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Abstract The process of calculating market-clearing prices
for cap and trade policies for air quality remains problematic.
The permit trading processes are designed to mimic the cost-
minimizing outcome. An additional shortcoming is the lack of
attention to elements of uncertainty in the permit price calcu-
lations. In this paper, we design a market process for allocating
permits to achieve the same type of behavior we observe for
each decision-maker in the overall cost minimization model.
We aim to design a modeling system that would be easy and
efficient to operate. We use a method known as a computer-
assisted “smart market” which has been used in a number of
electricity-pricing situations proposed and applied to some
types of environmental and resource management problems.
The theoretical structure of the smart market model with a
safety margin is provided and then the elements of the margin
of safety are explored in depth. Finally, a set of pricing rules
for the permits that reflect a margin of safety are examined,
and issues related to their implementation are explored.
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1 Introduction

In 1960, Ronald Coase [1] argued that making property rights
for environmental assets explicit and transferable would let
the market value these property rights. If this proposition was
applied, it would allow the market transactions to play a more
central role in the pollution control policy. The practical
applications of Coase’s argument were developed by Dales
[2] for water and Crocker [3] for air quality. Dales argued that
the legal regimes imposed by governmental agencies for the
pollution control were essentially property rights to emit, but
they were not efficient because the property right was not
transferable. Crocker made a similar observation using
Coase’s argument. The defined property right to emit, which
would be transferable, had the potential to fundamentally
change the information requirements imposed on the policy
makers. That is, if the property right to emit and the corre-
sponding market were established, the environmental regula-
tory authorities would no longer need to estimate the individ-
ual emitter and receptor preference functions.

The basic definition of the property right to be traded
depends on the type of a pollutant. Tietenberg [4, 5] provides
a general classification of pollutants that is widely used by
economists. The first type of the pollutant is called the uni-
formly mixed assimilative pollutant. In this case, the spatial
distribution of emissions sources is not important, and envi-
ronmental policy instruments are directly focused on emis-
sions. The second type of the pollutant is the non-uniformly
mixed assimilative pollutant. In this case, the spatial distribu-
tion of emission sources relative to the impact at specific
receptor locations is important. Moreover, environmental pol-
icy instruments are generally concerned with the permissible
ambient concentration levels measured at specific receptor
locations.

The objective of cap and trade policies is the cost minimi-
zation, while the policy target depends on the type of the
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pollutant under evaluation [5]. In case of a uniformly mixed
assimilative pollutant, the policy target is the level of aggre-
gate emissions or the total weight of emissions released into an
environmental medium such as air. The property right that is
traded for the cost-effective solution for this pollutant is an
emission discharge permit (EDP). Tietenberg [5] classifies this
as an undifferentiated permit (UDP). A legal limit is
established for the allowable weight of emissions, and the
emissions target is based on the cost-effective criterion [5].
The cost-effective allocation of the pollution control requires
that the marginal cost of control related to each emission
source was equalized. The same entitlement to emit is given
to every emitter, and trades among emitters are carried out on
one-for-one basis. EDPs have been defined and used in pol-
lution trading for sulfurs dioxide (SO2) and NOx. Burtraw
et al. [6] provide comprehensive discussion on the economics
of these trading activities.

The non-uniformly mixed assimilative pollutants are de-
scribed as local pollutants because the damage they cause is
related to their ground level concentrations in the air [4]. These
concentrations are based upon the relative location of emitters
from each other, the process of their accumulation in the envi-
ronment, and the amount of emissions emitted. The policy
target level is set as an ambient concentration limit and mea-
sured at a specific location for a specific time. The impact of
any individual emitter at a particular location depends on their
location along with the flow characteristics of the environmen-
tal medium between the emitter’s site and the monitoring or
receptor site. Tietenberg [5] argues that the ambient cost-
effective (ACE) criterion requires that the responsibility for
the pollution abatement was allocated among emitters so as to
minimize the cost of meeting the ambient standard measured at
specific monitoring points. The key result for this environmen-
tal problem is that each emission source equates the marginal
cost of emission reduction with a weighted average of the
marginal cost of concentration reductions at each receptor point
impacted by the emission source. The property right traded for
the cost-effective solution is an ambient permit, and an ambient
permit market is defined with respect to the location of each
receptor. Each emission source is required to hold a portfolio of
permits that legitimize their emissions.

Ideally, the prescription for the cap and trade policy is that
the EDPs were traded in a competitive market that yields a
cost-effective outcome corresponding to the cap or policy
target. Montgomery [7] has shown in a rigorous manner that
instantaneous multilateral trading of permits will yield a com-
petitive equilibrium that coincides with the cost-effective out-
come. Moreover, if transaction costs are low, this equilibrium
is independent of the initial allocation of EDPs and the permit
redistribution.

One important conclusion emerging from the previous
discussion is that the ambient permit system is the best alter-
native to deal with the problem of a non-uniformly

assimilative mixed pollutant. Nevertheless, this system is
inherently complex and administratively difficult to imple-
ment. Tietenberg [4] classified the permit trading alternatives
into following groups: (1) emissions permits, (2) different
types of zonal permit systems, (3) single-market ambient
permit systems, and (4) trading rules. These alternatives are
not likely to sustain the least-cost allocation, but they might be
less costly. A number of research studies examined a variety
of these permit systems, considering both their respective
theoretical and empirical properties, which can be found in
Tietenberg [4]. Hanley, Shogren, and White [8] also provided
a good discussion of the pollution permit trading process and
pointed to their potential problems.

However, the literature seems to have little to say about two
important problems of existing air quality policies. The first
problem is related to the health risk and uncertainty.
Lichtenberg and Zilberman [9] and Harper and Zilberman
[10] used a safety rule model structure as a way to introduce
health risk and uncertainty into the environmental regulation
framework. Ellis et al. [11] and Batterman and Amman [12]
provided examples of a safety rule model structure to address
the acid rain strategies. The second problem is related to the
ways of computing the market equilibrium prices and the
efficient allocation of permits. Alternatives, which have been
considered, include an introduction of a market coordinator
acting like a Walrasian auctioneer.

In the paper, we use a “computer-assisted” smart market
model to determine pollutant trades. A computer-assisted
smart market is defined as a periodic auction where the market
equilibrium is solved with a mathematical technique such as
linear programming. The contributions of our paper are the
following. We clearly define the property right to be traded as
an EDP. First, the typical approach to permit trading is based
on bilateral trades, which can lead to high transaction costs
and negate the efficiency property of the permit trading, as
suggested in Stavins [13]. Our first contribution to the litera-
ture is to show that a better option for permit trading is if it
takes place within a common market pool. This does not
require that the traders were matched up. The prices used in
our system are based on key shadow prices reflecting each
trader’s impact on the environmental capacity. Our second
contribution is related to the inclusion of regional pollutant
constraints at key receptor points. This provides a cost-
effective way to minimize the “hot spot” problem, while it
continues to bring the benefit of the permit trading. The third
contribution is related to the specification of the stochastic
aspect of transporting the pollutants and the specification of a
“health-risk” in a “safety-rule” model.

The remaining parts of the paper are organized as follows.
First, we present a brief discussion of the permit trading
market model typically found in the literature. Next, we pres-
ent the theoretical structure of the “smart market” model with
a safety margin, and consequently, the elements of the margin
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of safety are explored in depth. The model is extended with
respect to the permit trading and market settlement activities.
A set of empirical simulations is presented to illustrate the
empirical implications of the smart market model with the
safety rule specification for trading EDPs. In the last section,
we provide the summary and conclusions along with suggest-
ing further extensions of the smart market model.

2 Literature Review of the Smart Market Model
Applications

Atkinson [14] presents a typical EDP market model structure
often found in the literature. Unfortunately, this market equi-
librium does not account for the possibility of hot spots. In
such a case, we could use the actual air quality measurements
taken at various receptor locations and adjust the number of
permits accordingly. A second option is to put the emissions
into an air dispersionmodel to determine the related air quality
at the receptor locations. EDPs are not directly related to
ambient degradation, so ambient standards will not initially
be satisfied except if it happened by chance. This concern can
be addressed by imposing trading rules on EDP trades.
However, these additional regulatory actions can add to the
complexity and increase the administrative and transaction
costs and reduce the cost effectiveness of an EDP market.

In theory, the market-clearing price in an EDP market corre-
sponds with the cost-effective solution shadow price associated
with the cap imposed on emissions. But the process of actually
solving an EDP market model for market-clearing prices re-
mains problematic. Ermoliev et al. [15] argue that a Walrasian
auction can be used to determine a set of ambient and discharge
prices in a centrally controlled permit market. However, a major
shortcoming of this process is that the price adjustments do not
lead to the equilibrium quickly or monotonically. A central
market coordinator can easily replace the Walrasian auction if
emitters can provide the coordinator with the information on
quantities of EDPs to be traded at each possible price. It is then
possible to determine optimal prices and allocation of EDPs
using a computer-assisted smart market model.

The central processing in this market uses submitted bids
and offer messages in an optimization algorithm to find prices
and EDP allocations that maximize net gains from trade. The
market can be a periodic auction that is cleared using mathe-
matical programming techniques such as linear programming.
Pricing information is based on a range of generated shadow
prices. The smart market is operated by a market manager, and
all trades are within a pool, rather than bilateral trades. These
markets are particularly useful in situations, where trades are
likely to be associated with significant transaction costs.

Smart markets have been used in a wide range of applica-
tions such as the electricity and energy sectors in New Zealand
and Australia as well as water markets in the USA. For

example, the New Zealand electricity market has been de-
signed as an online smart market trading system. Electricity
generators offer electricity to the wholesale market for dis-
patch through a countrywide system called the national grid.
Electricity retailers bid online to purchase electricity to supply
their customers. The online system processes the bids and
offerings and updates prices every 5 min. The New Zealand
electricity transmission system is a detailed nodal model. In
contrast, the Australian electricity system is a simple flow
model connecting a set of regional hubs. In both cases, linear
programming technique is used to find the equilibrium. The
model objective function maximizes net gains from trade with
regard to bids and offers submitted and subject to the con-
straints describing the physical interactions of the system.
Electricity prices are derived from shadow prices specified
within the model constraint set.

The computer-assisted smart markets have also been used
in natural gas markets [16] as well as to deal with the water
quality management problems [17, 18]. In their work related
to the smart markets on the example of the Israeli water sector,
Becker [19] used shadow prices based on a similar type of
model structure to consider the value of moving from the
central planning to a market system.

A smart market model designed for water allocation was
developed in Murphy et al. [20]. An important element of the
smart market model structure is the delivery of water through a
simple pipeline-like network. The model was simulated by
students, who made bids in a laboratory setting. Their model
used the California water transfer system. The market transac-
tions were represented by water allocations and water transpor-
tation capacity rights. They used the sealed-bid price double
auction mechanism. In this type of auction, all of the bids
submitted are sealed and the winning bidder pays a price equal
to the second highest bid. The efficiency and other features of
the market were evaluated using laboratory experiments. The
efficiency of the bidding mechanism was based on ratios com-
paring the total calculated surplus from trades to the calculated
surplus based on the competitive equilibrium outcomes for each
trader. The calculated efficiency ratios ranged between 84 and
97 %. However, they did not report any information on the
transaction costs related to the trading activities studied.

Zheng et al. [21] have put together a state of the art volume
of research papers on how CO2 issues are factored in power
systems. One area examined is CO2 policies and markets.
Policy discussions concerned with managing CO2 emissions
include a carbon tax, a cap and trade system, and renewable
portfolio standards. Rassia and Pardalos [22] have assembled
a volume of papers that consider the design of cities that may
offer alternatives between energy strategies and theories of
optimization and mega-spaces in a territory or a landscape. An
important issue with respect to energy futures is carbon re-
leases from activities that evolve from the spatial and archi-
tectural design of cities.
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3 Smart Market Model with Health and Uncertainty
Formulation

3.1 Emission Permit Trading Decision for an Individual Firm

In this section, we develop the rationale an individual firm or
emitter entering an emission discharge permit system (EDPS)
would use to buy and sell permits, i.e., we elaborate the way the
firm determines its value for an EDP. In this situation, the firm
makes a trade-off between undertaking more emissions abate-
ment and releasing more untreated emissions. In the latter case,
the firm must have the appropriate number of EDPs. The exis-
tence of the trade-off between more abatement of emissions and
holding more EDPs leads us to conclude that the firm’s demand
schedule is its marginal abatement cost function. Below, we
derive an individual firm’s decision model for EDP trades. We
use a model formulation similar to those found in [14]. The
decision problem for an emission source in the presence of an
EDPS is equivalent to minimizing the cost of emission control.

Let us define the following variables. The discharge source
or firm is denoted as i(i=1,…, I), ei untreated emissions
releases by firm i, li the volume of EDPs purchased or sold
by the firm i, and Pe the market price of an EDP. In addition,
let ēi represent the level of emissions for firm i without the
pollution control. Also let Ci(…) denote the abatement or
pollution control cost function for firm i. Following Kolstad
[26], the control cost function for firm i is defined as follows:

Ci eið Þ ¼ gi ei−ei
� �

þ f i ei−ei
� �2

ð1Þ

where gi and fi are constant parameters determined for each
firm. We assume that gi>0 and fi>0.

The individual firm’s decision problem with respect to the
abatement and purchasing of EDPs is defined as follows:

Min gi ei−ei
� �

þ f i ei−ei
� �2

þ Pe ð2Þ

Subject to

ei≤ li πið Þ ð3Þ

The variable in parenthesis for Eq. (2) is a Lagrangian
multiplier. Equation (2) states that untreated emissions for
firm i must not exceed the firm’s purchases of EDPs. We
assume that the individual firm’s manager does not have
information on the abatement cost functions of other firms.
The variable πi represents the marginal value of an additional
EDP to the firm i.

The marginal decision rule firm i should use in its decision
on abating emissions and purchasing EDPs derived from the
first-order conditions for the firm’s constrained optimization
problem. The conditions for the ei and li are defined as follows:

−gi−2 f i ei−ei
� �

þ πi≥0 ð4aÞ

−gi−2 f i ei−ei
� �

þ πi

h i
ei ¼ 0 ð4bÞ

Pe−πi≥0 ð5aÞ

Pe−πið Þli ¼ 0 ð5bÞ

ei≤ li ð6aÞ

ei−lið Þπi ¼ 0 ð6bÞ

Equations (6a) and (6b) represent marginal conditions for the
constraint Eq. (3) defining the decision problem for the firm i.

If the constraint (3) is binding, then ei=li and Pe=πi in
Eqs. (5a), (5b), and (6). If ei>0, Eq. (4a) holds as a strict
equality. If we substitute li and P

e into Eq. (4a), we can derive
the following for li:

li ¼ ei þ gi−pe

2 f i
ð7Þ

Equation (7) provides the solution for the number of EDPs
the firm i will buy or sell. If gi>P

e, li>0, which means that
firm i will purchase EDPs. If gi>P

e, li>0, the firm i will sell
permits. Equation (7) is used by the market manager to iden-
tify the number of permits to be bought or sold by the firm i at
each price presented.

3.2 Specification of a Smart Market Model

The basic structure of the computer-assisted smart market
model we use closely follows the framework developed by
Willett et al. [23]. The basic institutional structure for the
smart market is set up as follows. A central market manager
is assigned to coordinate the permit trading activity. Trades are
based on buying and selling on the centrally controlled mar-
ket. Bilateral trades are not allowed, and all trades are within
the common market pool. Each firm determines its optimal
response to a relevant range of prices as shown by Eq. (7).
These responses are submitted to the market manager as a set
of price and quantity pairs.

We note a number of important issues that must be clarified
for the market-clearing process to be completed. First, the
property right traded is an EDP, but all trades must lead to
outcomes that satisfy all relevant regional air quality stan-
dards. Emitters bid on EDPs that have direct impact on air
quality standards at different receptor locations, and since all
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trades are within the common pool, the bids are non-
comparable between traders. Each firm is likely to face a
different price. The market clearing is simulated with a linear
programming model.

Below, we present the smart market mathematical pro-
gramming model. First, we assume that the bid functions for
each emitter are represented as discrete functions, where each
step is called a tranche. The index for each bidding firm’s
tranche is denoted by the index n (n=1,…, N). Trading activ-
ities are assumed to account for the possibility of hot spots
occurring spatially, so we include ambient air quality stan-
dards at various receptor points in the model. LetQj

0 represent
the ambient concentration level at receptor location j, Bin the
size (quantity) of the bid tranche n submitted by the bidding
firm i, Pin

b the price specified in bid tranche n submitted by the
bidding firm i, and lin

b the quantity of EDPs accepted from the
bid tranche n by the bidding firm i. The basic smart market
model formulation is then as follows:

Max
X
i¼1

I X
n¼1

N

Pb
inl

b
in ð8Þ

Subject to

X
n¼1

N

lbin ¼ li πið Þ ð9Þ

i ¼ 1;…:; Ið Þ
lbin≤Bin θinð Þ ð10Þ

n ¼ 1;…;Nð Þ
i ¼ 1;…; Ið Þ
−lnin≤0 ϕinð Þ ð11Þ

n ¼ 1;…;Nð Þ
i ¼ 1;…Ið Þ

pr
X
i¼1

I

di jli≤Q0
j

( )
≥ 1−α j

� �
ρ j

� �
ð12Þ

j ¼ 1;…; Jð ÞX
i¼1

I

li≤ l
� ψð Þ ð13Þ

The variables in parentheses to the right of Eqs. (9)–(13)
are Lagrangian multipliers.

The objective function Eq. (8) represents the joint net
economic benefits of undertaking permit trading assuming
the constraints on ambient concentration standards at a range
of receptor locations are satisfied. The mathematical program-
ming model is solved, and the optimal quantities of EDPs and
the respective permit prices are determined for each bidder.1

The coefficients Pin
b in the objective function Eq. (8) show

the worth of each block of EDPs for the bidder. The constraint
(11) indicates that the quantity of bids accepted in each bid
tranche must be positive. The constraint (10) sets an upper
limit on each tranche, ensuring that the number of permits
cleared does not exceed the limit set by the bidder. Equation
(9) represents an allocation constraint, which specifies the
quantities of EDPs accepted and the final permit positions.
Constraints (12) are spatial constraints, which are designed to
control for hot spots that might occur at respective receptor
points. Constraint (13) states that the total number of EDPs
purchased cannot exceed the total number of permits issued
by the environmental authority.

The presence of emissions releases and their spatial trans-
port to various receptor or monitoring points is modeled in a
stochastic manner as shown by Eq. (12). These equations are
called “chance constraints.” The expression (1−aj) is defined
as an exceedance probability for the air pollutant at the recep-
tor location j (0<aj<1). These probabilities are assumed to be
determined exogenously by environmental policy decision-
makers given their aversion to uncertainty. The stochastic
specifications in Eq. (12) include the transfer coefficients dij.
These coefficients show the impact of emission releases from
the source/firm i on the chosen measure of pollution at mon-
itoring point j. Distributed parameter simulation models can
be used to estimate the expected values and probability distri-
butions of the transfer coefficients [9, 24]. The ambient con-
centration standard Qj

0 is also assumed to be stochastic. We
elaborate more on these assumptions later in the paper.

A range of perspectives can be used to rationalize the
formulation used in Eq. (12), but the regulation of the envi-
ronmental health risk under uncertainty is extremely relevant
for our case [9, 10]. We follow Lichtenberg and Zilberman [9]
and define the health risk as the probability that a person
picked randomly from a group will experience some type of
adverse health effect (the likelihood of morbidity or mortali-
ty). The existing relationship between the health risk and the
corresponding variables generating it are not known with
certainty. Moreover, health risks used for policy analysis are

1 Maximizing the joint economic benefits as used in this model allows a
straightforward calculation of the quantity of permits traded. We could
also define the objective function to minimize the value of permits traded,
for example, but this would not provide the convenient identification of
the quantity of permits traded as it is the case for the objective function
[18].
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subject to error. The uncertainty is the measurement of the size
of this error. Equation (12) combines the probabilistic risk
assessment with a margin of safety. The margin of safety
means that the risk must be constrained to remain below a
given minimum level (or risk standard) with a given
probability.

The nature of this specification can be examined in more
detail by focusing more closely on Eq. (12). The terms on the
left-hand side of the inequality sign show the emissions from
all sources that can be transported to receptor location j. The
term Qj

0 on the right-hand side of the inequality sign is the
health risk-based ambient concentration standard at receptor
location j. It is assumed that Qj

0 is determined using health
risk-based procedures as described in Lichtenberg and
Zilberman [9]. This constraint requires that the concentration
of the air pollutant at receptor point j cannot exceed the health
risk-based standard 100 (1−aj) percent of the time.
Alternatively, the constraint can be violated 100aj percent of
the time.

The formulation of Eq. (10) is based on the idea of a safety
rule approach as proposed by Lichtenberg and Zilberman [9].
The safety rule approach for this type of problem is justified
for the following reasons. First, this is a way to derive a
“conservative” estimate of the risk that has statistical meaning
[24]. Second, the safety rule perspective conforms closely to
the structure found in much of the environmental legislation
that sets a goal to provide adequate protection for public health
and/or the environment with a sufficient margin of safety [9].
Third, it can be thought of as an extension of the Baumol and
Oates [25] standards and charges to the cases involving un-
certainty [9].

Equation (12) must be converted to a more convenient
form so as to solve the model as a mathematical programming
problem.2 The most widely used mathematical programming
technique is chance-constrained programming. If the underly-
ing probability distribution for the probability-based con-
straint (12) in our model is known, we can convert this
probability statement into its deterministic equivalent and
directly solve as a mathematical programming model. The
deterministic equivalent includes the mean and variance for
each of the stochastic parameters embedded in constraint (12).
Harper and Zilberman [10] as well as Lichtenberg and
Zilberman [9] note that the Qj

0 is derived from health-risk
studies and is stochastic. Ellis et al. [11] argue that the physics
and chemistry of air pollutant transport along with the sto-
chastic nature of the meteorological inputs used in air pollu-
tion transport models contribute to the various levels of
stochasticity with respect to the dij. We use the following
assumptions in this process. First, the dij and Qj

0 are assumed
to be normally distributed with means dij

′ and Qj
′. The

assumption of normality for the stochastic formulation of air
pollution is widely used. More detailed discussion on this
point is provided in Batterman and Amann [12] and Ellis
et al. [11]. In addition, both sets of parameters are assumed
to be statistically independent. These assumptions allow us to
rewrite Eq. (12) as

X
i¼1

I

d
0
i jli þ φα j

X
i¼1

I

σ2i jl
2
i j þ ε2j

" #0:5
≤Q

0
j j ¼ 1;… ; Jð Þ ð14Þ

where the σij is the standard deviations for the transfer coeffi-
cients, the εj is the standard deviations for the Qj

′, and the φj is
the critical values of the standard normal distribution
exceeded only with probabilities (1−aj). The smart market
model with a safety margin now consists of the maximizing
Eq. (8) subject to Eqs. (9), (10), (11), (13), and (14).

Equation (14) yields some interesting interpretations with
respect to risk and uncertainty. We first move the Qj

′ to the
right-hand side of Eq. (14) and define the following:

Φ j ¼
X
i¼1

I

di jl j−Q
0
j ð15Þ

It is assumed that Φj is a normally distributed variable with
the mean

μ Φ j

� � ¼X
i¼1

I

d
0
i jli−Q

0
j ð16aÞ

and variance

Γ 2
j ¼

X
i¼1

I

σ2
i jl

2
i þ ε2j

" #
ð16bÞ

We can make two important observations. First, regulatory
decisions depend on two parameters: maximum allowable risk
implied by Qj

′ and the maximum margin of safety (1−aj).
Second, the constraint represents the health-risk standard as
a combination of mean risk and a weighted value of uncer-
tainty. Mean risk is defined by Eq. (16a), while weighted
uncertainty is specified as

φα j Γ 2
j

� �
¼ φα j

X
i¼1

I

σ2
i jl

2
i þ ε2j

" #0:5
ð17Þ

The expression in brackets on the right-hand side of
Eq. (17) shows the uncertainty inherent in estimating the value
of the transfer coefficients as well as the uncertainty in deter-
mining the health risk-based ambient concentration standard

2 Recall that the dij in Eq. 10 are assumed to be stochastic and the main
focus of this discussion.
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for an air pollutant at the receptor location j. The probability of
exceeding a given level of risk is lower the larger the value of
φaj is, which implies a higher weight on uncertainty. We can
conclude that the parameter φaj reflects the environmental
policy maker’s aversion to uncertainty. We will subsequently
show how this aversion is captured in the price of an EDP.

3.3 EDP Prices Reflecting Health Risk and Uncertainty

The information on the market-clearing EDP prices can be
found from the first-order conditions for the smart market
model; the derivations of which are shown in the
Appendix A. Equations (A.2a), (A.2b), (A.3a), and (A.3b)
can be rearranged to get the following:

θin ¼ Pb
in −πi

n ¼ 1;…;Nð Þ
i ¼ 1;…; Ið Þ

ð18Þ

πi ¼ ψþ
X
j¼1

j

ρ j d
0
i j þ φα j

X
i¼1

I

σ2i jl
2
i j þ ε2j

" #−0:5
σ2
i jli

8<:
9=; i ¼ 1;…; Ið Þ

ð19Þ

A number of important economic interpretations can be
considered with regard to the shadow prices of the smart
market constraints. Suppose initially that none of the health
risk-based ambient concentrations are binding. Also, let us
assume that the constraint (11) is binding. Then, we can
conclude that

πi ¼ ψ ð20Þ

for all i (i=1,…, I). The shadow price ψ for the EDP
constraint indicates the reduction in emission control costs if
the environmental authority was to add one additional EDP to
the total number of permits in the market. This shadow price is
the market-clearing price in the EDP market, and in this case,
all firms pay the same permit price. For the remaining part of
the discussion we assume that the constraint (13) is binding.

The next case we consider assumes that the health risk-
based ambient concentration standards are binding at all re-
ceptor points. In addition, we focus on the mean values for the
transfer coefficients and do not consider the variance terms.3

Then, we can reformulate Eq. (19) as follows:

πi ¼ ψþ
X J

j¼1
ρ j d

0
i j ð21Þ

Equation (19) shows that each firm i pays a multipart price
in our version of an EDPS. The first part of the multipart price
is equal to ψ, which represents the price for an EDP. The
remaining components are related to the economic value of
the impact each firm i has on different receptor points. The

shadow price ρj for the ambient concentration standard at the
receptor location j indicates the reduction in emission control
costs if firms are allowed to violate the ambient concentration
standard by one unit. Firms can be restricted from violating
the ambient concentration standard at receptor location j if
they are charged ρj per unit of increase in the ambient con-
centration level. If the EDP bid functions are based on true
marginal emission control cost functions, we can conclude
that ρj is a marginal cost price that yields a cost-effective
allocation of resources. Prabodanie et al. [18] call this type
of shadow price a “resource price.” Thus, ρj is the portion of
the market price, which matches the demand and supply for
the ambient concentration level or resource [9]. The EDP is
equivalent to a bundle of resource permits (i.e., it represents
the impact on concentration standards at a set of receptor
locations), so the part of the price of an EDP for the firm i
that includes the value of this firm’s impact on the various
receptor locations is defined as ∑j=1

J dij
′ ρj.

The shadow price associated with the allocation constraint
(9) tells us how much the objective function Eq. (8) would
increase if the firm iwere given one additional EDP. Note that
πi are indexed to particular firms and can be called “participant
prices” [18]. In the model we use, πi can be interpreted as
“marginal-cost prices.” Thus, each firm should pay the value
of πi for each EDP purchased, and it is likely that each firm
will be charged or paid a different price. This follows from the
fact that all trades by firms are within the common pool and
traders are not matched up.

Let us now turn to the case with a safety margin. Equation
(19) shows the shadow price including uncertainty. The var-
iable ρj is then the shadow price for the health risk-based
ambient concentration standard at the receptor location j as
well as the uncertainty of this standard. If the ambient con-
centration standard at receptor location is reduced by one unit,
given a particular level of uncertainty εj

2 forQj
0, the level of the

trading surplus given by Eq. (8) is reduced by ∑j=1
J ∑i=1

I ρjdij
′

across firms. On the other hand, if there is an increase in all
εj, the marginal opportunity cost of the error in the health risk-
based ambient concentration standards is measured by
∑j=1
J ∑i=1

I ρjdij
′ .

The marginal cost of uncertainty included in the estimates
of the transfer coefficients is represented by the second part of
the expression on the right-hand side of Eq. (19). The uncer-
tainty, i.e., the transfer coefficient for each firm i at each
receptor location j, is represented by σij

2. As the size of this
uncertainty for one firm iwith respect to one receptor location
j increases, the marginal opportunity cost also increases.
Moreover, if there are increases in the uncertainty for all firms
at all receptor locations, the corresponding increase in the
marginal opportunity cost can be found by summing them
up over all firms and receptor locations. The marginal

3 This corresponds to the case without a safety margin.
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opportunity cost of uncertainty about the estimates of the
transfer coefficients also includes a weighting factor
φaj, which reflects the prespecified margin of safety,
which also represents the environmental policy makers’
aversion to uncertainty. If the environmental regulatory
decision-makers increase the margin of safety, then each
φaj is adequately increased, and there is a corresponding
increase in the marginal opportunity cost of the ambient
concentration standard at each receptor point. Thus, the

expression ∑
j¼1

J

ρ j φa j ∑
i¼1

I

σ2
i jl

2
i j þ ε2j

" #−0:5
σ2
i jli

8<:
9=; repre-

sents the entire increase of the marginal opportunity
cost, if the environmental decision-makers increase the
margin of safety or the aversion to uncertainty. Eq. (19)
makes it clear how health risk-based decisions regarding
the ambient concentration standards at all receptor loca-
tions along with uncertainty are factored into the
market-clearing prices for an EDP purchased by each
firm and how these prices change with changes in
uncertainty.

We now turn the attention to Eq. (18). The shadow price θin
on the bid upper limit constraint (10) indicates the increase in
the benefit measured by the marginal reduction of the emis-
sion control cost, if the firm i were able to release one more
unit of emissions. The bid at tranche n for the firm i will be
fully accepted if Eq. (16) applies. Prabodanie et al. [18] argue
that the shadow price ϕin of the lower bound constraint (11)
represents the loss of the economic benefit if one EDP was
accepted from that bid. Thus, the bids are not accepted if

ϕin ¼ πi−Pb
in > 0:

n ¼ 1;…;Nð Þ
i ¼ 1;…; Ið Þ

ð22Þ

Notice that in Eq. (22), πi is the marginal cost EDP price
and Pin

b is the marginal benefit to firm i of accepting the bid.
Equation (22) suggests that marginal emission control cost in
this case for firm i is lower than the cost of an additional EDP.
Bids will be partially accepted on the marginal tranche n for
firm i if Pin

b and πi are equal. In this case, it follows that

θin ¼ ϕin

n ¼ 1;…;Nð Þ
i ¼ 1;…; Ið Þ

ð23Þ

3.4 Initial EDP Distributions, Market Settlements

The smart market model formulation discussed and analyzed
in the previous section is represented as a “gross pool market.”
Raffensperger [27] argues that a gross pool market is easy to
manage and is almost always feasible mathematically. This
type of market begins by temporarily ignoring initial holdings

of EDPs, and all revenues from the auction initially accrue to
the market manager since the trades take place through the
common pool. All market participants bid their entire demand
schedules for EDPs. This demand schedule reflects the EDPs
the firm wants to hold at each price under current conditions.
Once the optimal solution for the market is found by solving
the linear programming model, net trades are calculated on the
basis of each market participant’s initial allocation of permits.
The market participants face marginal cost prices (instead of
“priced-as-bid”) which are shadow prices from the constraint
set [28].

Two important conclusions with respect to the model for-
mulation as a gross pool and the prices paid or received should
be made. First, recall that the market equilibrium is indepen-
dent of the initial allocation of EDPs. And if the transaction
costs are low, the market equilibrium is also independent of
EDP reallocations. Second, once the model solution is found,
net EDP trades become decision-makers’ initial EDP alloca-
tions. Moreover, permit holders face marginal cost prices
based on shadow prices taken from the model solution. In
our model, the prices include the marginal opportunity cost of
the health risk, uncertainty, and the policy makers’ aversion to
uncertainty.

Let πi
∗ denote the optimal marginal opportunity cost price

adjusted for the health risk and uncertainty. Also, let li
∗ denote

the optimal number of EDPs purchased by firm i, when the

smart market model is solved and letbli be the initial allocation
of EDPs for firm i. If l�i >bli , firm i is a net purchaser of EDPs.
The payment due from firm i for this purchase of EDPs is

Ωi ¼ π*
i l*i −bli� �

: ð24Þ

If l�i < bli , firm i is a net seller of EDPs. The payment due to
firm i is

Ωi ¼ π*
i
bli−l*i� �

: ð25Þ

If l�i >bli , firm i is neither buyer nor seller of EDPs.

4 Numerical Simulations of the Smart Market

A set of empirical simulations are presented in this section,
which are designed to illustrate the empirical implications of
the smart market model with a margin of safety for trading
EDPs. We assume there is one pollutant which impacts two
monitoring or receptor locations. The constraints include the
margin of safety specification and are called regional pollutant
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constraints throughout the analysis in this section. We also
assume that our application is based on a hypothetical case
where the pollutant is SO2. Following Ellis et al. [11], we
express the Qj

′ in tons of SO2 deposited in the soils near
receptor locations 1 and 2. The EDP prices shown for the
numerical simulations in this section are computed by using
Eq. (19). The payment for EDPs purchased is based on
Eq. (24) for each firm buying EDPs, while revenue received
by each firm selling EDPs is based on Eq. (25).

The numerical experiments shown in this section include
three different safety levels, which are the basis for the partic-
ular experiments. We assume there are six firms with emission
discharges, which seek to trade EDPs. The firms in the permit
trading exercises are assumed to begin with an initial alloca-
tion of EDPs. We then assume the initial allocation is given
and does not discuss its determination. This type of discussion
is beyond the scope of our paper. Finally, the constraint (B.2)
is used to replace the constraint (12) in the model.

The basic data inputs used to construct the smart market
model are shown in Tables 1, 2, and 3. The data used to
construct the individual firm inverse EDP demand functions
shown in Table 1 is taken fromAndo and Ramirez-Harrington
[29]. We have chosen to use these formulations since they
have the suitable mathematical form and properties for our
exercise. The equations shown in Table 1 are the same nu-
merical simulation counter parts to Eq. (7). The mean and
standard deviations for the pollution transfer coefficients are
shown in Table 2.4 Information for the safety level parameters
is shown in Table 3, while the initial allocation of EDP
holdings and related data are shown in Fig. 1. We assume that
the EDP market manager has previously issued 9000 EDPs.
As will be shown below, the EDP limits provide relatively
robust results.

We first provide a description of how the trading process
works with the gross market formulation we have used in this
research. First, we recall the use of a gross pool model, which
ignores any initial allocation of EDPs. If there is an exogenous
change in the conditions, firms are currently facing such as an
increase in the safety level, this may cause firms to reevaluate
their respective holdings of EDPs. This demand schedule is a
reflection of the EDPs the firm wants to hold at each price.
Each firm enters the market by bidding their entire EDP
demand schedule. Once the optimal solution for the common
pool market is found, net market trades are calculated based
on each market participant’s initial allocation of EDPs as
shown in Fig. 1. The corresponding shadow prices5 and

allocation of EDPs from the model solution are used in
Eqs. (22) and (23) to determine the number of EDPs bought
and sold along with the respective permit expenditures and
revenues associated with the transactions for each firm. It is
not necessary to match the buyers and sellers up (such as in a
bilateral trading scheme) since the trades take place within the
common market pool.

The trading experiment results are shown in Figs. 2, 3, and
4. We focus our attention on the trading activities shown in
Fig. 2 first. First, note that the net number of permits bought
and sold recorded for safety levels 90 and 95 % is zero, which
means that the full 9000 EDPs issued by the market manager
are fully allocated. If the safety level is 90%, we see that firms
1, 4, and 5 have an increase in the optimal number of permits
they want to hold, so they make purchases in this case as
shown in Fig. 2. If we increase the safety level to 95%, we see
a similar set of decisions in Fig. 2, but the number of permits
each of these firms’ purchases is smaller. In contrast, we see
from Fig. 2 that firms 2 and 3 are net sellers of permits for both
safety levels. Finally, firm 6 is not an active participant in the
permit trading market at either of these safety levels. These
outcomes are driven in part by each firm’s marginal abatement
cost function.

We now turn our attention to the case when the safety level
is 99%.We see in Fig. 2 that firms 2, 3, 4, and 5 sell permits to
the commonmarket manager. In contrast, firms 1 and 6 do not
participate in trades in the situation. We can also see that 826
EDPs in total are sold to the common pool manager, and there
are no purchases. This outcome means that increasing the
safety level to 99 % puts enough restrictions on the individual
firm’s emissions abatement and EDP purchase decisions that
there is now an excess number of EDPs. These excess EDPs
are bought by the common market manager, and each firm is
compensated at the appropriate marginal cost price.

5 Numerical Simulation Results Compared to Models
Used in Actual Practice

In this section, we compare our model numerical simulation
results with models currently used in practice using the exam-
ple of the EPA trading scheme. Themost prominent and active
permit trading system is the market for sulfur dioxide (SO2)
emissions in the USA. A good discussion of this allowance

4 The reader should keep in mind that our numerical experiments are
based on a hypothetical exercise. We have carefully selected the values
shown in Table 2 to allow us to illustrate the functioning of the smart
market trading model with different levels of a safety margin in a realistic
manner.
5 These are marginal cost prices and not the “priced-as-bid” alternative.
See [28] for a detailed discussion.

Table 1 Individual firm
inverse EDP demand
functions

li represents one EDP
measured as 1 ton of
emission releases

Firm 1 Pe=4000−2l1
Firm 2 Pe=8000−4l2
Firm 3 Pe=10,000−5l3
Firm 4 Pe=4000−l4
Firm 5 Pe=8000−2l5
Firm 6 Pe=10,000−2.5l5
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trading program has been provided by Joskow et al. [30]. This
paper is less recent, but the information in it remains very
relevant and appears to be one of the best descriptions of the
SO2 allowance trading program. The legal status for this
market was created in Title IV of the Clean Air Act
Amendments of 1990 (CAAA) [30]. Title IV focused on the
control of SO2 emissions produced when coal and oil are
burned in electric utility boilers. SO2 is the primary precursor
of acid rain and other acid depositions. This legislation created
a property right called “allowances” that can be freely traded.

Title IV provided a venue for two different types of trading.
The majority of trading has involved bilateral trades between
utilities that own electric generators or between these utilities
and third parties. The third parties include allowance brokers
acting for their own account or they represent electricity
generators. Third parties can also be fuel suppliers who bundle
the sale of allowances with the sale of fuel to electric utilities.
The bilateral trades continue to be confidential, and it is very
difficult to get any information on these transactions.
Allowances are also traded through a set of annual auctions
the CAAA requires the US Environmental Protection Agency
(EPA) to conduct. The EPA auctions take place in March of
every year.

Title IV of the CAAA established the basic institutional
structure of the allowance trading program. First, aggregate
annual caps on national SO2 emissions from certain electric
generating units or “units” are specified in the law. The caps
define the number of emission allowances to be issued in each
year. The property right or emission allowance is defined as
the right to emit 1 ton of SO2 into the atmosphere. The
restrictions on emissions in Title IV were applied to two
phases. Phase I applied to the 263 dirtiest large generating
units in the country. Initially, required aggregate emissions

were to be reduced to 5.7 million tons per year. The reductions
in this phase were to be accomplished during the period 1995–
1999.

Phase II of the program began in 2000. Once again, the cap
on emissions was to be lowered, and the program was extend-
ed to all of the electricity generating units in the USA. The
plan was to issue about 9 million allowances annually during
phase II.

Title IVof the CAAA also included a provision for making
an initial allocation of SO2 allowances. These allowances
were given to existing electric generating units and units under
construction. The allocation rules for the allowances are rela-
tively complex [30], but the important consideration for our
discussion is that the SO2 allowances are available to existing
sources at no charge. All allowances are fully tradable as noted
earlier.

In each year, roughly 2.8 % of the allowances allocated to
the utilities are held back and auctioned in the annual and 7-
year advance auctions. The auction revenues collected in the

Table 2 Pollution transfer coefficients and standard deviations

Mean transfer coefficient
receptor 1

Transfer coefficient standard
deviation receptor 1

Mean transfer coefficient
receptor 2

Transfer coefficient standard
deviation receptor 2

Firm 1 d11
′ =0.035 σ11=0.0002 d12

′ =0.018 σ12=0.025

Firm 2 d21
′ =0.017 σ21=0.002 d22

′ =0.0318 σ22=0.025

Firm 3 d31
′ =0.046 σ31=0.025 d32

′ =0.227 σ32=0.004

Firm 4 d41
′ =0.046 σ41=0.001 d42

′ =0.067 σ42=0.015

Firm 5 d51
′ =0.038 σ51=0.002 d52

′ =0.031 σ52=0.025

Firm 6 d61
′ =0.027 σ61=0.027 d62

′ =0.062 σ62=0.080

Table 3 Safety level parameters

Safety level (%) Standard normal critical value

90 φ90j=1.282

95 φ95j=1.645

99 φ99j=2.326
Firm 1

Firm 2

Firm 3

Firm 4

Firm 5

Firm 6

Initial Untreated Emissions (Tons)

Initial Permits Held

Untreated Emissions Abated (Tons)

0

1000

2000

3000

4000

Initial EDP Holdings

Fig. 1 The initial allocation of EDP holdings and related data
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sale of allowances are returned to the utilities in proportion to
their shares held back.

The primary source of allowances for the annual auctions
are provided by EPA, but private parties can also offer allow-
ances in this auction although it is not mandatory for them do

so. The private voluntary offers to sell allowances in the EPA
auction involving both a quantity and minimum acceptable
price. This price is also called the seller’s reservation price.

The prices for the allocations of allowances provided by
EPA in the annual auction are sold on the basis of prices bid.

Fig. 2 Trading experiment
results of permits traded

Fig. 3 Trading experiment
results of permit price
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The process begins with the highest price bid and continues
until all allowances for sale in the auction have been allocated.
This is a “discriminatory” auction in which those allowances
withheld by EPA are allocated to the highest bidder, and the
winning bidders are required to pay their price bid instead of a
uniform market-clearing price.

The private party allowances voluntarily submitted for the
EPA are allocated only when the supply of EPA withheld
allowances is fully allocated. The seller with the lowest reser-
vation price is matched with the remaining buyer with the
highest bid. Next, the seller with the second lowest reservation
price is matched with the buyer with the second highest bid.
This process for the private party allowances continues until
there are no more bids to buy that exceed the reservation
prices submitted by sellers. The sellers in this market receive
the buyer’s bid price.

The SO2 permit expenditure and permit market-clearing
price for the annual EPA spot market 5 for the period 1998–
2014 are shown in Fig. 5. The market-clearing price is the
lowest price at which a successful bid for allowances was
made. The permit expenditures for this period are interesting
and to a large extent reflect the movement of the market-
clearing price.

We will focus our discussions on the market-clearing price.
In 1998, the market-clearing price was approximately $115
for an allowance, increasing to $200 in 1999 and then varying
between $126 in 2000 and $171 in 2003. We begin to see the
market-clearing price increase to $200 in 2004 followed by a
large spike in 2006 to $860. The market-clearing price began
to decline to $380 in 2008. A significant drop in the market-

clearing price is shown in 2009 and 2010. Themarket-clearing
price dropped to $2.00 in 2011 and then went below $1 per
allowance.

We have two tasks to address in this section. First,
we need to consider the observed behavior of the
market-clearing price [31]. The first factor is related to
the Clean Air Interstate Rule (CAIR). CAIR was pro-
mulgated in 2005 to require “upwind” states in the
eastern USA to control emissions that were predicted
to contribute significantly to exceeding air quality stan-
dards “downwind.” This rule was applied to SO2. The
EPA used CAIR to establish SO2 budgets for 28 states
and the District of Columbia. A two-phase compliance
scheme to require that SO2 emission budgets be met by
2010 and 2015. EPA developed annual SO2 allowances
for each of the states, and each state was to allocate the
allowances within the state. The actual implementation was to
be based on the cap and trade programs as following Title IV
of the CAAA of 1990. CAIR was struck down by the DC
Court of Appeals in July of 2008. The complex ruling of the
court led to significant reduction in the value of SO2 in the
market at the end of 2008.

The second factor is the addition of environmental controls
to electricity generator units. The new flue gas desulfurization
(FGD) and selective catalytic reduction (SCR) pollution con-
trols for SO2 were installed by coal-fired generating units in
anticipation of CAIR and state control requirements. FGD
equipment and SCR equipment were added to about 69 and
23 GW, respectively, of coal-fired generating capacity be-
tween 2008 and 2011.

Fig. 4 Trading experiment
results of permit expenditure
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The last factor which has impacted the market-clearing
price of SO2 in recent years is lower coal generation which
contributed to a surplus of SO2 allowances.

If we try to compare our model components directly with
the model components that underlie the current SO2 allow-
ance markets, we can conclude the following. First, the firm
level decision-making process for valuing allowances and the
bid curves are very similar to those we have developed in
Section 3.1 of the paper. However, there are some important
differences at the allowance market level. Our market for
EDPs is a smart market, a common pool market formulated
as a gross pool. The nature of this modeling structure has been
described in great detail in Section 3.2 of this paper. The
trading prices for EDPs in our model are marginal cost prices
constructed from key shadow prices taken from the smart
market model constraint set. In contrast, the SO2 allowance
trading model used by EPA is a net pool formulation, where
firms with allowances to sell on the market develop an offer
curve, and firms seeking to buy allowances develop bid
curves. The pricing strategy in the EPA market is based on
priced-as-bid.

The above discussion of the EPA SO2 allowance trading
system has shown that the model developed in this paper can
be useful also for the development of real-world trading
schemes. First, EDP trades in our model take place in a
common pool market. This means that all trades are with the
market manager and trades do not need to be matched up.
Second, the prices charged for the permits in our system are

based on key shadow prices taken from the market model
constraint set and reflect each trader’s impact on the environ-
mental capacity. Third, our model includes regional pollutant
constraints at key receptor points as a cost-effective way to
minimize the hot spot problem, while maintaining the benefit
of permit trading. Our model also includes the stochastic
aspects of pollutant transport along with health risk consider-
ations. These features are not explicitly represented in the
current version of the SO2 trading market.

6 Summary, Discussion, and Conclusions

The idea that the property rights play an important role in the
development of a market based on pollution control policy has
been addressed in the literature for a long time. Practical
applications of this idea initially focused on ensuring that such
right was transferable, and it would provide significant reduc-
tions of the information needed by environmental authorities.
In the latter case, environmental regulators would no longer
need to estimate individual emitter and receptor preference
functions.

The modern discussion on a market-based policy with
well-defined property rights as its key ingredient has evolved
into “cap and trade” policies. The policy goal here is to
minimize the cost of emission control subject to an environ-
mental quality target. In case of air quality problems, the
environmental quality objective and the definition of the

Fig. 5 The SO2 permit
expenditure and permit market-
clearing price for the annual EPA
spot market 5 for the period
1998–2014
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property right to be traded depend on the type of the pollutant
under consideration. The environmental quality target for the
uniformly mixed assimilative pollutant can be stated in terms
of emissions given that corresponding damages from this type
of pollutant are not related to the location of the emission
sources. In contrast, the non-uniformly mixed assimilative
pollutant characteristics are such that the policy target is stated
in terms of ambient concentrations measured at a range of
receptor points.

The property right for the uniformly mixed assimilative
pollutant is an emission permit, while the property right for the
non-uniformly mixed assimilative pollutant is an ambient
permit. Given the spatial characteristics of this type of pollut-
ant, emitters or firms entering this type of permit market must
hold a portfolio of permits as described above. Many pollut-
ants are appropriately placed in this category, and the use of
the ambient permit system is most appropriate here. However,
this system is inherently complex and difficult to implement
and manage. A number of alternatives have been proposed to
replace the ambient permit system, but they are equally ad-
ministratively complex and may entail significant transaction
cost [13].

In this paper, we developed a modeling system that would
reduce complexities, administrative difficulties, and transac-
tion costs of introducing a cap and trade policy for air quality.
In our opinion, optimal prices and allocation of EDPs can be
determined by using a computer-assisted smart market model,
which allows for the pricing and allocation of resources in
technologically interdependent environments. This system
combines information and advantages created by economic
incentives derived from a decentralized property rights system
with the coordinating advantages of central processing based
on an optimization process. The optimization data require-
ments include demand, supply, budget, capacity, and other
problem-specific constraints. The data are provided by
decentralized decision-makers whenever price and allocation
decisions are needed. The central processing in such a market
is based on the application of optimization algorithms to the
submitted bid-offer messages to determine prices and alloca-
tions that maximize net gains from the exchange. In general,
the market is a periodic auction that is cleared using mathe-
matical programming techniques such as linear programming.

Our research resulted in the following findings. First, we
derived a set of marginal cost pricing relationships that includ-
ed a margin of safety. We next developed a set of numerical
experiments which included a range of safety levels. The
safety levels examined included 90, 95, and 99 %. Our exam-
ples were based on six firms which were emitting emissions
and were likely participants in the EDP market. We also
assumed that the 9000 EDPs were allocated to the market by
the central market manager, and each firm began the trading
exercises with an initial allocation of EDPs. At safety levels of
90 and 95%, we found that the total number of permits bought

and sold netted out to zero. If the safety level was set at 90 %,
the total number of EDPs traded was equal to 1290. If the
safety level was increased to 95 %, the total number of EDPs
was reduced to 355. The decline in the number of EDPs is not
surprising since the permit trading simply reflects the adjust-
ments that these firms are making at the margin when the
safety level has been increased. In addition, we found the
same two firms selling EDPs and three firms purchasing
permits at both of these safety levels. We also found that one
firm did not participate in the EDP market at these two safety
levels. Increasing the safety level to 99 % imposed severe
restrictions on the firm managers’ abatement and EDP pur-
chases in that excess permits were sold back to the central
market manager.

Our research can be extended in several ways. First, the
model constraint set can easily be extended to includemultiple
pollutants with multiple receptor points. Second, varied pro-
cedures can be devised to test the capabilities of the smart
market model in a policy setting. Our current numerical ex-
periments described above are based on assumed EDP bid
functions, but experimental economic procedures could be
used to design the bid functions, which would be used in the
smart market framework.

The last extension can be related to considering different
ways the EDP auctions, which can be conducted. In our smart
market exercise, we assume that the market manager asks the
market participants to submit their set of EDP quantity bids for
a range of EDP bids for each set of prices. The market
manager makes an announcement that the market is closed
and no further bids are accepted. The EDP bid schedules are
placed in the smart market and solved. The relevant informa-
tion, including the relevant shadow price values, is gathered
by the market manager. The market manager will inform each
market participant of the market outcome with respect to the
number of EDPs bought or sold and the respective prices. This
market is unlikely to be subject to the strategic behavior.
According to Ando and Ramirez-Harrington [29], the bidding
process eliminates the problem of strategic behavior, if the
auction process is designed so that no trades will occur until
the market clears. Moreover, the trades take place at the prices
determined in the smart market solution. Firms have no in-
centive to withhold EDPs because actual trades occur only
after the smart market model is solved. However, in our
opinion, this conclusion requires further investigation, includ-
ing the consideration of alternative auction mechanisms and
could lead to additional extensions of our model formulation.
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Appendix A

The Lagrangian function and first-order conditions used to derive
the pricing rules in the body of the paper are provided below:
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∂ℒ
∂lbin

lbin ¼ 0 ðA:2bÞ

n ¼ 1;…;Nð Þ
i ¼ 1;…; Ið Þ

∂ℒ
∂li

¼ πi−
X
j¼1

J

ρ j d
0
i j þ φα j

X
i¼1

I

σ2
i jl

2
i þ ε2i j

" #−0:5
σ2i jl

2
i

8<:
9=;−ψ≤0

ðA:3aÞ

∂L
∂li

¼ li ¼ 0

i ¼ 1;…; Ið Þ
ðA:3bÞ

Appendix B

The chance constraint (12) is stated as a quadratic equation.
This precludes the possibility of solving the smart market
model as a linear model, and it must be solved as a nonlinear
programming model. Rahman and Bender [32], Olson and

Swenseth [33], Segarra et al. [34], and Zare M and
Daneshmand [35] along with Willett and Willett [36] show
that for stochastic dij and Qj

0, we can develop a linear approx-
imation of the chance constraint Eq. (12) assuming that at least
the target probability constraint is satisfied. Given that σij

2>0
for all i and j, and εj

2>0 for all j, it follows that

X
i¼1

I

σ2i jl
2
i j þ ε2j

" #0:5
<
X
i¼1

I

σi jl j þ ε j j ¼ 1;…; Jð Þ ðB:1Þ

The inequality (B.1) can be used to rewrite inequality (12)
as follows:

X
i¼1

I

d
0
i j þ φα jσi j

� �
liþφα jε j≤Q

0
j ðB:2Þ

Constraint (B.2) is used to replace constraint (12) in the
smart market model.

The Lagrangian function and first-order conditions used to
derive the pricing rules in the model with the linearized
probability constraint are shown below:

ℒ ¼ X
i¼1

I X
n¼1

N

Pb
inl

b
in−
X
i¼1

I

πi

X
n¼1

N

Pb
in−lin

 !
−
X
i¼1

I X
n¼1

N

θin lbin−Bin

� �
−
X
i¼1

I X
n¼1

N

ϕin −lbin
� �

−
X
j¼1

J

ρ j

X
i¼1

I

d
0
i j þ φ jσi j

� �
liþφα jε j−Q

0
j

( )
ðB:3Þ

−ψ
X
i¼1

I

li−l

" #
ðB:4aÞ ∂ℒ

∂lbin
¼ Pb

in−πi−θin þ ϕin≤0 ðB:4bÞ
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∂ℒ
∂lbin

lbin ¼ 0

n ¼ 1;…;Nð Þ
i ¼ 1;…; Ið Þ

ðB:5aÞ

∂ℒ
∂li

¼ πi−
X
j¼1

J

ρ j d
0
i j þ φ jσi j

� �
−ψ≤0 ∂ℒ

∂li
¼ li

¼ 0 i ¼ 1;…; Ið Þ ðB:5bÞ

The marginal opportunity cost price adjusted for the health
risk and uncertainty each firm pays for EDPs is represented as

πi ¼
X
j¼1

J

ρ j d
0
i j þ φα jρ j

� �
þ ψ i ¼ 1;…; Ið Þ ðB:6Þ

The interpretation of Eq. (B.6) is similar to that of Eq. (17).
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