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Abstract: The article deals with a generalization of the concept of the asymptote (with a 

slope) of a graph function, which is a linear function to an analogous concept - the asymptote 

of a graph function, which can be not only a linear function but also a higher degree 

polynomial function. It also generalizes this concept by asymptotic series. The contribution 

also presents the possibilities of using the Maxima - open source system to determine the 

polynomial asymptote and the asymptotic series of a given function. 
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INTRODUCTION 

 

In the basic course of mathematics at university, the asymptote of the function graph is 

defined as a line such that the distance between the curve and the line approaches zero as one 

or both of the x or y coordinates tends to infinity [1], [3], [5], [7]. In some contexts, such as 

algebraic geometry, an asymptote is defined as a line which is tangent to a curve at infinity.  

More generally, one curve is a polynomial (curvilinear) asymptote of another (as opposed to a 

linear asymptote) if the distance between the two curves tends to zero as they tend to infinity.  

An asymptotic series is a series expansion of a function in a variable x which may converge or 

diverge, but whose partial sums can be made an arbitrarily good approximation to a given 

function for large enough x. 

 

 

1 ASYMPTOTES OF A GRAPH FUNCTION 

 

1.1 Linear asymptotes 

 

Definition 1.1 We say that line x a   is a vertical asymptote of the graph of the function 

( )y f x  (or simply a vertical asymptote of the function)  if at least one of the following 

statements is true: 

lim ( ) , lim ( ) , lim ( ) , lim ( ) .
x a x a x a x a

f x f x f x f x
      

                          (1) 

 

Definition 1.2 [1] If there are limits 

1

( )
lim ,
x

f x
k

x
   

1 ,k   

and 



2 

 

 1 1lim ( ) ,
x

f x k x q


    
1 ,q   

then the straight line 1 1y k x q   will be an asymptote (a right inclined asymptote or, when 

1 0,k   a right horizontal asymptote) of the function ( )y f x . 

      If there are limits 

2

( )
lim ,
x

f x
k

x
   

2 ,k   

and 

 2 2lim ( ) ,
x

f x k x q


    
2 ,q   

then the straight line 2 2y k x q   is an  asymptote (a left inclined asymptote or, when 2 0,k   

a left horizontal asymptote) of the function ( )y f x . 

 

    The graph of the function ( )y f x  cannot have more than one right (inclined or 

horizontal) and more than one left (inclined or horizontal) asymptote.  

Example 1.1 In the figure 1 is a graph of the function 
2 4

2 2

x x
y

x

 



 with their asymptotes 

1x    (vertical) and 
1

1
2

y x  . 

 

Fig. 1. Asymptotes of the graph of the function (Example 1.1). 

Source: own 

 

 

1.2 Polynomial (curvilinear) asymptotes 

 

Definition 1.3 We say that polynomial function 

1

1 1 0( ) , 0,n n

n n n nP x a x a x a x a a

                                    (2) 
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is a polynomial (curvilinear) asymptote of the graph function ( )y f x  if at least one of the 

following statements is true: 

 lim ( ) ( ) 0n
x

f x P x


   or  lim ( ) ( ) 0n
x

f x P x


  .                            (3) 

In the first case, we say about the polynomial asymptote of the graph of the function ( )y f x

for x , in the second case the polynomial asymptote of the graph of the function 

( )y f x    for .x  

Next, we will only deal with the polynomial asymptotes of the graph of the function for

x . 

 

Theorem 1.2 The polynomial function (2) is a polynomial asymptote of the graph of the 

function ( )y f x  if and only if there are proper limits    

 

11

1

1 1

1

1 1 0

( )
lim

( )
lim

( )
lim

lim ( )

nnx

n nnx

n k n k

n n k kkx

n n

n n
x

f x
a

x

f x
a x a

x

f x
a x a x a x a

x

f x a x a x a x a





  

 









 
  

 

 
     

 

    

                           (4) 

 

Proof.  Proof will be done only for x .  

1.  Let polynomial function (2) be a polynomial asymptote of the graph of the function f .  By 

edit the first of the relationship (3) we have 

    1

1 1 0

1 01

1

lim ( ) ( ) lim ( )

( )
lim 0.

n n

n n n
x x

n n
nn n nx

f x P x f x a x a x a x a

a aaf x
x a

x x x x




 





       

 
       

   
Because it is true that lim n

x
x


  , it must be necessary that 

1 01

1

( )
lim 0,n

nn n nx

a aaf x
a

x x x x





 
      

 
 

 

otherwise, the first limit in relation (3) would not be proper. So that 

1 0 1 01 1

1 1

( ) ( )
lim lim lim

( )
lim 0.

n n
n nn n n n n nx x x

nnx

a a a aa af x f x
a a

x x x x x x x x

f x
a

x

 

   



   
              

   

  
 

Then 

( )
lim ,nnx

f x
a

x
  

which is the first of the relationships (4). Similarly, we proceed further. 
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Let us compute 

   1

1 1 0

1 2 01
11 2 1

lim ( ) ( ) lim ( )

( )
lim 0.

n n

n n n
x x

n n
n nn n nx

f x P x f x a x a x a x a

a aaf x
x a x a

x x x x




 

 
  

       

 
        

 

 

Then 

2 01
1 11 2 1 1

2 01
12 1 1

( ) ( )
lim lim

( )
lim lim 0 0,

n
n n n nn n n nx x

n
n nn n nx x

a aaf x f x
a x a a x a

x x x x x

a aa f x
a x a

x x x x


     


   

   
           

  

   
          

  

 

and from there 

11

( )
lim n nnx

f x
a x a

x


 
  

 
 

which is the second of the relationships (4). 

Similarly, all relationships in (4) can be derived. Note that the last relation in (4), which 

expresses the absolute coefficient, is calculated directly from the condition 

  1

1 1 0lim ( ) 0n n

n n
x

f x a x a x a x a




       

So that 

 1

1 1 0lim ( ) n n

n n
x

f x a x a x a x a




     . 

2. We will prove opposite implication. Assume there are proper limits (4) to compute

1 1 0, , , ,n na a a a .  Then from the last relationship (4)  

 1

1 1 0lim ( ) n n

n n
x

f x a x a x a x a




     , 

we get 

 1

1 1 0lim ( ) 0,n n

n n
x

f x a x a x a x a




       

It follows from definition 1.3, that the polynomial function  

1

1 1 0( ) n n

n n nP x a x a x a x a

      

with such calculated coefficients is the polynomial asymptote of the function graph f . 

Consequence 1.1 There is always a polynomial asymptote for every rational function. 

Proof.  Let us consider a rational function  

( )
( )

( )

P x
R x

Q x
 ,                                                          (5) 

where  ( )P x  and ( )Q x  are polynomials.  

If a rational function is a proper rational function, that the degree of the numerator ( )P x  is 

lower than that of the nominator ( ),Q x  then polynomial asymptote is obviously the horizontal 

asymptote  

0.y   

On the other hand, there exist single-valued polynomials ( )U x  and ( )Z x , where the degree of 

the polynomial  ( )Z x  is lower than the degree of the polynomial ( ),Q x  that [5] 

( ) ( )
( ) ( ) .

( ) ( )

P x Z x
R x U x

Q x Q x
    
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Then polynomial function ( )U x  is a polynomial asymptote of the graph of the function ( )R x  

because  

 
( )

lim ( ) ( ) lim 0.
( )x x

R x
R x U x

Q x 
    

 

Example 1.2 The function 2y x  is a polynomial asymptote of the graph of the function
4 2

2

5
( )

1

x x
R x

x

 



 (see figure 2), because  

4 2
2

2 2

5 5

1 1

x x
x

x x

 
 

 
 and  

4 2
2

2 2

5 5
lim lim 0.

1 1x x

x x
x

x x 

  
   

  
 

 

 
 

Fig. 2. The polynomial asymptote of the graph of the function (Example 1.2). 

Source: own 

 

Example 1.3 Find the polynomial asymptote of the graph of the function  

4 3 2( ) 4 4 9 1f x x x x    , 

for .x  

 

Solution. We seek quadratic asymptotes  
2

2 1 0y a x a x a    

of the graph of the function f, for .x  According theorem 1.2 we obtain  
4 3 2

2 2 2

( ) 4 4 9 1
lim lim 2.
x x

f x x x x
a

x x 

  
    

Remark that  

( )
lim 0

nx

f x

x
  for 2.n   

Further 

4 3 2

1

( ) 4 4 9 1
lim 2 lim 2 1,
x x

f x x x x
a x x

x x 

    
           
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   2 4 3 2 2

0 lim ( ) 2 lim 4 4 9 1 2 2.
x x

a f x x x x x x x x
 

           

The sought quadratic asymptote is  
22 2.y x x         □ 

 

2 ASYMPTOTIC SERIES 

 

2.1 Asymptotic series of a function 

Asymptotic series of a function f is usually defined [2], [6] as a series  

0

k

k
k

a

x





 ,                                                              (6) 

(at convention 
0 1x  ), which satisfied the condition 

 lim ( ) lim ( ) ( ) 0n n

n n
x x

x R x x f x S x
 

    for fixed n 

where  

0

( )
n

k
n k

k

a
S x

x

 . 

Example 2.1 Find an asymptotic series of the function 
1

( )
1

f x
x




 and its domain of 

convergence. 

Solution. 

2 2 3

1

1 1 1 1 1 1 1
1 , 0.

11
1

x x
x x x x x x x

x

 
          

  

 

The domain of convergence:  

                       
1

1 1 ( , 1) (1, ).x x
x
          

In 1x    and 1x   the series is divergent. □ 

 

However, we are under asymptotic series of the function f  for some 0 0, 0x x x   (if series 

converges) we will further understand Laurent series with the finite regular part, of the form  

                           
1 31 2

1 1 0 2 3
, 0n n

n n n

aa a
a x a x a x a a

x x x

  
         .                     (7) 

The coefficients of this series (if exist) are determined in a manner analogous to polynomial 

asymptotes (see also [5], p. 535, [8], [9]). The procedure will be interpreted to identify several 

members of the asymptotic series of the function from Example 1.3.  

 

Example 2.2 Find several members of the asymptotic series of the function  

4 3 2( ) 4 4 9 1f x x x x     
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Solution.  We find an asymptotic series of the function in the form 

 
2 31 2

2 1 0 2 3
( )

aa a
f x a x a x a

x x x

         .                                  (8) 

We determine the coefficients 2 1 0, ,a a a  using the same procedure as we set them in Example 

1.3. The coefficient 1a  we determine by substitute into the relation (8) for already calculated 

values 2 1 0, ,a a a  and multiplying equation by x, partially editing, and limiting both sides of 

the equation for .x  

We obtain  

 2 32 4
1 12 3

lim ( ) 2 2 lim .
x x

aa a
x f x x x a a

x x x

 
 

 

 
        

 
 

Because  

 2lim ( ) 2 2 1
x

x f x x x


     , and so 1 1a   . 

We calculate 2a . The Equation (8) we multiply by
2x , simplify it and limit both sides. 

We get 

2 2 3 4
2 22

1
lim ( ) 2 2 lim .
x x

a a
x f x x x a a

x x x

 
 

 

  
          

   
 

Because 

2 2 1 1
lim ( ) 2 2

4x
x f x x x

x

 
      

 
, and so 2

1
.

4
a    

Similarly, we would calculate other coefficients of the series. We would have that 

4 3 2 2

2 3 4 5

3

2

2

1 1 9 9 31
4 4 9 1 2 2

4 8 16 32

1 1 1
2 2 .

4

x x x x x
x x x x x

x x O
x x x

            

  
           

 

So we can see that regular part of the Laurent series is polynomial asymptotes of the graph of 

the function. 

 

2.2 Taylor expansion and asymptotic series 

 

Without the exact proof we will outline the possibilities of using Taylor's series [4], [5], [8] to 

determine the asymptotic series (if exists) of a given function (for )x , if there exists. 

We will interpret the procedure on the function from Example 1.3. Substitute in the 

expression 

4 3 24 4 9 1x x x    

1
x

t
  and simplification of obtained expression 
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4 2

4 3 2 2

1 1 1 9 4 4
4 4 9 1

t t t

t t t t

  
    . 

It is clear that the function 
4 2

2

9 4 4t t t
y

t

  
  cannot be expanded in some neighborhood 

x R of the point 0 in the Taylor series because function is not defined in 0.t   However, 

we can expand the function 
4 29 4 4y t t t     in the Taylor series in some neighborhood 

x R of the point 0. We get  

4 5 6 7 8
4 2 2 3 9 9 31 51

9 4 4 2 2
4 8 16 32 32

t t t t t
t t t t t t                              (9) 

After multiplying (9) by 
2

1

t
 we get for 0t   

                           

                   
4 2 2 3 4 5 6

2 2

9 4 4 2 1 9 9 31 51
2

4 8 16 32 32

t t t t t t t t
t

t t t

  
           

By returning the substitution 
1

t
x

  and editing expression, we get asymptotic series of a 

function 

4 3 2 2

2 3 4 5 6

1 1 9 9 31 51
4 4 9 1 2 2

4 8 16 32 32
x x x x x

x x x x x x
              

Again we can see that first part of the series is a polynomial asymptote of the graph of the 

function
4 3 2( ) 4 4 9 1f x x x x    . 

    If we wanted to precise of the approximation of the function f  for calculate sufficiently 

large x, we would add several more members of the asymptotic series. □ 

 

3 AVAILABLE SOFWARES FOR DETERMINING POLYNOMIAL ASYMPTOTES    

   AND ASYMPTOTIC SERIES 

 

3.1 Possibilities of using Maxima 

 

The open source system Maxima provides more opportunity for determining of the 

asymptotic series of a function and to determine a polynomial asymptote from it. These are 

commands with examples 

 

                                         expands the expression expr in a truncated Taylor or Laurent series    

                                         in the variable x around the point a, containing terms through  

                                         (x - a)^n. If a  , then we get Laurent series. 

 

  
 

 

returns an expansion of expr in negative powers of  x - a. 

The highest order term is (x - a)^-n. 
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3.2 Possibilities of using WolframAlpha 

 

On the webpage 

 

 
 

https://www.wolframalpha.com/examples/math/calculus/coordinate-geometry/asymptotes/ 

we can calculate polynomial asymptotes  of  functions  and on the  

https://www.wolframalpha.com/examples/math/calculus/series-expansions/ 

is possible calculate asymptotic series of functions. 

 

CONCLUSION 

 

The article clearly presents the methods of calculating polynomial (curvilinear) asymptotes of 

functions as well as asymptotic series of functions by the gradual calculation of their 

coefficients. It shows the relationship between asymptotic series and polynomial asymptotes. 

It sketches the possibilities of using Taylor's expansion to determine asymptotic series and 

thus polynomial asymptotes of a function. And finally shows the possibilities of using 

Maxima – open source system and WolframAlpha for their determination. 

 

References 

 

[1]  Baranenkov, G., Demidovich, B., Efimenko, V., Kogan, S., Lunts, G., Porshneva, E., 

Sycheva, E., Frolov, S., Shostak, R., Yanpolsky, A., Problems in mathematical analysis, 

Under the editiorship of Demidivich, B, MIR PUBLISHERS, MOSKOW 1976 

[2]  Bhatt, B., Weisstein, E., W., "Asym totic  eries.   rom  at  orl     A Wolfram Web 

Resource. http://mathworld.wolfram.com/AsymptoticSeries.html 

[3]   ecenko, J., Pin a, Ľ.  atematika 1, Bratislava: Iura Edition 2002, 310 p. (3rd edition), 

ISBN 80-89047-44-0. 

[4]   ecenko, J., Nekonečné ra y, Bratislava: Ekonóm 2017, 79 p. ISBN 978-80-225-4387-3. 

returns the general form of the power series expansion for 

expr in the variable x about the point a (which may be inf 

for infinity). 

https://www.wolframalpha.com/examples/math/calculus/coordinate-geometry/asymptotes/
https://www.wolframalpha.com/examples/math/calculus/series-expansions/


10 

 

[5]   ic tengoľc, G.,  ., Kurz  iferenciaľnovo I integraľnovo isčislenia I, II, Moskva: Nauka 

1969, p.531- 551.  

[6]  Hunter, J., K., Asymptotic Expansions.     

       https://www.math.ucdavis.edu/~hunter/m204/ch2.pdf 

[7]  Ka erová, A.,  uc a,V., On rejková-Krčová, I., Šoltésová, T., (2016).  atematika  re 

 rvý ročník [elektronický zdroj] – učebný text . Bratislava: Ekonom 2016 

[8]  Kluvánek,  .,  išik, L., Švec,  .,  atematika II, Bratislava, Alfa 1970, I BN  

[9]  Tišer, J., Re rezentace  olomorfní funkce Laurentovou řa ou,     

       https://math.feld.cvut.cz/tiser/kkap5.pdf  

Electronic sources: 

https://www.wolframalpha.com/examples/math/calculus/coordinate-geometry/asymptotes/ 

https://www.wolframalpha.com/examples/math/calculus/series-expansions/ 

https://www.encyclopediaofmath.org/index.php/Laurent_series  

 

https://www.math.ucdavis.edu/~hunter/m204/ch2.pdf
https://math.feld.cvut.cz/tiser/kkap5.pdf
https://www.wolframalpha.com/examples/math/calculus/coordinate-geometry/asymptotes/
https://www.wolframalpha.com/examples/math/calculus/series-expansions/
https://www.encyclopediaofmath.org/index.php/Laurent_series

