
101

ICI Bucharest © Copyright 2012-2021. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X

1. Introduction

As part of the ongoing project, the task of this
research was to find out indicators of air quality
in the selected classrooms of a university. As
there were more classrooms on different floors,
only data acquisition could be considered, with
the help of a sensor network. A sensor network
consisting of sensor nodes that continuously
monitored temperature, humidity and CO2 in
the classrooms was created. The location of the
sensors was given as each of them was powered
directly from the existing power grid. Each sensor
node was designed as a module that was plugged
into an appropriate electrical outlet, because the
wall panelling did not allow mounting of rails or
other fastening material. From the architectural
point of view the building could be characterized
as atypical, because many rooms had non-standard
floor plans and the sensors could not be applied
to the grid, as many authors recommend (Liu et
al., 2016). From the constructional point of view,
it was a non-homogeneous building, too, because
burnt bricks and plasterboard partitions have been
used in addition to ferro-concrete walls and foam
concrete walls.

The sensor node of this network consisted of
a microcontroller board Arduino UNO R3
ATmega328P CH340 mini-USB to which 2 sensors
were connected, namely temperature and humidity
sensor DHT11 and CO2 sensor MH-Z19B, as
well as a communication module NRF24L01.
NRF24L01 transmitter and receiver module uses
the 2.4 GHz band and operates at transfer rates

from 250 kbps to 2 Mbps. When applied outdoors
and at lower transmission speeds, it can reach up
to 100 meters. In a built-up environment, the range
decreases significantly. The module might operate
125 different channels, enabling building a network,
which consists of 125 independently operating
modems in a simple place. Each channel might have
up to 6 addresses, or each unit can communicate with
up to 6 other units simultaneously (Rohidh et al.,
2019). The operating voltage of the module is from
1.9 to 3.6 V, but the pins tolerate 5 V logic, so the
module can be easily connected to Arduino without
using any logic level converters. The sensor node
was powered via the adapter. The data is transferred
by hop to a special node called sink (Akyildiz et al.,
2002). In total, 23 sensors were installed. Since the
location of the sensor nodes was given in advance,
the paths among the nodes had to be looked at, in
order to ensure efficient wireless communication.
Two criteria had to be taken into consideration: the
distance among the nodes (a minimization criterion)
and the quality of the environment among them (a
maximization criterion).

With respect to the previous description, it was not
a typical sensor network. Some differences should
be highlighted. First of all, it was a sensor network
where the sensors had a fixed location, and they were
not battery powered, but mains-powered. In addition
to it, the configuration of the sensor nodes and the
neighbour search as well, were not automatic, unlike
a typical sensor network. The present optimization
approach is based on finding the optimal path

Studies in Informatics and Control, 30(2) 101-110, June 2021

https://doi.org/10.24846/v30i2y202109

Optimization of Sensor Network Topology Using
Multiple Criteria

Pavol JURÍK, Peter SCHMIDT*, Jaroslav KULTAN
Department of Applied Informatics, Faculty of Economic Informatics,
University of Economics in Bratislava, Slovakia
pavol.jurik@euba.sk, peter.schmidt@euba.sk (*Corresponding author), jaroslav.kultan@euba.sk

Abstract: A sensor network was created inside a building, as part of a project. The sensors monitored the room temperature,
humidity, and CO2. The location of the sensor nodes is fixed. A serious problem was to find out how to connect these sensors
in order to ensure an optimal communication in the network. Another problem was the fact that the building was atypical, so
the location of the sensors could not be applied to the grid. Two optimization criteria, namely the distance between the nodes
and the quality of the working environment between them, limited the present research because in addition to reinforced
concrete walls and foam concrete walls, other materials were also used in the building. The problem is described by a
network graph and optimized by finding its spanning tree. A new algorithm was created for finding a multi-criteria spanning
tree of a network graph taking into account the constraints for the weights of the edges. The algorithm has been programmed
in C language and used to solve the task. The usage of this algorithm and the whole concept of finding a multi-criteria
spanning tree of a sensor network graph is a contribution to sensor network topology optimization and it can be applied in
similar projects as well.

Keywords: Sensor networks, Topology, Optimization, Graph theory, Spanning tree, Multiple criteria, Constraints.

https://www.sic.ici.ro

102 Pavol Jurík, Peter Schmidt, Jaroslav Kultan

among the nodes in terms of the reliability of data
transmission. Transmission reliability is strongly
dependent on node distance, quality of working
environment and transmission speed. However,
there was no need to consider an increased energy
demand related to the node to transmit and receive
data from neighbouring nodes. Attempts have been
made to find a solution where the data transfer is
relatively fast and the error rate is low.

Section 2 describes the minimum spanning tree
problem, which was a basis for the research done.
Section 3 presents a new solution for the multi-
criteria minimum spanning tree problem and in
section 4 there is an example of its use. Section
5 presents the conclusions and prospects for the
development of the proposed research.

2. The Minimum Spanning
Tree Problem

The problem of finding a way to interconnect a set
of nodes on a network graph with a set of edges so
that there are no cycles and no node is isolated, is
called a spanning tree problem. According to Levitin
(2007): “A spanning tree of a connected graph
consists of a connected acyclic subgraph (i.e., a tree)
that contains all the vertices (i.e., nodes) of graph.”
Every spanning tree of a network graph G = (V, E),
where V is a set of vertices (i. e. nodes) and E is a set
of edges, consists of |V| - 1 edges. For example, if
the network graph G consists of 7 nodes, then the
number of edges is 6 for each of its spanning trees.

Some numerical values might also be added to the
edges of the network graph, which may represent,
for example, mutual distances between two nodes,
costs that are needed to create a direct connection
between two nodes or transmission capacities of
a path between two nodes.

A network graph with weighted edges is called
“weighted network graph”. If this graph is
connected (i.e., it does not contain any isolated
node), then it is possible to find a spanning
tree with the minimum sum of weights for all
included edges. This type of spanning tree is
called “minimum spanning tree”. Levitin defines
a minimum spanning tree of a weighted connected
graph as “its spanning tree of the smallest weight,
where the weight of a tree is defined as the sum
of the weights on all its edges” (Levitin, 2007).

A detailed analysis of the minimum spanning
tree problem history was done by Graham and

Hell (1985), so the present paper will not discuss
this analysis (Graham & Hell, 1985). There are
a few algorithms that are suitable for solving
the minimum spanning tree problem. Borůvka’s
algorithm was the first algorithm for spanning
trees; however, it is applicable only under a special
condition: every edge of the network graph has to
have a unique weight (Borůvka, 1926). A better
algorithm for solving the minimum spanning
tree problem is Kruskal’s algorithm because it
always yields an optimal solution. The algorithm
is building up a spanning tree as an expanding
sequence of subgraphs, which are always acyclic
but are not connected via intermediate stages of
the algorithm (Kruskal, 1956). Another algorithm
that guarantees the finding of an optimal solution
of the minimum spanning tree problem of
a connected graph is Prim’s algorithm. This
algorithm is building up the minimum spanning
tree through a sequence of expanding subtrees.
The initial subtree in such a sequence consists of
a single vertex only, which is arbitrarily selected
from the set V of the graph’s vertices. At each
iteration, the current tree is expanded in a greedy
way so that the nearest vertex, which is not yet in
the tree is attached to it (Prim, 1957).

3. The Multi-Criteria Spanning
Tree Problem – Description of
the Proposed Algorithm

If there is only a single optimization criterion,
algorithms for finding a minimum spanning tree
can be used. In the case of the project described in
section 1, two different optimization criteria need
to be applied at the same time. There are multiple
algorithms that deal with the bi-criteria spanning
tree problem (Clímaco & Pascoal, 2012; Ehrgott,
2005). One can cite also evolutionary algorithms
(Moradkhan & Browne, 2006), genetic algorithms
(Han & Wang, 2005; Sanger & Agrawal, 2010;
Zhou & Gen, 1999), local search techniques
(Andersen, Jörnsten & Lind, 1996) or ant colony
techniques (Cardoso, 2006; Li et al., 2013). As far
as it is known, there are only 3 exact algorithms for
the bi-criteria spanning tree problem – an algorithm
based on dynamic programming (Di Puglia
Pugliese et al., 2015), exhaustive search (Ramos
et al., 1998) and two-phase algorithm (Steiner &
Radzik, 2008). Furthermore, only a few solutions
for a multi-criteria spanning three problem with
more than two criteria are known (Di Puglia
Pugliese et al., 2015; Neumann & Witt, 2010).

 103

ICI Bucharest © Copyright 2012-2021. All rights reserved

Optimization of Sensor Network Topology Using Multiple Criteria

This paper proposes a new algorithm, which
is very simple because it transforms a multi-
criteria spanning tree problem with constraints
for the weights of the edges and any number of
criteria into a single-criterion problem without
any constraints. The constraints on the weights
of the edges mean imply that, for example, the
transmission capacity or the reliability of any
edge in the graph or a subset of edges should be
higher than or equal to the required constant. Or
for example, the costs that are needed to create
a direct connection between two nodes (i.e.,
sensors in a sensor network) should be lower
than or equal to the specific constant. However,
there can be also interval constraints (for example,
a combination of the “higher or equal” and the
“lower or equal” type of constraint) in order to
achieve a balanced network.

The criteria that can be considered during the
optimization of sensor network topology are, for
example, the minimization of sum of distances
among the nodes, minimization of total creation
costs, maximization of transmission capacities or
maximization of reliability of the individual edges.
However, other criteria may be considered as well.
Each criterion shall have its weight regarding its
importance so there is an exact importance ratio.
For example, some organizations may prefer
transmission capacities over creation costs in a
2:1 ratio, while others may prefer creation costs
over transmission capacities in 3:1 ratio.

The input data which are needed to use the
proposed algorithm are the following:

 - the number of the criteria,

 - the importance ratio of the criteria (i.e., the
weight of each criterion),

 - for each criterion one needs to know if it is
a minimization or a maximization criterion,

 - evaluation matrices, where each evaluation
matrix contains the weights of the edges
corresponding to a single criterion.

Thus, the number of the evaluation matrices is
equal to the number of criteria. For example, if
an organization wishes to consider three different
criteria, then it is necessary to have three different
evaluation matrices because each of them is
devoted to a single criterion only. All these
evaluation matrices are square, i.e., the number
of their rows is equal to the number of their

columns and that is equal to the number of nodes
(i.e., |V|) of the graph G = (V, E). For example,
if |V| = 10, then each matrix will have 10 rows
and 10 columns. At the crossing points of the
rows and the columns of the matrix, the numeric
values represent the weights of the individual
edges corresponding to a selected criterion. These
values need to be given in specific measurement
units corresponding to the criterion. For example,
appropriate measurement units for creation
costs are EUR or USD and appropriate units for
measuring transmission capacities are bits per
second (i.e., bps), kilobits per second (i.e., kbps),
etc. On the main diagonal of these matrices there
are no numeric values because it is not logical to
connect a node of a sensor network to itself.

As it has been mentioned earlier, the multi-criteria
spanning tree problem may be extended by specific
constraints (i.e., limitations) on the edges of the
constructed spanning tree. If such constraints are
established, then it is necessary to identify all the
edges that do not meet any of these constraints
for any criterion. After the identification of all
inappropriate edges, a subgraph of graph G = (V, E)
is created, which may be denoted as G’ = (V’, E’).
This subgraph must contain only the edges of G
that meet all the constraints. After the creation
of the subgraph G’, it is necessary to verify if it
is still possible to construct the required multi-
criteria spanning tree of G using the edges in E’. If
there is no acceptable spanning tree meeting all the
required criteria, then there is no optimal solution
for the task. Verification of the existence of at
least one feasible solution can be done through
an analysis of the subgraph G’. If this subgraph
contains all the vertices of the graph G and it is
connected at the same time, then it is possible to
find at least one feasible spanning tree of G for
sure. These two conditions need to be met at the
same time. A spanning tree of G’ is a connected
acyclic subgraph of G’ containing all vertices of G
and logically, it is not possible to find a connected
subgraph of G’ containing all its vertices if G’
itself is not connected. It is also obvious that if the
subgraph G’ does not contain all the vertices of G,
then it is not possible to create a feasible spanning
tree of G using the edges of G’.

After the verification that the subgraph G’ is
connected and contains all the vertices of the
original graph G, the optimal solution can be
found. The next problem that should be solved
is the mutual incomparability of the evaluation

https://www.sic.ici.ro

104 Pavol Jurík, Peter Schmidt, Jaroslav Kultan

matrices due to different measurement units used
in each matrix. This problem may be solved by
normalization of the matrices. Normalization
annuls the relation of the matrices to specific
measurement units and makes them mutually
comparable. It can be done using formula (3.1).
With the help of this formula a normalized matrix
C’= {c’ij} can be calculated, where i = 1,…, |V| and
j = 1,…, |V|. It means that the original values of the
matrix C can be transformed into dimensionless
numbers at a closed interval [0;1] and these values
can be stored in matrix C’.

If some of the criteria that are set for the
multi-criteria spanning tree are maximization
criteria, then it is necessary to convert all these
maximization criteria into an opposite form,
which is intended for minimization. However,
this conversion is done only from a computational
point of view. It means that a maximization
criterion (the higher the value, the better) is still
a maximization criterion, however, from the
computational point of view it appears to be a
minimization criterion (the lower the value, the
better) after the conversion. The conversion of
a normalized matrix C’ = {c’

ij}, where i = 1,..., |V|
and j = 1,…, |V| to a normalized matrix C’’ = {c’’

ij},
where i = 1,…, |V| and j = 1,…, |V| corresponding
to the opposite type of extreme can be performed
using formula (3.3).

After the normalization of all the matrices and
the conversion of all the matrices corresponding
to maximization criterion to an opposite form
intended for minimization, a final aggregation
matrix K = {kij} can be created, where i = 1,…,
|V| and j = 1,…, |V|. This matrix is used with
the intention to find the final spanning tree of
G, taking into account all the required criteria
and their importance ratio. The elements of this
matrix represent a weighted sum of corresponding
elements in all the normalized matrices (regarding
minimization criteria) and all the transformed
matrices that have already been normalized
(regarding maximization criteria) taking into
account the importance ratio of all the criteria.
Thus, if there are, for example, three optimization
criteria, then the matrix K is calculated using three
evaluation matrices and the importance ratio (i.e.,
the weights) of these criteria. For example, if
there are two minimization criteria and the third
criterion is a maximization criterion, then the
values in all three matrices are normalized using
formula (3.1) and after that the normalized matrix

for the third criterion needs to be transformed
into an opposite form intended for minimization
using formula (3.3). After that the values of the
aggregation matrix K can be calculated using the
two normalized matrices corresponding to the
minimization criteria and the transformed matrix
that was normalized before and corresponds to
the maximization criterion. The elements of the
matrix K can be calculated using formula (3.4
or 3.5). These are different ways of writing the
same formula.

After the creation of the aggregation matrix K,
it is possible to continue the calculation using
standard algorithms for the minimum spanning
tree problem, for example, Kruskal’s algorithm
or Prim’s algorithm. Thus, the aim of the whole
procedure described above was to convert a multi-
criteria spanning tree problem considering the
importance ratio of the criteria and the constraints
on the weights of the edges into a standard single-
criterion minimization spanning tree problem
without any constraints. However, to interpret
the final result (i.e., the final spanning tree) in
a correct way, it is necessary to use the original
weights of all edges regarding all required criteria,
not the normalized or the transformed weights.

The whole algorithm described above consists of
a sequence of steps as follows:

1. Identify all the edges that do not meet
any constraint;

2. Create G’ = (V’, E’) – a subgraph of the
original network graph G consisting of all the
edges that meet all the constraints;

3. ET ← ∅ (ET is a set of edges that has already
been included in the constructed spanning
tree);

4. If G’ doesn’t contain all the nodes of G, then
the output is ET (the optimal solution of the
task doesn’t exist);

else

if G’ is not a connected graph (i.e., if an
arbitrary vertex of G’ which is not reachable
from all of the other vertices of G’ using
the edges in E’ can be selected), then the
output is ET (the optimal solution of the task
doesn’t exist);

else go to step 5.

 105

ICI Bucharest © Copyright 2012-2021. All rights reserved

Optimization of Sensor Network Topology Using Multiple Criteria

5. For every evaluation matrix C = {cij},
where i = 1,…, |V| and j = 1,…, |V| create
a normalized evaluation matrix C’ = {c’

ij},
where i = 1,…, |V| and j = 1,…, |V| using the
following formula (3.1):

min
'

max min
ij

ij

c c
c

c c
−

=
−

(3.1)

min maxmin { }, max { }ij ij ij ijc c c c= =
(3.2)

6. For every normalized matrix C’ that
corresponds to a maximization criterion, create
a transformed matrix C’’ = {c’’

ij}, where i =
1,…, |V| and j = 1,…, |V|. This matrix represents,
from the computational point of view, a
conversion of the maximization criterion into
an opposite form intended for minimization
using the following formula (3.3):

'' '1ij ijc c= − (3.3)

7. Create an aggregation matrix K = {kij}, where
i = 1,…, |V| and j = 1,…, |V|. This matrix
aggregates all the normalized matrices (for
all the minimization criteria) and all the
transformed matrices that were normalized
before (for all the maximization criteria) using
the following formula (3.4 or 3.5, which are
different ways of writing the same formula):

1 1 2 2* * ... *ij ij ij r rijk v k v k v k= + + + (3.4)

1 1 2 2* * ... *r rK v K v K v K= + + + (3.5)

where kij are the values of the aggregation
matrix K; r is the number of the criteria;
v1, v2, ... ,vr are the weights representing the
importance ratio of the individual criteria and
k1ij, k2ij, …, krij for i = 1,…, |V| and j = 1,…, |V|
represent the elements of the matrices K1, K2,
 ..., Kr that are necessary to calculate the
elements of the aggregation matrix K.

For example, let’s consider that there are two
criteria. The first criterion is a minimization
criterion and the edge weights corresponding
to this criterion are given in matrix C. The
values in matrix C are normalized using
formula (3.1) and a normalized matrix C’
is obtained. In this research, matrix C’
represents matrix K1 (i. e., C’ is denoted
as K1). Let’s consider that the second
criterion is a maximization one and the edge
weights corresponding to this criterion are

given in matrix D. The values in matrix D
are normalized using formula (3.1) and a
normalized matrix D’ is obtained. However,
since it is a maximization criterion formula
(3.3) must also be applied and matrix D’’
must be calculated using the values in matrix
D’. In this research, matrix D’’ represents
matrix K2 (i.e., D’’ is denoted as K2). Since
only two criteria are considered in this case,
matrices K1 and K2 are the only ones needed
to calculate the values of the aggregation
matrix K using formula (3.4 or 3.5). Thus, if
the first criterion is a minimization criterion,
formula (3.1) is used for the corresponding
matrix and the resulting matrix is denoted as
matrix K1. If it is a maximization criterion,
formula (3.1) is firstly used and then
formula (3.3) and the resulting matrix is
denoted as matrix K1. If the second criterion
is a minimization criterion, formula (3.1) is
used for the corresponding matrix and the
resulting matrix is denoted as matrix K2. If
it is a maximization criterion, formula (3.1)
is firstly used and then formula (3.3) and the
resulting matrix is denoted as matrix K2.
This principle shall be applied for each of
the r criteria. The matrices K1, K2, ..., Kr
that are needed to calculate the aggregation
matrix K are obtained using formula
(3.4 or 3.5).

8. Calculate the minimum spanning tree of
G’ using the edge weights in matrix K with
the help of Kruskal’s algorithm or Prim’s
algorithm. If the Kruskal’s algorithm is
selected, then the following steps are required:
a) Sort the edges in E’ in a non-

descending order according to their
weight in matrix K;

b) ecounter ← 0 (ecounter is a variable
indicating the number of edges in ET);

c) k ← 0 (k is a variable representing an
index of an edge on the sorted list of
edges in E’ that is currently considered
to be or not to be included in the set ET);

d) Until (ecounter < |V| - 1) {
k ← k + 1;
if ET ∪ {ek} is acyclic, then
(ek is an edge on the sorted list of edges
and k is the variable described in step
8c)
{
ET ← ET ∪ {ek};
 ecounter ← ecounter + 1;
 } };

e) The output is ET.

https://www.sic.ici.ro

106 Pavol Jurík, Peter Schmidt, Jaroslav Kultan

4. How to Use the Algorithm

Let’s consider a situation (displayed in Figure 1)
in which the task is to connect 7 network nodes
(i.e., sensors) with each other in such a way
that the final result shall be a connected acyclic
network graph that will contain all the nodes while
taking into account two criteria – minimization
of distances among the nodes and maximization
of quality of working environment among the
nodes. The importance ratio of these criteria is
set to be 1:2 (i.e., the maximization of working
environment quality is twice as important as the
minimization of distances between the nodes in
this particular situation). The weights of the edges
representing mutual distances between the nodes
are presented in Table 1 (matrix D).

Table 1. Weights of edges representing the distance
in meters (matrix D)

Vertex v1 v2 v3 v4 v5 v6 v7

v1 - 15 15 16 - 9 -

v2 15 - - 20 - - 10

v3 15 - - 16 7 - -

v4 16 20 16 - - 13 12

v5 - - 7 - - - 10

v6 9 - - 13 - - 13

v7 - 10 - 12 10 13 -

The values of transfer rates were obtained by
experimental measurement. Since the transfer
rate was mainly influenced by the thickness of the

walls, the walls were distinguished according to
materials. Based on the wall thickness, intervals
in increments of 150 kbps have been created. For
greater clarity, dimensionless weight numbers to
each interval were assigned. These weights are
presented in Table 2.

Table 2. Dependency of transfer rate on
environment quality

Weight Max. transfer
rates (kbps)

Quality of the
environment

1 250 ferro-concrete

2 400 ferro-concrete

3 550 ferro-concrete

4 700 burnt bricks

5 850 burnt bricks

6 1000 burnt bricks

7 1150 foam concrete

8 1300 foam concrete

9 1450 plasterboard

10 1600 plasterboard

11 1750 no obstacle up to 20 m

12 1900 no obstacle up to 10 m

The measured values have been replaced with
the corresponding weight value according to the
interval. These weights are introduced into matrix
E which is shown in Table 3. A constraint was
also established, namely that the transfer rate of
every edge included in the final solution should

Figure 1. Graph G = (V, E)

 107

ICI Bucharest © Copyright 2012-2021. All rights reserved

Optimization of Sensor Network Topology Using Multiple Criteria

be higher than 250 kbps. This means that every
edge with weight equal to 1 in terms of quality of
working environment should be considered to be
inappropriate and should not be included in the
final spanning tree.

Table 3. Weights of edges representing the quality of
working environment (matrix E)

Vertex v1 v2 v3 v4 v5 v6 v7

v1 - 6 8 10 - 4 -

v2 6 - - 11 - - 3

v3 8 - - 10 2 - -

v4 10 11 10 - - 9 7

v5 - - 2 - - - 1

v6 4 - - 9 - - 8

v7 - 3 - 7 1 8 -

The calculation using the algorithm described in
section 3 goes as follows:

1. All the edges that do not meet the constraint
regarding transfer rates are identified. The
only edge that does not meet this constraint
is the edge (v5, v7), because its weight in
terms of the quality of working environment
is equal to 1.

2. G’ = (V’, E’), a subgraph of the original graph
G, is created, where V’ = {v1, v2, v3, v4, v5, v6,
v7} and E’ = {(v1, v2), (v1, v3), (v1, v4), (v1, v6),
(v2, v4), (v2, v7), (v3, v4), (v3, v5), (v4, v6), (v4,
v7), (v6, v7)}.

3. ET ← ∅;

4. It is apparent that G’ contains all the vertices
of G. The connectedness of G’ must be
verified. If one arbitrary vertex is selected, it
has to be reachable from all the other vertices
of G’ using the edges in E’. For example, if
vertex v1 is selected, it is observed that it is
connected to:

• v2 using the edge (v1, v2),

• v3 using the edge (v1, v3),

• v4 using the edge (v1, v4),

• v5 using the edges (v1, v3), (v3, v5),

• v6 using the edge (v1, v6),

• v7 using the edges (v1, v2), (v2, v7).

Thus, vertex v1 is connected to all the other
vertices and we can go to step 5.

5. For matrix D = {(v1, v2) = 15, (v1, v3) = 15,
(v1, v4) = 16, (v1, v6) = 9, (v2, v4) = 20, (v2,
v7) = 10, (v3, v4) = 16, (v3, v5) = 7, (v4, v6) =
13, (v4, v7) = 12, (v6, v7) = 13} (described in
Table 1) a normalized matrix D’ is calculated
using the following formula (4.1):

min
'

max min
ij

ij

d d
d

d d
−

=
−

(4.1)

where i = 1, …, 7 and j = 1, …, 7

min maxmin { }, max { }ij ij ij ijd d d d= = (4.2)

Matrix D’ is described in Table 4. The lowest
value of the entries of matrix D is minij{dij}
= 7 and the highest value of the entries of
matrix D is maxij{dij} = 20. The elements
of a normalized matrix E’ corresponding to
matrix E are also calculated. Matrix E’ is
depicted in Table 5.

Table 4. Matrix D’

Vertex v1 v2 v3 v4 v5 v6 v7

v1 - 0.615 0.615 0.692 - 0.154 -

v2 0.615 - - 1 - - 0.231

v3 0.615 - - 0.692 0 - -

v4 0.692 1 0.692 - - 0.462 0.385

v5 - - 0 - - - -

v6 0.154 - - 0.462 - - 0.462

v7 - 0.231 - 0.385 - 0.462 -

Table 5. Matrix E’

Vertex v1 v2 v3 v4 v5 v6 v7

v1 - 0.444 0.667 0.889 - 0.222 -

v2 0.444 - - 1 - - 0.111

v3 0.667 - - 0.889 0 - -

v4 0.889 1 0.889 - - 0.778 0.556

v5 - - 0 - - - -

v6 0.222 - - 0.778 - - 0.667

v7 - 0.111 - 0.556 - 0.667 -

6. The only maximization criterion is the
maximization of the quality of the working
environment. Thus, from the computational
point of view, this criterion is transformed into
an opposite form intended for minimization.

https://www.sic.ici.ro

108 Pavol Jurík, Peter Schmidt, Jaroslav Kultan

The values of a transformed matrix E’’
(written in Table 6) have to be calculated
using the values in the normalized matrix E’
and the following formula (4.3):

'' '1ij ije e= − (4.3)

where i = 1, …, 7 and j = 1, …, 7

Table 6. Matrix E’’

Vertex v1 v2 v3 v4 v5 v6 v7

v1 - 0.556 0.333 0.111 - 0.778 -

v2 0.556 - - 0 - - 0.889

v3 0.333 - - 0.111 1 - -

v4 0.111 0 0.111 - - 0.778 0.444

v5 - - 1 - - - -

v6 0.778 - - 0.778 - - 0.333

v7 - 0.889 - 0.444 - 0.333 -

7. We create an aggregation matrix K =
{kij}, where i = 1,…, 7 and j = 1,…, 7 that
aggregates the normalized matrix D’ and the
transformed matrix E’’ using formula (4.4):

1 1 2 2* * ... *ij ij ij r rijk v k v k v k= + + + (4.4)

where i, j = 1, …, 7, r = 2, v1 = 1, v2 = 2

In the present case, it is kij = 1*K1 + 2*K2 for i,
j = 1, …, 7. After the substitution of matrices K1
and K2 by real matrices D’ and E’’ formulas (4.5)
and (4.6) are obtained:

' ''1* 2*ij ij ijk d e= + (4.5)
' ''1* 2*K D E= + (4.6)

The calculated values of matrix K are displayed
in Table 7.

Table 7. Matrix K

Vertex v1 v2 v3 v4 v5 v6 v7

v1 - 1.556 1.333 1.111 - 1.778 -

v2 1.556 - - 1 - - 1.889

v3 1.333 - - 1.111 2 - -

v4 1.111 1 1.111 - - 2.018 1.444

v5 - - 2 - - - -

v6 1.778 - - 2.018 - - 1.333

v7 - 1.889 - 1.444 - 1.333 -

8. The minimum spanning tree of G’ is calculated
using the weights in the aggregation matrix
K by help of Kruskal’s algorithm:

a) The edges in E’ are sorted in a non-
descending order according to their
weight in matrix K:
e1 = (v2, v4) = 1, e2 = (v1, v4) = 1.111, e3 =
(v3, v4) = 1.111, e4 = (v1, v3) = 1.333,
e5 = (v6, v7) = 1.333, e6 = (v4, v7) = 1.444,
e7 = (v1, v2) = 1.556, e8 = (v1, v6) = 1.778,
e9 = (v2, v7) = 1.889, e10 = (v3, v5) = 2, e11
= (v4, v6) = 2,018.

b) ecounter ← 0;
c) k ← 0;
d) 1st iteration: 0 < (7 - 1) => The following

cycle is entered:
k ← 1; ET ∪ {e1} is acyclic => ET ← ET
∪ e1 ; ecounter ← 1;
2nd iteration: 1 < (7 - 1) => The
following cycle is entered:
k ← 2; ET ∪ {e2} is acyclic => ET ← ET
∪ e2 ; ecounter ← 2;
3rd iteration: 2 < (7 - 1) => The
following cycle is entered:
k ← 3; ET ∪ {e3} is acyclic => ET ← ET
∪ e3 ; ecounter ← 3;
4th iteration: 3 < (7 - 1) => The
following cycle is entered:
k ← 4; ET ∪ {e4} is cyclic.
5th iteration: 3 < (7 - 1) => The
following cycle is entered:
k ← 5; ET ∪ {e5} is acyclic => ET ← ET
∪ e5 ; ecounter ← 4;
6th iteration: 4 < (7 - 1) => The
following cycle is entered:
k ← 6; ET ∪ {e6} is acyclic=> ET ← ET
∪ e6 ; ecounter ← 5;
7th iteration: 5 < (7 - 1) => The
following cycle is entered:
k ← 7; ET ∪ {e7} is cyclic.
8th. iteration: 5 < (7 - 1) => The
following cycle is entered:
k ← 8; ET ∪ {e8} is cyclic.
9th iteration: 5 < (7 - 1) => The
following cycle is entered:
k ← 9; ET ∪ {e9} is cyclic.
10th iteration: 5 < (7 - 1) => The
following cycle is entered:
k ← 10; ET ∪ {e10} is acyclic => ET ← ET
∪ e10 ; ecounter ← 6;
11th iteration: 6 < (7 - 1) => This is not
true, so no cycle is entered anymore.

e) The output is ET ;
Thus, the final multi-criteria spanning tree which
is depicted in Figure 2 consists of the following
edges with the following weights: (v2, v4) = 20;
11, (v1, v4) = 16; 10, (v3, v4) = 16; 10, (v6, v7) = 13;
8, (v4, v7) = 12; 7, (v3, v5) = 7; 2. The first weight
of an edge is related to the mutual distance of the
nodes in meters. The second weight is related to
the quality of working environment and it is given
in special weights according to Table 2.

 109

ICI Bucharest © Copyright 2012-2021. All rights reserved

Optimization of Sensor Network Topology Using Multiple Criteria

5. Conclusion

A simple algorithm, which is able to find a multi-
criteria spanning tree of a network graph, was
created, taking into account also the constraints
on the weights of the edges if these constraints are
needed. In smaller tasks the whole computation
can be done by hand, so there is no need to
use genetic algorithms, ant colonies and other
complicated approximation techniques. It is hoped
that this algorithm and the whole approach to
sensor network topology optimization using multi-
criteria spanning trees is a piece of contribution

to sensor networking theory as well as to the field
of operational research and network analysis. It
may help to carry out many useful experiments
and projects in the future.

Acknowledgements

This work was supported by a project KEGA
No. 019EU-4/2020 entitled “Support of distance
education through a virtual department” by the
Ministry of Education, Science, Research and
Sport of the Slovak Republic.

Figure 2. The multi-criteria spanning tree of the graph G = (V, E)

REFERENCES

Akyildiz, I. F., Weilian Su, Sankarasubramaniam, Y
& Cayirci, E. (2002). A survey on sensor networks,
IEEE Communications Magazine, 40(8), 102-114.
DOI: 10.1109/MCOM.2002.1024422

Andersen, K. A., Jörnsten, K. & Lind, M. (1996). On
bicriterion minimal spanning trees: An approximation,
Computers & Operations Research, 23(12), 1171–1182.

Borůvka, O. (1926). O jistém problému minimálním
(On a certain minimal problem). Práce Moravské
Přírodovědecké společnosti v Brně, 3, 37-58.

Cardoso, P. J. S. (2006). Ant Colony Algorithms for
Multiple Objective Combinatorial Optimization:
Applications to the Minimum Spanning Trees Problem.
PhD thesis, University of Seville.

Clímaco, J. & Pascoal, M. (2012). Multicriteria path
and tree problems: discussion on exact algorithms
and applications, International Transactions in
Operational Research, 19(1-2), 63-98.

Di Puglia Pugliese, L., Guerriero, F. & Santos, J. L.
(2015). Dynamic programming for spanning tree
problems: application to the multi-objective case,
Optimization Letters, 9(3), 437-450.

Ehrgott, M. (2005). Multicriteria optimization.
Springer-Verlag, Berlin, Heidelberg.

Graham, R. L. & Hell, P. (1985). On the History of
the Minimum Spanning Tree Problem, Annals of the
History of Computing, 7(1), 43-57.

Han, L. & Wang, Y. (2005). A Novel Genetic Algorithm
for Multi-criteria Minimum Spanning Tree Problem,
Computational Intelligence and Security, 297-302.

Kruskal, J. B. (1956). On the shortest spanning tree
problem of a graph and the travelling salesman
problem. In Proceedings of the American Mathematical
Society, 7(1), (pp. 48-50).

https://www.sic.ici.ro

110 Pavol Jurík, Peter Schmidt, Jaroslav Kultan

Levitin, A. (2007). Introduction to The Design and
Analysis of Algorithms, 316-344.United States of
America: Pearson Education, Inc.

Li, Y., Zou, C. Y., Zhang, S. & Vai, M. I. (2013).
Research on multi-objective minimum spanning tree
algorithm based on ant algorithm, Research Journal of
Applied Sciences, Engineering and Technology, 5(21),
5051-5056.

Liu, B.-H., Nguyen, N.-T., Pham, V.-T. & Wang, V.-S.
(2016). Constrained node-weighted Steiner tree based
algorithms for constructing a wireless sensor network
to cover maximum weighted critical square grids,
Computer Communications, 81, 52-60.

Moradkhan, M. D. & Browne, W. N. (2006).
A knowledge-based evolution strategy for the
multiobjective minimum spanning tree problem. In
2006 IEEE International Conference on Evolutionary
Computation (pp. 1391-1398).

Neumann, F. & Witt, C. (2010). Multi-objective
Minimum Spanning Trees, Bioinspired Computation
in Combinatorial Optimization, 149-159. Natural
Computing Series. Springer, Berlin, Heidelberg.

Prim, R. C. (1957) Shortest connection networks and
some generalizations, Bell System Technical Journal,
36, 1389-1401.

Ramos, R., Alonso, S., Sicilia, J. & Gonzalez, C.
(1998). The problem of the optimal biobjective
spanning tree, European Journal of Operational
Research, 111(3), 617-628.

Rohidh, V., Ranjith, G., Revathi, G. & Balaji, G.
2019) Centralised Status Alert System for Industrial
Machines, International Research Journal of
Engineering and Technology, 6(3), 3011-3015.

Sanger, A. K. & Agrawal, A. K. (2010). Comparison
of tree encoding schemes for biobjective minimum
spanning tree problem. In 2010 2nd IEEE International
Conference on Information and Financial Engineering
(pp. 233-236).

Steiner, S. & Radzik, T. (2008). Computing all efficient
solutions of the biobjective minimum spanning tree
problem, Computers & Operations Research, 35(1),
198–211.

Zhou, G. & Gen, M. (1999). Genetic algorithm
approach on multi-criteria minimum spanning tree
problem, European Journal of Operational Research,
114(1), 141-152.

