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1. Introduction

As part of the ongoing project, the task of this 
research was to find out indicators of air quality 
in the selected classrooms of a university. As 
there were more classrooms on different floors, 
only data acquisition could be considered, with 
the help of a sensor network. A sensor network 
consisting of sensor nodes that continuously 
monitored temperature, humidity and CO2 in 
the classrooms was created. The location of the 
sensors was given as each of them was powered 
directly from the existing power grid. Each sensor 
node was designed as a module that was plugged 
into an appropriate electrical outlet, because the 
wall panelling did not allow mounting of rails or 
other fastening material. From the architectural 
point of view the building could be characterized 
as atypical, because many rooms had non-standard 
floor plans and the sensors could not be applied 
to the grid, as many authors recommend (Liu et 
al., 2016). From the constructional point of view, 
it was a non-homogeneous building, too, because 
burnt bricks and plasterboard partitions have been 
used in addition to ferro-concrete walls and foam 
concrete walls.

The sensor node of this network consisted of 
a microcontroller board Arduino UNO R3 
ATmega328P CH340 mini-USB to which 2 sensors 
were connected, namely temperature and humidity 
sensor DHT11 and CO2 sensor MH-Z19B, as 
well as a communication module NRF24L01. 
NRF24L01 transmitter and receiver module uses 
the 2.4 GHz band and operates at transfer rates 

from 250 kbps to 2 Mbps. When applied outdoors 
and at lower transmission speeds, it can reach up 
to 100 meters. In a built-up environment, the range 
decreases significantly. The module might operate 
125 different channels, enabling building a network, 
which consists of 125 independently operating 
modems in a simple place. Each channel might have 
up to 6 addresses, or each unit can communicate with 
up to 6 other units simultaneously (Rohidh et al., 
2019). The operating voltage of the module is from 
1.9 to 3.6 V, but the pins tolerate 5 V logic, so the 
module can be easily connected to Arduino without 
using any logic level converters. The sensor node 
was powered via the adapter. The data is transferred 
by hop to a special node called sink (Akyildiz et al., 
2002). In total, 23 sensors were installed. Since the 
location of the sensor nodes was given in advance, 
the paths among the nodes had to be looked at, in 
order to ensure efficient wireless communication. 
Two criteria had to be taken into consideration: the 
distance among the nodes (a minimization criterion) 
and the quality of the environment among them (a 
maximization criterion). 

With respect to the previous description, it was not 
a typical sensor network. Some differences should 
be highlighted. First of all, it was a sensor network 
where the sensors had a fixed location, and they were 
not battery powered, but mains-powered. In addition 
to it, the configuration of the sensor nodes and the 
neighbour search as well, were not automatic, unlike 
a typical sensor network. The present optimization 
approach is based on finding the optimal path 
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among the nodes in terms of the reliability of data 
transmission. Transmission reliability is strongly 
dependent on node distance, quality of working 
environment and transmission speed. However, 
there was no need to consider an increased energy 
demand related to the node to transmit and receive 
data from neighbouring nodes. Attempts have been 
made to find a solution where the data transfer is 
relatively fast and the error rate is low.

Section 2 describes the minimum spanning tree 
problem, which was a basis for the research done. 
Section 3 presents a new solution for the multi-
criteria minimum spanning tree problem and in 
section 4 there is an example of its use. Section 
5 presents the conclusions and prospects for the 
development of the proposed research.

2. The Minimum Spanning  
Tree Problem

The problem of finding a way to interconnect a set 
of nodes on a network graph with a set of edges so 
that there are no cycles and no node is isolated, is 
called a spanning tree problem. According to Levitin 
(2007): “A spanning tree of a connected graph 
consists of a connected acyclic subgraph (i.e., a tree) 
that contains all the vertices (i.e., nodes) of graph.” 
Every spanning tree of a network graph G = (V, E), 
where V is a set of vertices (i. e. nodes) and E is a set 
of edges, consists of |V| - 1 edges. For example, if 
the network graph G consists of 7 nodes, then the 
number of edges is 6 for each of its spanning trees. 

Some numerical values might also be added to the 
edges of the network graph, which may represent, 
for example, mutual distances between two nodes, 
costs that are needed to create a direct connection 
between two nodes or transmission capacities of 
a path between two nodes. 

A network graph with weighted edges is called 
“weighted network graph”. If this graph is 
connected (i.e., it does not contain any isolated 
node), then it is possible to find a spanning 
tree with the minimum sum of weights for all 
included edges. This type of spanning tree is 
called “minimum spanning tree”. Levitin defines 
a minimum spanning tree of a weighted connected 
graph as “its spanning tree of the smallest weight, 
where the weight of a tree is defined as the sum 
of the weights on all its edges” (Levitin, 2007).   

A detailed analysis of the minimum spanning 
tree problem history was done by Graham and 

Hell (1985), so the present paper will not discuss 
this analysis (Graham & Hell, 1985). There are 
a few algorithms that are suitable for solving 
the minimum spanning tree problem. Borůvka’s 
algorithm was the first algorithm for spanning 
trees; however, it is applicable only under a special 
condition: every edge of the network graph has to 
have a unique weight (Borůvka, 1926). A better 
algorithm for solving the minimum spanning 
tree problem is Kruskal’s algorithm because it 
always yields an optimal solution. The algorithm 
is building up a spanning tree as an expanding 
sequence of subgraphs, which are always acyclic 
but are not connected via intermediate stages of 
the algorithm (Kruskal, 1956). Another algorithm 
that guarantees the finding of an optimal solution 
of the minimum spanning tree problem of 
a connected graph is Prim’s algorithm. This 
algorithm is building up the minimum spanning 
tree through a sequence of expanding subtrees. 
The initial subtree in such a sequence consists of 
a single vertex only, which is arbitrarily selected 
from the set V of the graph’s vertices. At each 
iteration, the current tree is expanded in a greedy 
way so that the nearest vertex, which is not yet in 
the tree is attached to it (Prim, 1957).        

3. The Multi-Criteria Spanning 
Tree Problem – Description of 
the Proposed Algorithm

If there is only a single optimization criterion, 
algorithms for finding a minimum spanning tree 
can be used. In the case of the project described in 
section 1, two different optimization criteria need 
to be applied at the same time. There are multiple 
algorithms that deal with the bi-criteria spanning 
tree problem (Clímaco & Pascoal, 2012; Ehrgott, 
2005). One can cite also evolutionary algorithms 
(Moradkhan & Browne, 2006), genetic algorithms 
(Han & Wang, 2005; Sanger & Agrawal, 2010; 
Zhou & Gen, 1999), local search techniques 
(Andersen, Jörnsten & Lind, 1996) or ant colony 
techniques (Cardoso, 2006; Li et al., 2013). As far 
as it is known, there are only 3 exact algorithms for 
the bi-criteria spanning tree problem – an algorithm 
based on dynamic programming (Di Puglia 
Pugliese et al., 2015), exhaustive search (Ramos 
et al., 1998) and two-phase algorithm (Steiner & 
Radzik, 2008). Furthermore, only a few solutions 
for a multi-criteria spanning three problem with 
more than two criteria are known (Di Puglia 
Pugliese et al., 2015; Neumann & Witt, 2010). 
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This paper proposes a new algorithm, which 
is very simple because it transforms a multi-
criteria spanning tree problem with constraints 
for the weights of the edges and any number of 
criteria into a single-criterion problem without 
any constraints. The constraints on the weights 
of the edges mean imply that, for example, the 
transmission capacity or the reliability of any 
edge in the graph or a subset of edges should be 
higher than or equal to the required constant. Or 
for example, the costs that are needed to create 
a direct connection between two nodes (i.e., 
sensors in a sensor network) should be lower 
than or equal to the specific constant. However, 
there can be also interval constraints (for example, 
a combination of the “higher or equal” and the 
“lower or equal” type of constraint) in order to 
achieve a balanced network.

The criteria that can be considered during the 
optimization of sensor network topology are, for 
example, the minimization of sum of distances 
among the nodes, minimization of total creation 
costs, maximization of transmission capacities or 
maximization of reliability of the individual edges. 
However, other criteria may be considered as well. 
Each criterion shall have its weight regarding its 
importance so there is an exact importance ratio. 
For example, some organizations may prefer 
transmission capacities over creation costs in a 
2:1 ratio, while others may prefer creation costs 
over transmission capacities in 3:1 ratio.  

The input data which are needed to use the 
proposed algorithm are the following:

 - the number of the criteria,

 - the importance ratio of the criteria (i.e., the 
weight of each criterion),

 - for each criterion one needs to know if it is 
a minimization or a maximization criterion, 

 - evaluation matrices, where each evaluation 
matrix contains the weights of the edges 
corresponding to a single criterion. 

Thus, the number of the evaluation matrices is 
equal to the number of criteria. For example, if 
an organization wishes to consider three different 
criteria, then it is necessary to have three different 
evaluation matrices because each of them is 
devoted to a single criterion only. All these 
evaluation matrices are square, i.e., the number 
of their rows is equal to the number of their 

columns and that is equal to the number of nodes 
(i.e., |V|) of the graph G = (V, E). For example, 
if |V| = 10, then each matrix will have 10 rows 
and 10 columns. At the crossing points of the 
rows and the columns of the matrix, the numeric 
values represent the weights of the individual 
edges corresponding to a selected criterion. These 
values need to be given in specific measurement 
units corresponding to the criterion. For example, 
appropriate measurement units for creation 
costs are EUR or USD and appropriate units for 
measuring transmission capacities are bits per 
second (i.e., bps), kilobits per second (i.e., kbps), 
etc. On the main diagonal of these matrices there 
are no numeric values because it is not logical to 
connect a node of a sensor network to itself. 

As it has been mentioned earlier, the multi-criteria 
spanning tree problem may be extended by specific 
constraints (i.e., limitations) on the edges of the 
constructed spanning tree. If such constraints are 
established, then it is necessary to identify all the 
edges that do not meet any of these constraints 
for any criterion. After the identification of all 
inappropriate edges, a subgraph of graph G = (V, E)  
is created, which may be denoted as G’ = (V’, E’). 
This subgraph must contain only the edges of G 
that meet all the constraints. After the creation 
of the subgraph G’, it is necessary to verify if it 
is still possible to construct the required multi-
criteria spanning tree of G using the edges in E’. If 
there is no acceptable spanning tree meeting all the 
required criteria, then there is no optimal solution 
for the task. Verification of the existence of at 
least one feasible solution can be done through 
an analysis of the subgraph G’. If this subgraph 
contains all the vertices of the graph G and it is 
connected at the same time, then it is possible to 
find at least one feasible spanning tree of G for 
sure. These two conditions need to be met at the 
same time. A spanning tree of G’ is a connected 
acyclic subgraph of G’ containing all vertices of G 
and logically, it is not possible to find a connected 
subgraph of G’ containing all its vertices if G’ 
itself is not connected. It is also obvious that if the 
subgraph G’ does not contain all the vertices of G, 
then it is not possible to create a feasible spanning 
tree of G using the edges of G’.

After the verification that the subgraph G’ is 
connected and contains all the vertices of the 
original graph G, the optimal solution can be 
found. The next problem that should be solved 
is the mutual incomparability of the evaluation 
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matrices due to different measurement units used 
in each matrix. This problem may be solved by 
normalization of the matrices. Normalization 
annuls the relation of the matrices to specific 
measurement units and makes them mutually 
comparable. It can be done using formula (3.1). 
With the help of this formula a normalized matrix 
C’= {c’ij} can be calculated, where i = 1,…, |V| and 
j = 1,…, |V|. It means that the original values of the 
matrix C can be transformed into dimensionless 
numbers at a closed interval [0;1] and these values 
can be stored in matrix C’.       

If some of the criteria that are set for the 
multi-criteria spanning tree are maximization 
criteria, then it is necessary to convert all these 
maximization criteria into an opposite form, 
which is intended for minimization. However, 
this conversion is done only from a computational 
point of view. It means that a maximization 
criterion (the higher the value, the better) is still 
a maximization criterion, however, from the 
computational point of view it appears to be a 
minimization criterion (the lower the value, the 
better) after the conversion. The conversion of 
a normalized matrix C’ = {c’

ij}, where i = 1,..., |V| 
and j = 1,…, |V| to a normalized matrix C’’ = {c’’

ij}, 
where i = 1,…, |V| and j = 1,…, |V| corresponding 
to the opposite type of extreme can be performed 
using formula (3.3). 

After the normalization of all the matrices and 
the conversion of all the matrices corresponding 
to maximization criterion to an opposite form 
intended for minimization, a final aggregation 
matrix K = {kij} can be created, where i = 1,…, 
|V| and j = 1,…, |V|. This matrix is used with 
the intention to find the final spanning tree of 
G, taking into account all the required criteria 
and their importance ratio. The elements of this 
matrix represent a weighted sum of corresponding 
elements in all the normalized matrices (regarding 
minimization criteria) and all the transformed 
matrices that have already been normalized 
(regarding maximization criteria) taking into 
account the importance ratio of all the criteria. 
Thus, if there are, for example, three optimization 
criteria, then the matrix K is calculated using three 
evaluation matrices and the importance ratio (i.e., 
the weights) of these criteria. For example, if 
there are two minimization criteria and the third 
criterion is a maximization criterion, then the 
values in all three matrices are normalized using 
formula (3.1) and after that the normalized matrix 

for the third criterion needs to be transformed 
into an opposite form intended for minimization 
using formula (3.3). After that the values of the 
aggregation matrix K can be calculated using the 
two normalized matrices corresponding to the 
minimization criteria and the transformed matrix 
that was normalized before and corresponds to 
the maximization criterion. The elements of the 
matrix K can be calculated using formula (3.4 
or 3.5). These are different ways of writing the  
same formula. 

After the creation of the aggregation matrix K, 
it is possible to continue the calculation using 
standard algorithms for the minimum spanning 
tree problem, for example, Kruskal’s algorithm 
or Prim’s algorithm. Thus, the aim of the whole 
procedure described above was to convert a multi-
criteria spanning tree problem considering the 
importance ratio of the criteria and the constraints 
on the weights of the edges into a standard single-
criterion minimization spanning tree problem 
without any constraints. However, to interpret 
the final result (i.e., the final spanning tree) in 
a correct way, it is necessary to use the original 
weights of all edges regarding all required criteria, 
not the normalized or the transformed weights.

The whole algorithm described above consists of 
a sequence of steps as follows:

1. Identify all the edges that do not meet  
any constraint;

2. Create G’ = (V’, E’) – a subgraph of the 
original network graph G consisting of all the 
edges that meet all the constraints;

3. ET ← ∅ (ET is a set of edges that has already 
been included in the constructed spanning 
tree);

4. If G’ doesn’t contain all the nodes of G, then   
the output is ET (the optimal solution of the 
task doesn’t exist);

else

if G’ is not a connected graph (i.e., if an 
arbitrary vertex of G’ which is not reachable 
from all of the other vertices of G’ using 
the edges in E’ can be selected), then the 
output is ET (the optimal solution of the task 
doesn’t exist);

else go to step 5.
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5. For every evaluation matrix C = {cij}, 
where i = 1,…, |V| and j = 1,…, |V| create 
a normalized evaluation matrix C’ = {c’

ij}, 
where i = 1,…, |V| and j = 1,…, |V| using the 
following formula (3.1):  

min
'

max min
ij

ij

c c
c

c c
−

=
−                                      

(3.1)

min maxmin { }, max { }ij ij ij ijc c c c= =        
(3.2)

6. For every normalized matrix C’ that 
corresponds to a maximization criterion, create 
a transformed matrix C’’ = {c’’

ij}, where i = 
1,…, |V| and j = 1,…, |V|. This matrix represents, 
from the computational point of view, a 
conversion of the maximization criterion into 
an opposite form intended for minimization 
using the following formula (3.3):

'' '1ij ijc c= −                                                (3.3)

7. Create an aggregation matrix K = {kij}, where 
i = 1,…, |V| and j = 1,…, |V|. This matrix 
aggregates all the normalized matrices (for 
all the minimization criteria) and all the 
transformed matrices that were normalized 
before (for all the maximization criteria) using 
the following formula (3.4 or 3.5, which are 
different ways of writing the same formula):

1 1 2 2* * ... *ij ij ij r rijk v k v k v k= + + +        (3.4)

1 1 2 2* * ... *r rK v K v K v K= + + +         (3.5)

where kij are the values of the aggregation 
matrix K; r is the number of the criteria; 
v1, v2, ... ,vr are the weights representing the 
importance ratio of the individual criteria and 
k1ij, k2ij, …, krij for i = 1,…, |V| and j = 1,…, |V| 
represent the elements of the matrices K1, K2, 
 ..., Kr that are necessary to calculate the 
elements of the aggregation matrix K. 

For example, let’s consider that there are two 
criteria. The first criterion is a minimization 
criterion and the edge weights corresponding 
to this criterion are given in matrix C. The 
values in matrix C are normalized using 
formula (3.1) and a normalized matrix C’ 
is obtained. In this research, matrix C’ 
represents matrix K1 (i. e., C’ is denoted 
as K1). Let’s consider that the second 
criterion is a maximization one and the edge 
weights corresponding to this criterion are 

given in matrix D. The values in matrix D 
are normalized using formula (3.1) and a 
normalized matrix D’ is obtained. However, 
since it is a maximization criterion formula 
(3.3) must also be applied and matrix D’’ 
must be calculated using the values in matrix 
D’. In this research, matrix D’’ represents 
matrix K2 (i.e., D’’ is denoted as K2). Since 
only two criteria are considered in this case, 
matrices K1 and K2 are the only ones needed 
to calculate the values of the aggregation 
matrix K using formula (3.4 or 3.5). Thus, if 
the first criterion is a minimization criterion, 
formula (3.1) is used for the corresponding 
matrix and the resulting matrix is denoted as 
matrix K1. If it is a maximization criterion, 
formula (3.1) is firstly used and then 
formula (3.3) and the resulting matrix is 
denoted as matrix K1. If the second criterion 
is a minimization criterion, formula (3.1) is 
used for the corresponding matrix and the 
resulting matrix is denoted as matrix K2. If 
it is a maximization criterion, formula (3.1) 
is firstly used and then formula (3.3) and the 
resulting matrix is denoted as matrix K2. 
This principle shall be applied for each of 
the r criteria. The matrices K1, K2, ..., Kr 
that are needed to calculate the aggregation 
matrix K are obtained using formula  
(3.4 or 3.5).

8. Calculate the minimum spanning tree of 
G’ using the edge weights in matrix K with 
the help of Kruskal’s algorithm or Prim’s 
algorithm. If the Kruskal’s algorithm is 
selected, then the following steps are required:
a) Sort the edges in E’ in a non-

descending order according to their 
weight in matrix K;

b) ecounter ← 0 (ecounter is a variable 
indicating the number of edges in ET);

c) k ← 0 (k is a variable representing an 
index of an edge on the sorted list of 
edges in E’ that is currently considered 
to be or not to be included in the set ET); 

d) Until (ecounter < |V| - 1) {
k ← k + 1;
if ET ∪ {ek} is acyclic, then
(ek is an edge on the sorted list of edges 
and k is the variable described in step 
8c)
{
ET ← ET ∪ {ek};
  ecounter ← ecounter + 1;
  }  };

e) The output is ET.
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4. How to Use the Algorithm

Let’s consider a situation (displayed in Figure 1) 
in which the task is to connect 7 network nodes 
(i.e., sensors) with each other in such a way 
that the final result shall be a connected acyclic 
network graph that will contain all the nodes while 
taking into account two criteria – minimization 
of distances among the nodes and maximization 
of quality of working environment among the 
nodes. The importance ratio of these criteria is 
set to be 1:2 (i.e., the maximization of working 
environment quality is twice as important as the 
minimization of distances between the nodes in 
this particular situation). The weights of the edges 
representing mutual distances between the nodes 
are presented in Table 1 (matrix D). 

Table 1. Weights of edges representing the distance 
in meters (matrix D)

Vertex v1 v2 v3 v4 v5 v6 v7

v1 - 15 15 16 - 9 -

v2 15 - - 20 - - 10

v3 15 - - 16 7 - -

v4 16 20 16 - - 13 12

v5 - - 7 - - - 10

v6 9 - - 13 - - 13

v7 - 10 - 12 10 13 -

The values of transfer rates were obtained by 
experimental measurement. Since the transfer 
rate was mainly influenced by the thickness of the 

walls, the walls were distinguished according to 
materials. Based on the wall thickness, intervals 
in increments of 150 kbps have been created. For 
greater clarity, dimensionless weight numbers to 
each interval were assigned. These weights are 
presented in Table 2. 

Table 2. Dependency of transfer rate on  
environment quality

Weight Max. transfer 
rates (kbps)

Quality of the 
environment

1 250 ferro-concrete

2 400 ferro-concrete

3 550 ferro-concrete

4 700 burnt bricks

5 850 burnt bricks

6 1000 burnt bricks

7 1150 foam concrete

8 1300 foam concrete

9 1450 plasterboard

10 1600 plasterboard

11 1750 no obstacle up to 20 m

12 1900 no obstacle up to 10 m

The measured values have been replaced with 
the corresponding weight value according to the 
interval. These weights are introduced into matrix 
E which is shown in Table 3. A constraint was 
also established, namely that the transfer rate of 
every edge included in the final solution should 

Figure 1. Graph G = (V, E)
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be higher than 250 kbps. This means that every 
edge with weight equal to 1 in terms of quality of 
working environment should be considered to be 
inappropriate and should not be included in the 
final spanning tree.

Table 3. Weights of edges representing the quality of 
working environment (matrix E)

Vertex v1 v2 v3 v4 v5 v6 v7

v1 - 6 8 10 - 4 -

v2 6 - - 11 - - 3

v3 8 - - 10 2 - -

v4 10 11 10 - - 9 7

v5 - - 2 - - - 1

v6 4 - - 9 - - 8

v7 - 3 - 7 1 8 -

The calculation using the algorithm described in 
section 3 goes as follows: 

1. All the edges that do not meet the constraint 
regarding transfer rates are identified. The 
only edge that does not meet this constraint 
is the edge (v5, v7), because its weight in 
terms of the quality of working environment 
is equal to 1. 

2. G’ = (V’, E’), a subgraph of the original graph 
G, is created, where V’ = {v1, v2, v3, v4, v5, v6, 
v7} and E’ = {(v1, v2), (v1, v3), (v1, v4), (v1, v6), 
(v2, v4), (v2, v7), (v3, v4), (v3, v5), (v4, v6), (v4, 
v7), (v6, v7)}. 

3. ET ← ∅;

4. It is apparent that G’ contains all the vertices 
of G. The connectedness of G’ must be 
verified. If one arbitrary vertex is selected, it 
has to be reachable from all the other vertices 
of G’ using the edges in E’. For example, if 
vertex v1 is selected, it is observed that it is 
connected to: 

• v2 using the edge (v1, v2),

• v3 using the edge (v1, v3),

• v4 using the edge (v1, v4),

• v5 using the edges (v1, v3), (v3, v5),

• v6 using the edge (v1, v6),

• v7 using the edges (v1, v2), (v2, v7).  

Thus, vertex v1 is connected to all the other 
vertices and we can go to step 5.

5. For matrix D = {(v1, v2) = 15, (v1, v3) = 15, 
(v1, v4) = 16, (v1, v6) = 9, (v2, v4) = 20, (v2, 
v7) = 10, (v3, v4) = 16, (v3, v5) = 7, (v4, v6) = 
13, (v4, v7) = 12, (v6, v7) = 13} (described in  
Table 1) a normalized matrix D’ is calculated 
using the following formula (4.1):  

min
'

max min
ij

ij

d d
d

d d
−

=
−                                   

(4.1)

where i = 1, …, 7 and j = 1, …, 7

min maxmin { }, max { }ij ij ij ijd d d d= =    (4.2)

Matrix D’ is described in Table 4. The lowest 
value of the entries of matrix D is minij{dij} 
= 7 and the highest value of the entries of 
matrix D is maxij{dij} = 20. The elements 
of a normalized matrix E’ corresponding to 
matrix E are also calculated. Matrix E’ is 
depicted in Table 5.

Table 4. Matrix D’

Vertex v1 v2 v3 v4 v5 v6 v7

v1 - 0.615 0.615 0.692 - 0.154 -

v2 0.615 - - 1 - - 0.231

v3 0.615 - - 0.692 0 - -

v4 0.692 1 0.692 - - 0.462 0.385

v5 - - 0 - - - -

v6 0.154 - - 0.462 - - 0.462

v7 - 0.231 - 0.385 - 0.462 -

Table 5. Matrix E’

Vertex v1 v2 v3 v4 v5 v6 v7

v1 - 0.444 0.667 0.889 - 0.222 -

v2 0.444 - - 1 - - 0.111

v3 0.667 - - 0.889 0 - -

v4 0.889 1 0.889 - - 0.778 0.556

v5 - - 0 - - - -

v6 0.222 - - 0.778 - - 0.667

v7 - 0.111 - 0.556 - 0.667 -

6. The only maximization criterion is the 
maximization of the quality of the working 
environment. Thus, from the computational 
point of view, this criterion is transformed into 
an opposite form intended for minimization. 
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The values of a transformed matrix E’’ 
(written in Table 6) have to be calculated 
using the values in the normalized matrix E’ 
and the following formula (4.3):

'' '1ij ije e= −                                              (4.3)

where i = 1, …, 7 and j = 1, …, 7

Table 6. Matrix E’’

Vertex v1 v2 v3 v4 v5 v6 v7

v1 - 0.556 0.333 0.111 - 0.778 -

v2 0.556 - - 0 - - 0.889

v3 0.333 - - 0.111 1 - -

v4 0.111 0 0.111 - - 0.778 0.444

v5 - - 1 - - - -

v6 0.778 - - 0.778 - - 0.333

v7 - 0.889 - 0.444 - 0.333 -

7. We create an aggregation matrix K = 
{kij}, where i = 1,…, 7 and j = 1,…, 7 that 
aggregates the normalized matrix D’ and the 
transformed matrix E’’ using formula (4.4):

1 1 2 2* * ... *ij ij ij r rijk v k v k v k= + + +        (4.4)

where i, j = 1, …, 7, r = 2, v1 = 1, v2 = 2 

In the present case, it is kij = 1*K1 + 2*K2 for i,                         
j = 1, …, 7. After the substitution of matrices K1 
and K2 by real matrices D’ and E’’ formulas (4.5) 
and (4.6) are obtained: 

' ''1* 2*ij ij ijk d e= +                                      (4.5)
' ''1* 2*K D E= +                                    (4.6)

The calculated values of matrix K are displayed 
in Table 7.

Table 7. Matrix K

Vertex v1 v2 v3 v4 v5 v6 v7

v1 - 1.556 1.333 1.111 - 1.778 -

v2 1.556 - - 1 - - 1.889

v3 1.333 - - 1.111 2 - -

v4 1.111 1 1.111 - - 2.018 1.444

v5 - - 2 - - - -

v6 1.778 - - 2.018 - - 1.333

v7 - 1.889 - 1.444 - 1.333 -

8. The minimum spanning tree of G’ is calculated 
using the weights in the aggregation matrix 
K by help of Kruskal’s algorithm: 

a) The edges in E’ are sorted in a non-
descending order according to their 
weight in matrix K:
e1 = (v2, v4) = 1, e2 = (v1, v4) = 1.111, e3 = 
(v3, v4) = 1.111, e4 = (v1, v3) = 1.333, 
e5 = (v6, v7) = 1.333, e6 = (v4, v7) = 1.444, 
e7 = (v1, v2) = 1.556, e8 = (v1, v6) = 1.778,                      
e9 = (v2, v7) = 1.889, e10 = (v3, v5) = 2, e11 
= (v4, v6) = 2,018.

b) ecounter ← 0;
c) k ← 0;
d) 1st iteration: 0 < (7 - 1) => The following 

cycle is entered: 
k ← 1; ET ∪ {e1} is acyclic => ET  ← ET  
∪ e1 ; ecounter ← 1;
2nd iteration: 1 < (7 - 1) => The 
following cycle is entered: 
k ← 2; ET ∪ {e2} is acyclic => ET  ← ET  
∪ e2 ; ecounter ← 2;
3rd iteration: 2 < (7 - 1) => The 
following cycle is entered: 
k ← 3; ET ∪ {e3} is acyclic => ET  ← ET  
∪ e3 ; ecounter ← 3;
4th iteration: 3 < (7 - 1) => The 
following cycle is entered: 
k ← 4; ET ∪ {e4} is cyclic.
5th iteration: 3 < (7 - 1) => The 
following cycle is entered: 
k ← 5; ET ∪ {e5} is acyclic => ET ← ET  
∪ e5 ; ecounter ← 4;
6th iteration: 4 < (7 - 1) => The 
following cycle is entered: 
k ← 6; ET ∪ {e6} is acyclic=> ET ← ET  
∪ e6 ; ecounter ← 5; 
7th iteration: 5 < (7 - 1) => The 
following cycle is entered:  
k ← 7; ET ∪ {e7} is cyclic.
8th. iteration: 5 < (7 - 1) => The 
following cycle is entered: 
k ← 8; ET ∪ {e8} is cyclic. 
9th iteration: 5 < (7 - 1) => The 
following cycle is entered: 
k ← 9; ET ∪ {e9} is cyclic.
10th iteration: 5 < (7 - 1) => The 
following cycle is entered: 
k ← 10; ET ∪ {e10} is acyclic => ET ← ET  
∪ e10 ; ecounter ← 6; 
11th iteration: 6 < (7 - 1) => This is not 
true, so no cycle is entered anymore.

e) The output is ET ;
Thus, the final multi-criteria spanning tree which 
is depicted in Figure 2 consists of the following 
edges with the following weights: (v2, v4) = 20; 
11, (v1, v4) = 16; 10, (v3, v4) = 16; 10, (v6, v7) = 13; 
8, (v4, v7) = 12; 7, (v3, v5) = 7; 2. The first weight 
of an edge is related to the mutual distance of the 
nodes in meters. The second weight is related to 
the quality of working environment and it is given 
in special weights according to Table 2.
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5. Conclusion

A simple algorithm, which is able to find a multi-
criteria spanning tree of a network graph, was 
created, taking into account also the constraints 
on the weights of the edges if these constraints are 
needed. In smaller tasks the whole computation 
can be done by hand, so there is no need to 
use genetic algorithms, ant colonies and other 
complicated approximation techniques. It is hoped 
that this algorithm and the whole approach to 
sensor network topology optimization using multi-
criteria spanning trees is a piece of contribution 

to sensor networking theory as well as to the field 
of operational research and network analysis.  It 
may help to carry out many useful experiments 
and projects in the future.
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Figure 2. The multi-criteria spanning tree of the graph G = (V, E)
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