, . . . , n, f(x) ∈ V

then

[f(x)]B =


α1

α2
...
αn


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We express the derivative of the function f(x):

Df(x) =
n∑
i=1

αiDfi(x) =
n∑
i=1

αi

n∑
j=1

cijfj(x) =
n∑
j=1

n∑
i=1

αicijfj(x)

respectively

[D(f(x))]B =



n∑
i=1

ci1αi

n∑
i=1

ci2αi

...
n∑
i=1

cinαi


=


c11 c21 · · · cn1
c12 c22 · · · cn2
...

...
. . .

...
c1n c2n · · · cnn



α1

α2
...
αn



Let us further simply and denote [D]B as DB.
The matrix DB we will call the matrix differential operator corresponding

to a vector space V with the considered basis B.
Denote

[D(f(x)]B = f ′B =


β1
β2
...
βn

 and [f(x)]B = fB

then

f ′B = DBfB (4.7)

Note that the matrix transformation DB : V → V defined by (4.7) is a linear
transformation.

As mentioned in (4.6), the i-th, (i = 1, 2, . . . , n) column of the matrix D
expresses the derivative of the function fi(x).

Definition 2. Let 1/φ(D)f(x) (or φ−1(D)f(x)) be defined as a particular
solution yp of the differential equation (4.2) such that φ(D)yp = f(x). We
call 1/φ(D) the inverse differential operator to φ(D) [12]. Analogously we
define an inverse matrix differential operator: Let DB be a matrix differential
operator corresponding to a vector space V with the considered basis B for
an equation (4.2) with right-side f . Let φ−1 (D)f be defined as a particular
solution yp of the differential equation (4.2), such that φ(D)yp = f . Then we

call φ−1(D) an inverse matrix differential operator to φ(D).

5. Inverse of a differential operator and action
on a continuous function

Now, we will deal with the evaluation of
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1

φ (D)
f(x)

only in the case if 1/φ(D) is expressed in ascending powers of D. We assume
that f(x) is a differentiable function. For example

1

1−D
e

x
2 =

(
1 +D +D2 + · · ·

)
e

x
2 = e

x
2 + 1

2e
x
2 + 1

4e
x
2 + 1

8e
x
2 + · · ·

= e
x
2

(
1 + 1

2 + 1
4 + 1

8 + · · ·
)

= 2e
x
2

Really y = 2e
x
2 is the particular solution of the differential equation

(1−D) y = e
x
2

In this case there is no problem as the series 1 +
1

2
+

1

4
+

1

8
+ · · · converges.

5.1. The Cesáro summability of a series. Let
∞∑
n=0

cn be a number series,

and let

sk = c0 + c1 + c2 + · · ·+ ck

be its k-th partial sum. The series
∞∑
n=1

cn is called Cesáro summable (or sum-

mable by arithmetic means), with Cesáro sum A ∈ R, if

lim
n→∞

1

n+ 1

n∑
k=0

sk = A.

For example

1

1 +D
ex =

(
1−D +D2 −D3 + · · ·

)
ex = ex − ex + ex − ex + · · ·

= ex(1− 1 + 1− 1 + · · · )

The series 1− 1 + 1− 1 + · · · does not converge. But it is Cesáro summable,
because

lim
n→∞

1

n+ 1

n∑
k=0

sk =
1

2
.

Hence
1

1 +D
ex =

1

2
ex

Indeed, y = 1
2e
x is the particular solution of the equation (D + 1)y = ex.
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5.2. The Euler method. [6] If the numerical series
∞∑
n=0

cnt
n is convergent for

small t, and defines a function f(t) of the complex variable t, one-valued and
regular in an open and connected region containing the origin and the point

t = 1 and f(1) = s, then we call s the E sum of
∞∑
n=0

cn.

In our case we take for the region the maximum domain of f(t). If
∞∑
n=0

cn

is summable by the Euler method E to s, we will denote
∞∑
n=0

cn = s (E) .

All series that are summable by the Cesáro method to s are summable to
the same value s by the Euler method.

Yet another simple example

1

1− 2D
ex =

(
1 + 2D + 4D2 + 8D3 + · · ·

)
ex = ex + 2ex + 4ex + 8ex + · · ·

= ex(1 + 2 + 4 + 8 + · · · )

The numerical series 1 + 2 + 4 + · · · + 2n + · · · diverges. Let us create the
power series

1 + 2t+ 4t2 + · · ·+ 2ntn + · · · (5.1)

The series (5.1) defines a single-valued and analytic function on the region
|t| < 1

2 containing the origin

f (t) =
1

1− 2t
= 1 + 2t+ 4t2 + 8t3 + · · ·

The function defined in the domain |t| < 1

2
can be extended to the func-

tion
1

1− 2t
by means of an analytic continuation defined on C \

{
−1

2

}
. This

extended function is always given unambiguously.
Since

f (1) =
1

1− 2 · 1
= −1

We have

1 + 2 + 4 + · · ·+ 2n + · · · = −1 (E) .

Then
1

1− 2D
ex = −ex.

Indeed, y = −ex is the particular solution of the differential equation
(1− 2D)y = ex.
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6. Using a divergent series for finding a particular solution of
an ordinary nonhomogeneous linear differential equation

with constant coefficients

In this section we will try to explain the basic principles for finding the
particular solution of an ordinary nonhomogeneous linear differential equation
with constant coefficients with a special type of right-hand side using the Euler
method of summable divergent series.

Lemma 2. [5], [8] If the Taylor series expansion for f(x) about the origin

f(x) =

∞∑
k=0

f (k)(0)

k!
xk

converges for all x, for which |x| < r, then the matrix series

f (A) =
∞∑
k=0

f (k)(0)

k!
Ak

converges for those A, for which ρ (A) < r, where ρ (A) is the spectral radius
of the matrix A. As a convention A0 = I, where Iis the identity matrix.

Let us consider the differential equation

φn (D) y = g(x) (6.1)

Let
V = span (f1(x), f2(x), . . . , fm(x))

be a vector space of differentiable functions with the basis B of V

B = {f1(x), f2(x), . . . , fm(x)} (6.2)

and let for every function f(x) ∈ V be f ′(x) ∈ V .
Assume that g(x) ∈ V . The Maclaurin expansion

1

φn(D)
= c0 +

∞∑
k=1

ckD
k, c0 6= 0 (6.3)

converges for |D| < r, 0 < r < ∞. Note that c0 must be different from zero.
Otherwise, the value 1/φn(0) would not be defined.

If t ∈ R is a parameter, then

1

φn(tD)
=

∞∑
k=0

ckt
kDk (6.4)

The series (6.4) converges depending on t. If t = t0, then it converges for

|D| < r

|t0|
.
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Denote by D (of the type m × m) the matrix differential operator corre-
sponding to the basis B in (6.2), and let the matrix φn (D) be a regular matrix.
Then, the matrix series (due to the Lemma 2)

(φn(D))−1 = c0Im +
∞∑
k=1

ckDk (6.5)

converges only if the spectral radius ρ (D) < r. If r ≤ ρ(A) < ∞ then we put
for D in (6.5) the matrix tD, where

0 < t <
r

ρ (D)

for which the spectral radius

ρ (tD) = t ρ (D) < r.

Using this in Lemma 2 we get that the matrix series with parameter t

(φn (tD))−1 =
∞∑
k=0

ckt
kDk (6.6)

converges for ρ (tD) < r. Now we use the inverse matrix formula based on the

conjugate matrix and we get that the elements of the matrix (φn (tD))−1 will

be rational functions of t defined at t = 0 and at t = 1. We get (φn (D))−1 g
the particular solution of (6.1), where g = g(x)B.

Multiplying equation (6.6) from the right-hand side by the vector g, we
have

(φn (tD))−1 g =

∞∑
k=0

ckt
kDkg (6.7)

The left and right-hand sides of (6.7) are matrices with m rows and one col-
umn. Each row on the right-hand side is an infinite series of powers of t, to
which it corresponds on the left-hand side of (6.7) in the same row to a ra-
tional function. Each rational function (on the left-hand side) is an analytic
continuation (except for a finite number of points from the complex plane)
to its maximum domain of the corresponding function expressed by a power
series on the right-hand side, and all conditions for using the Euler summation
method are satisfied. It follows for t = 1:

∞∑
k=0

ckDkg = (φn (D))−1 g(E) (6.8)

The formulas (6.7), (6.8) represent one of the main fundamental results of the
paper.
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Remark 3. If D is a m×m matrix and (6.1) is a differential equation of order n
then from the left-side of (6.7) follows that to find a rational function R[L/M ](t)
using the Padé approximant it is enough to take a truncated power series of
degree L + M , where L = n(m − 1) and M = nm. (In a special case can
be the final fraction in the form R[(L−k)/(M−k)](t), if the fraction R[L/M ](t) is
truncated by polynomial of the k-th degree.)

Remark 4. To calculate the right-hand side of (6.7) using e.g., the software
wxMaxima it is better to express (6.7) in the form

c[0]·g+sum(c[k]·tˆk·X:D.X,k,1,n)

The symbol of the assignment command is : (in wxMaxima) [10]. The initial
value X is g, n is a finite upper bound of summation (see Remark 3).

Example 3. Using the matrix differential operator and summable divergent se-
ries by the Euler method find the particular solution of the differential equation(

1−D −D2
)
y = ex sinx− 2ex cosx (6.9)

Solution. We will solve the equation first using the matrix differential operator
method [4]. From the method of undetermined coefficients it follows that the
solution of the differential equation will belong to the vector space

V = span (ex sinx, ex cosx)

with the basis
B = {ex sinx, ex cosx}

The relevant matrix differential operator is

D =

[
1 −1
1 1

]
The solution of the differential equation belongs to V . We have to solve the
matrix equation (

I2 −D−D2
)
yp = [ex sinx− 2ex cosx]B[

0 3
−3 0

]
yp =

[
1
−2

]

yp =

[
0 3
−3 0

]−1 [
1
−2

]
=

0 −1

3
1

3
0

[ 1
−2

]
=

2

3
1

3

 (6.10)

The particular solution to equation (6.9) is

yp =
2

3
ex sinx+

1

3
ex cosx
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Now, we will look at solving this example from the point of view of divergent
series. We express the particular solution of the equation (6.9) in the form

yp =
1

1−D −D2
(ex sinx− 2ex cosx)

Let us expand in powers of the D the inverse operator
1

1−D −D2
using

the method described in the beginning of the paper (Theorem 1) and let this
expansion act on the right-hand side of equation (6.9). We have

yp = (1 +D + 2D2 + 3D3 + 5D4 + 8D5 + · · · )(ex sinx− 2ex cosx)

= (ex sinx− 2ex cosx) + (3ex sinx− ex cosx) + (8ex sinx+ 4ex cosx)

= +(6ex sinx+ 18ex cosx) + (−20ex sinx+ 40ex cosx) + · · ·
= (1 + 3 + 8 + 6− 20 + · · · )ex sinx+ (−2− 1 + 4 + 18 + · · · )ex cosx

We need to determine the sum of the corresponding divergent series by the
Euler method. However, we see that the presented calculation procedure is
impractical.

We use the matrix representation using the right-hand side of (6.7), where
we determine the coefficients ck according to Theorem 1

f(t) =

6∑
k=0

(1, 1)· (cn−2, cn−1) tkDkg

where g =

[
1
−2

]
, c−1 = 0, c0 = 1. The upper limit of summation has been

determined using Remark 3 (m = 2, n = 2, M = m·n = 4, L = n·(m−1) = 2,
L+M = 6).

We get

f(t) =

[
1 + 3t+ 8t2 + 6t3 − 20t4 − 96t5 − 208t6 + · · ·
−2− t+ 4t2 + 18t3 + 40t4 + 32t5 − 104t6 + · · ·

]
It follows from (3.2), (3.3) that

1 + 3t+ 8t2 + 6t3− 20t4− 96t5− 208t6 + · · · = 4t2 + t+ 1

4t4 + 4t3 + 2t2 − 2t+ 1
= f1(t)

and

f1(1) =
2

3
So

1 + 3 + 8 + 6− 20− 96− 208 + · · · = 2

3
(E)
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We will now find the Euler sum of the second divergent series

−2− 1 + 4 + 18 + 40 + 32− 104 + · · ·

It is not our goal to present different types of Padé approximant algorithms.
Many computer algebra systems software include a procedure for calculating
these. For example in Mathematica the procedure
PadeApproximant [expr,x,x0,m,n] gives the approximant to expr about the
point x=x0, with numerator order m and denominator order n [16].
The wxMaxima procedure
pade(taylor series, numer deg bound, denom deg bound) returns a list of all
rational functions which have the given Taylor series expansion where the
sum of the degrees of the numerator and the denominator is less than or equal
to the truncation level of the power series, i.e. are ”best” approximants, and
which additionally satisfy the specified degree bounds. Where taylor series is a
univariate Taylor series, numer deg bound and denom deg bound are positive
integers specifying the degree bounds on the numerator and denominator [10].

Here we use the procedure in wxMaxima (Figure 1)

Figure 1. Padé approximant in wxMaxima

We have

−2−t+4t2+18t3+40 t4+32t5−104t6+ · · · = 2t2 + 3t− 2

4t4 + 4t3 + 2t2 − 2t+ 1
= f2(t)

The value f2(1), after the analytical continuation of f2(t) to the whole
complex plane except for the four zero complex roots of the equation
4t4 + 4t3 + 2t2 − 2t+ 1 = 0, is

f2(1) =
1

3

So

−2− 1 + 4 + 18 + 40 + 32− 104 + · · · = 1

3
(E)
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We have obtained the same solution as in (6.10)

f (1) =

2

3
1

3


B

yp =
2

3
ex sinx+

1

3
ex cosx

If we want to calculate directly the appropriate rational functions (for con-
trol), we can use the idea of (6.6). We get

(
I2 −Dt− (Dt)2

)−1 [ 1
−2

]
=

 4t2 + t+ 1

4t4 + 4t3 + 2t2 − 2t+ 1
2t2 + 3t− 2

4t4 + 4t3 + 2t2 − 2t+ 1


Further we will need some theorems.

Lemma 3. [3], [7], [12] Let φn(D) be a polynomial of D of degree n. Then
the nonhomogenous linear differential equation

φn(D)y = Aeαx (6.11)

A ∈ R, α is real or complex, has a particular solution

yp =


Aeαx

φn(α)
if φn(α) 6= 0

Axkeαx

φ
(k)
n (α)

if φ
(i)
n (α) = 0 for i = 0, 1, 2, . . . , k − 1 but φ

(k)
n (α) 6= 0

where φ
(0)
n (D) = φn(D).

Theorem 2. Let φn(D) be a polynomial of D of degree n. Let us consider

the differential equation (6.11) where φ
(i)
n (α) = 0 for i = 0, 1, 2, . . . , k − 1 but

φ
(k)
n (α) 6= 0. Then the particular solution of the differential equation

φ(k)n (D)y = Axkeαx (6.12)

is also the particulation solution of the equation (6.11).

Proof. For the proof of this theorem we need to prove two auxiliary relation-
ships. Due to the operator shift theorem [3], [4], [12] we have

(1)

(D − α)k(Axkeαx) = Aeαx(D + α− α)kxk = Aeαxk!
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(2) Let

φn(D) = (D − α)kφn−k(D), then

φ
(k)
n (D)=

(
k
0

)(
(D − α)k

)(k)
φn−k(D)+

(
k
1

)(
(D − α)k

)(k−1)
φ′n−k(D)+· · ·

+

(
k
k

)
(D − α)kφ

(k)
n−k(D)

hence

φ(k)n (α) = k!φn−k(α)

From (6.12) we have

y =
1

φ
(k)
n (D)

Axkeαx (6.13)

Substituting this in the (6.11) we have

φn(D)
1

φ
(k)
n (D)

Axkeαx = A
φn−k(D)

φ
(k)
n (D)

(D − α)kxkeαx

= Ak!
φn−k(D)

φ
(k)
n (D)

eαx = Ak!
φn−k(α)

φ
(k)
n (D)

eαx = Ak!
φn−k(α)

φ
(k)
n (α)

eαx =

= Ak!
φn−k(α)

k!φn−k(α)
eαx = Aeαx

�

This proves that (6.13) is also a particular solution of (6.11). Note that the
particulation solution of the differential equation (6.12) may include the kernel
of φn(D) in (6.11).

Corollary 1. Let φn(D) be a polynomial of D of degree n. Let us consider
the differential equation

φn(D)y = eαx(A sinβx+B cosβx) (6.14)

Let φn(α+ βi) = φ′n(α+ βi) = · · · = φ
(k−1)
n (α+ βi) = 0 but φ

(k)
n (α+ βi) 6= 0.

Then, the particular solution of the differential equation

φ(k)n (D)y = xkeαx(A sinβx+B cosβx) (6.15)

is also the particular solution of the equation (6.14).

Example 4. Determine a particular solution of the equation

(D2 − 4D + 13)y = e2x (4 sin 3x+ 2 cos 3x) (6.16)
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Solution. First, we find the solution of the equation using a matrix differential
operator [4]. The roots of the characteristic equation k2 − 4k + 13 = 0 are
2 + 3i, 2 − 3i. Hence, the particular solution will be in the form

y = xe2x (A sin 3x+B cos 3x)

This means that the particular solution (6.16) belongs to the vector space

V = span
(
xe2x sin 3x, xe2x cos 3x, e2x sin 3x, e2x cos 3x

)
with the basis

B =
{
xe2x sin 3x, xe2x cos 3x, e2x sin 3x, e2x cos 3x

}
The matrix differential operator is

D =


2 −3 0 0
3 2 0 0
1 0 2 −3
0 1 3 2


Then

D2 − 4D + 13I4 =


0 0 0 0
0 0 0 0
0 −6 0 0
6 0 0 0


The matrix D2 − 2D+2I4 is singular. For this case it is possible to use

for example the method of undetermined coefficients or the method described
in [4].

Now we shall find a particular solution to the equation (6.16) using Corol-
lary 1. We have to solve the equation

(2D − 4)ỹp = xe2x(4 sin 3x+ 2 cos 3x) (6.17)

The matrix differential operator D is the same. So we have to solve the matrix
equation

(2D − 4I4)ỹp = [xe2x(4 sin 3x+ 2 cos 3x)]B
0 −6 0 0
6 0 0 0
2 0 0 −6
0 2 6 0

 ỹp =


4
2
0
0


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ỹp =


0 −6 0 0
6 0 0 0
2 0 0 −6
0 2 6 0


−1 

4
2
0
0

 =



0
1

6
0 0

−1

6
0 0 0

1

18
0 0

1

6

0
1

18
−1

6
0





4

2

0

0


=



1

3

−2

3

2

9

1

9


The particulation solution of (6.17) and also (6.16) is

ỹp =
1

3
xe2x sin 3x− 2

3
xe2x cos 3x+

2

9
e2x sin 3x+

1

9
e2x cos 3x (6.18)

but 2
9e

2x sin 3x and 1
9e

2x cos 3x belong to the kernel of the operator

D2 − 4D + 13, then we can write the particular solution (6.18) of the di-
fferential equation (6.16) in the simpler form

yp =
1

3
xe2x sin 3x− 2

3
xe2x cos 3x (6.19)

Since the matrix D2 − 4D + 13I4 is singular, the idea described from (6.1) to
(6.8) for calculating a particular solution using divergent series cannot be used.
However, if we continued to calculate the Padé approximant (for example with
the support of the open source software wxMaxima), we would get “rational
functions”: substituting for t = 1 we get meaningless expressions. This is not
the way how to find the correct result.

Finally, we find a particular solution to the differential equation (6.17) using
the summation of divergent series by applying the Euler method. We will
express

yp =
1

2D − 4

(
4xe2x sin 3x+ 2xe2x cos 3x

)
=

=−1

4

(
1 +

D

2
+
D2

4
+
D3

8
+ · · ·

)(
4xe2x sin 3x+ 2xe2x cos 3x

)
or better in the matrix form with powers of t

yp = −1

4

∞∑
k=0

tk

2k
Dkg (6.20)

where g =
[
4 2 0 0

]T
It follows from Remark 3 that it is enough to take the truncated power series

of degree 7 and find rational functions R[L/M ](t), where L = 3 and M = 4.
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We get 
−8659t7

256 −
2449t6

64 − 841t5

64 + 59t4

16 + 101t3

16 + 11t2

4 −
t
4 − 1

−3863t7

64 − 379t6

128 + 67t5

4 + 359t4

32 + 7t3

4 −
19t2

8 − 2t− 1
2

−17143t7

128 − 2523t6

64 + 295t5

32 + 101t4

8 + 33t3

8 −
t2

4 −
t
2

−2653t7

256 + 201t6

4 + 1795t5

64 + 7t4

2 −
57t3

16 − 2t2 − t
4


The first and second components are calculated in Figure 2. Note that

the third and fourth components of the particular solution do not have to be
calculated at all, because this part of the solution belongs to the kernel of
the operator D2 − 4D + 13, as we have already mentioned. We get the same

Figure 2. Components of the solution - Euler summation method

particular solution as in (6.19). So

yp =
1

3
xe2x sin 3x− 2

3
xe2x cos 3x

7. Conclusion

The content of this paper follows on from the paper [4]. It has a more or
less theoretical character. It is not suitable for effectively finding a particular
solution to a nonhomogeneous linear ODE with constant coefficients with a
typical right-hand side. In the paper we used the Euler method of summation
of divergent series. The derived relations (6.7) and (6.8) as well as Theorem 2
and its Corollary 1 and the algorithm for finding a particular solution using a
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matrix differential operator can be considered as the main results of the paper.
We suggest that this method with developed software applications could be
used in courses teaching divergent series.
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