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Abstract 
 
Research background: Using the marginal means and contrast analysis of the target variable, 
e.g., claim severity (CS), the actuary can perform an in-depth analysis of the portfolio and fully 
use the general linear models potential. These analyses are mainly used in natural sciences, medi-
cine, and psychology, but so far, it has not been given adequate attention in the actuarial field. 
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Purpose of the article: The article's primary purpose is to point out the possibilities of contrast 
analysis for the segmentation of policyholders and estimation of CS in motor third-party liability 
insurance. The article focuses on using contrast analysis to redefine individual relevant factors to 
ensure the segmentation of policyholders in terms of actuarial fairness and statistical correctness. 
The aim of the article is also to reveal the possibilities of using contrast analysis for adequate 
segmentation in case of interaction of factors and the subsequent estimation of CS.  
Methods: The article uses the general linear model and associated least squares means. Contrast 
analysis is being implemented through testing and estimating linear combinations of model pa-
rameters. Equations of estimable functions reveal how to interpret the results correctly. 
Findings & value added: The article shows that contrast analysis is a valuable tool for segment-
ing policyholders in motor insurance. The segmentation's validity is statistically verifiable and is 
well applicable to the main effects. Suppose the significance of cross effects is proved during 
segmentation. In that case, the actuary must take into account the risk that even if the partial 
segmentation factors are set adequately, statistically proven, this may not apply to the interaction 
of these factors. The article also provides a procedure for segmentation in case of interaction of 
factors and the procedure for estimation of the segment's CS. Empirical research has shown that 
CS is significantly influenced by weight, engine power, age and brand of the car, policyholder's 
age, and district. The pattern of age's influence on CS differs in different categories of car brands. 
The significantly highest CS was revealed in the youngest age category and the category of luxury 
car brands. 

 
 
Introduction 
 
One of the primary tasks of the actuary is to calculate the pure premium so 
that the insurer (insurance company) covers, on average, the paid insurance 
benefits. In order to establish a tariff structure that reflects the various risk 
profiles in a portfolio, actuaries usually use econometric models. Those 
models include various classifying variables to create risk classes corre-
sponding to each risk profile. Standard industry practice for pricing risks in 
non-life insurance became general linear models (GLM) and generalized 
linear models (GzLM). They are now commonly used for estimating the 
pure premium through the frequency–severity approach, based on a priori 
characteristics of the insurance policy (Zahi, 2021).  

However, most non-life GLM and GzLM applications do not use con-
trast analysis, which allows for a deeper analysis of the impact of risk fac-
tors through testing and estimating linear combinations of model parame-
ters. The article aims to point out the use of contrast analysis for the seg-
mentation of policyholders and to estimate claim severity (CS).  

In the interest of actuarial fairness and statistical correctness, segmenta-
tion of policyholders will be understood as the creation of such segments 
which include categories of policyholders between which there are no sig-
nificant differences from the point of view of CS, and at the same time, 
there are demonstrable differences in CS between the segments. The article 
aims to answer the following research questions: 
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RQ1: Can the relevant categorical factor be redefined through contrast 

analysis in such a way as to ensure the segmentation of policyholders in the 

sense of the above definition? 

 

RQ2: Does segmentation, based on partial factors, which are appropriately 

set for the case of main effects, guarantee adequate segmentation even in 

the case of interaction of these factors? If not, how can contrast analysis be 

further used for segmentation in case of interaction of factors? 

 
RQ3: How to estimate CS for segments that were created based on contrast 

analysis? 

 
The software SAS is used for the contrast analysis associated with 

GLM, specifically the SAS EG, SAS JMP, and PROC GLM in the SAS 
programming language. Within PROC GLM, the research presented in the 
article is based on the analysis of marginal means (least-squares means) and 
contrast analysis using the CONTRAST and ESTIMATE statements, which 
are used for the above testing and estimation.  

The article shows that the analysis of marginal means and contrast anal-
ysis can be instrumental in the actuarial field, especially in motor insurance. 
The article presents a case study on a portfolio of 176,000 insurance con-
tracts from motor third-party liability (MTPL) insurance. The dataset was 
provided by an unnamed insurance company operating in Slovakia.  

In the next part of the article, we will provide an overview of scientific 
works that motivated us to research and use the methods listed in the Re-
search methodology section. The results themselves are presented in the 
Results section, divided into four subsections. The first part describes the 
input variables and verifies the model's assumptions. The second part deals 
with segmentation based on marginal means analysis and contrast analysis. 
The final model is constructed in the third, and its parameters are interpret-
ed. In the fourth part, testing and estimating linear combinations of GLM 
parameters are used to estimate claim severity in the case of risk factors 
interaction. 

 
 

Literature review 
 
In non-life insurance, two approaches are used to determine net premiums 
in general. The target variable is directly the loss per exposure (loss cost), 
or the number of claims per exposure (claim frequency — CF), and the 
average loss per claim (claim severity — CS) is modeled separately. Gold-
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burd et al. (2016) state that separate claim frequency and severity modeling 
leads to lower variance of the error term compared to directly modeled loss 
cost. In addition, in the case of separate analyses, we can reveal effects that 
could go unnoticed when modeling loss costs. The standard techniques of 
net premium determination with claim frequency and severity separate 
modeling assume independence between the frequency-severity compo-
nents. In reality, these components are largely dependent, especially in 
motor insurance (Su & Bai, 2020). However, some procedures can elimi-
nate the problem of correlation between the two components, and these 
were dealt with by Shi et al. (2015). The above facts motivated us to con-
sider separate modeling, while the article only focuses on the claim severity 
in MTPL insurance. 

Many actuaries use techniques based on regression and the analysis of 
variance in their scientific works to calculate motor insurance premiums. 
Popular models include generalized linear models, which have been used 
by De Azevedo et al. (2016), Frees et al. (2016), de Jong and Heller (2008) 
and Kafková and Křivánková (2014). Claim frequency is modeled fre-
quently by the Poisson regression model, and claim severity by the Gamma 
regression model (David, 2015; Duan et al., 2018). As David (2015) indi-
cates, generalized linear models allow for modeling a non-linear behavior 
and cases where residuals do not follow Gaussian (normal) distributions. 
This approach is very useful in non-life insurance, where claim frequency 
and claim severity follow asymmetric distributions, significantly deviating 
from the non-Gaussian distribution. The article uses the general linear 
model (GLM), a special case of the generalized linear model (GzLM). 
GLM and GzLM include statistical methods used to assess the effect of 
numerical continuous regressors and categorical factors on the target varia-
ble. The major difference is that GLM assumes that the error term is nor-
mally distributed, while GzLM does not require this assumption and allows 
for various other distributions that belong to exponential family distribu-
tions (Agresti, 2015; Fox, 2015). Although this fact favors GzLM models, 
in many cases a simple transformation of the target variable will solve the 
problem of violating homoscedasticity and normality, which allows the 
correct application of general linear models. 

For modeling frequency-severity components in vehicle insurance, tra-
ditional risk factors such as customer age, vehicle age, vehicle engine pow-
er (Kafková, 2015), and others or telematics factors such as distances driv-
en during a given period, the drivers’ habits and behavior are used. 
Telematics and traditional rate-making factors give better outcomes in in-
surance pricing (Ayuso et al., 2019). Unfortunately, we did not have such 
factors in our research. In addition to the above traditional factors, we also 
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used car brand and geographical location, whose significant impact on 
claim severity was demonstrated Fung et al. (2021).  

The main tools used in the presented research were marginal means and 
subsequent contrast analysis. For unbalanced data with a larger number of 
effects, either in the form of categorical factors or numerical covariates, 
group arithmetic means do not provide an adequate picture of the response 
of the target variable for the particular factor. The reason is that they do not 
consider other effects, which may lead to the Simpson paradox (Wang et 

al., 2018). Cai (2014) states that if the data are unbalanced, arithmetic 
means are not appropriate, because they do not consider that not all factors 
have the same chance of influencing the target variable. In such cases, it is 
appropriate to estimate the marginal means based on the model, in our case, 
on the GLM. Marginal means actually correct the imbalance. Marginal 
means are group means, assuming that the influence of other explanatory 
variables is fixed. The marginal mean is also referred to as the LS-mean 
(Least Squares mean, see (Goodnight & Harvey, 1997)) or the EM-mean 
(Estimated Marginal mean; see (Searle et al., 1980)). LS-means are pre-
dicted means calculated from the fitted model and adjusted appropriately 
for any other variable (Suzuki et al., 2019). 

The SAS software used in our analysis has the LSMEANS tool as part 
of the PROC GLM procedure. For example, IBM SPSS statistical software 
uses the EMMEANS tool, and the R software environment has created 
a special package for calculating marginal means (Lenth, 2016). It was 
originally called lsmeans, but its newer versions are called emmeans (Lenth 
et al., 2022). For comparing other software (see Tabachnick & Fidell, 
2013). 

Marginal means and contrast analysis are mainly used in the natural sci-
ences, e.g., in ecology and environmental science (Rivers et al., 2017; 
Quigley et al., 2018), in plant science (Byrne et al., 2017; Huzar-
Novakowiski & Dorrance, 2018), in biological science (Colin et al., 2018; 
Singh et al., 2015; Zhao et al., 2019), in the human sciences, e.g., in medi-
cine and sports medicine (Bae et al., 2017; Bergelt et al., 2020; Ennour-
Idrissi et al., 2016), and in psychology (Olivera-La Rosa et al., 2020), but 
their application in actuarial science is rare. While some scientific articles 
use marginal means analysis, the application of contrast analysis is much 
less widespread, even though it is a relatively simple and effective statisti-
cal method for testing the differences between groups of means (Šoltés et 

al., 2019). As Haans (2018) states, the reason for the occasional use of this 
method (despite its advantages) is that it is not implemented in a comforta-
ble way in many statistical software packages. 
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As mentioned, we use SAS software, but the contrast analysis proce-
dures are not specifically designed for SAS software but are also universal-
ly applicable in other software such as SPSS (George & Mallery, 2019; 
Haans, 2018), STATA (Haans, 2018), STATISTICA (de Sá, 2007), Stat-
graphics centurion (Statgraphics Technologies Inc., 2017), in the S-Plus 
system (Ugarte et al., 2008; Wicklin, 2018) or in the R environment (Schad 
et al., 2020; Tattar et al., 2016). In addition, the contrast analysis proce-
dures are not only used in GLM, but also in GzLM. According to Thomp-
son (2006), the CONTRAST statement allows many more sophisticated 
questions to be addressed by procedures such as PROC GLM, PROC 
MIXED, PROC GENMOD, etc.  
 
 
Research methods 
 
The research interest in our article, the general linear model, can be simpli-
fied as follows 
 

( )
ij

ijk i j ijkij
y

µ

µ α β αβ ε= + + + +
144424443

                             (1) 

  
where ijky  is k-th observation of the target (explained) variable Y in cell ij , 

i.e. at the i-th level of factor A and at the same time j-th level of factor B. 
We assume that the random errors ijkε  are independent of each other and 

identically distributed with the normal distribution ( )20,N σ  

Let us indicate ijµ  the mean of the target variable for i-th category of 

factor A and j-th category of factor B. The cell mean for cell ij  and is 

defined as the sum of the constant µ  (intercept), 
iα — factor A effect, jβ  

— factor B effect and ( )
ij

αβ which denotes the A and B interaction effect. 

In the application part of the article, more than two factors will be taken 
into account. The factors will be in the form of quantitative variables and 
others in the form of categorical variables.  

In terms of interpreting the results, it is important to note that in our 
research, we used factors with fixed effects (Searle & Gruber, 2017), and 
for categorical factors, we used indicator (dummy) coding (Darlington & 
Hayes, 2016). The interaction was based on the crossed classification 
structure (Littell et al., 2010). 
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In the case of indicator coding, the general linear model can be written 
in the form of a multiple regression model 

 

1 1 2 2ij j j k kj ijy x x xµ τ τ τ ε= + + + + +K                      (2) 

 
where 1 2, , , kX X XK  are dummy variables, while the variable jX  takes 

the value 1 for the observations from category j, otherwise, it takes the val-
ue 0. The parameter 

iτ  represents the difference between the mean in the i-

th category and the mean in the reference category (in our case the k-th) 
form 
 

i i kτ µ µ= −                                                 (3) 

 
while for the last parameter 0kτ = . Model (2) can be expressed by matrix 

notation as follows: 
 

y = Xβ + ε                                                  (4) 

 
Whether in indicator coding or effect coding, the parameter 

kτ  is a line-

ar combination of other parameters, 
iτ . In this case, the matrix X  is of 

non-full-rank, and a generalized inverse method is used to estimate the 
vector of parameters of the model (4), the result of which is an estimate 

 

( )T T−
b = X X X y                                          (5) 

 

where the matrix ( )T −
X X  is a generalized inverse matrix that must satisfy 

at least the first of the Penrose conditions (Searle & Gruber, 2017). In the 
application presented in this article, we use PROC GLM within SAS 
software, where g2-inverse is used (Wicklin, 2018). 

Although the estimation of the vector of parameters β  obtained by the 

generalized inverse method is not unique, there is a group of linear 
functions of the mentioned parameters, which we refer to as estimable 
functions, for which there is a single solution (Agresti, 2015; Littell et al., 
2010). Estimable functions Lβ  have several properties (Searle & Gruber, 

2017), and the following property will be important for our purposes 
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( ) ( )2 T T
Var εσ

− =
  

Lb L X X L                                   (6) 

 
The reader can find its proof in (Elswick et al., 1991; O’Brien, 2014). 
In non-full rank models, we can test general linear hypotheses 

0 :H =Lβ m , while Lβ   must be an estimable function. General linear 

hypotheses and testable hypotheses are discussed in more detail in 
(McFarquhar, 2016; Poline et al., 2007; Searle & Gruber, 2017). A special 
case of general linear hypotheses is the case when =m 0 . In such situation, 
to test the null hypothesis 

 

0 :H =Lβ 0                                              (7) 

 
uses an F-test or a t-test. For the F-test numerator, the sum of squares is 
calculated (SAS Institute Inc., 2017) 
 

( ) ( ) ( ) ( )
1

T T T
0 :SS H

−− = = ⋅ ⋅  
Lβ 0 Lb L X X L Lb                   (8) 

 
which has degrees of freedom l  expressing the number of independent 
rows of the matrix L . The test statistic is then given by formulae 
 

( )0 :SS H

lF
SSE

n p

=

=

−

Lβ 0

                                     (9) 

 
whereas the sum of squared errors can be calculated according to the rela-
tion 
 

T T
SSE −= y y y Xb                                   (10) 

 

and 
SSE

n p−
 is an unbiased estimate of the residual variance, and thus the 

following applies 
 

��
�� = ��� =

		


��

                                    (11) 
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We reject the null hypothesis if the value of the test statistic satisfies the 
inequation 
 

( )1 ;F F l n pα−> −                                       (12) 

 
The test mentioned above is used to verify simple hypotheses (if 1l = ), 

and also to simultaneously test multiple hypotheses (if 2l ≥ ). To verify 
simple hypotheses, of course, a t-test is also used, or alternatively, an inter-
val estimate is constructed as well (Kuznetsova et al., 2017; Westfall & 
Tobias, 2007). 

If we use a multi-categorical factor in the general linear model and want 
to verify whether there is a significant difference between the different 
pairs of categories of the relevant factor in terms of target variable mean, 
then we use Multiple Comparison Methods (Lee & Lee, 2018; Rafter et al., 
2002; Rahardja, 2020). Various multiple comparison methods are known, 
and for our purposes the suitable ones are those that perform pairwise com-
parisons of the target variable means 

i iµ µ ′=  for all pairs of factor catego-

ries. In these tests, all pairwise comparisons form the so-called family. If we 
perform all paired tests at the same level of significance α  (i.e., at the 
same type I error), then it is desirable that for such a family the probability 
of the incorrect rejection of at least one of the null hypotheses is also at 
level α . This probability is called familywise error rate (FWER). Some 
tests have FWER under control, which means that if individual tests are 
performed at the significance level α , then also FWER α= . Other tests 
are conservative ( FWER α< ) or liberal ( FWER α> ). In the application, 
we use the Tukey-Kramer test (hereinafter referred to as the "T-K test"). It 
is a modification of Tukey's test, also known as Tukey's HSD (Honestly 
Significant Difference) or Tukey's WSD (Wholly Significant Difference) 
test. 

Although Tukey's test has the FWER under control, it is only suitable 
for balanced data. The T-K test allows proper testing even for unbalanced 
data. However, according to Rafter et al. (2002) the T-K test is slightly 
conservative. In addition, some configurations of imbalance and heterosce-
dasticity may cause greater conservatism in the Tukey-Kramer test 
(Herberich et al., 2010). The T-K test is based on standardized pairwise 
differences (SAS Institute Inc., 2018) 

 

( )
ˆ

i i

ii

ii

y y
t

σ
′

′
′

−
=                                           (13) 
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where 
iy  and 

iy ′  are the means or LS-means for category i  and category 

i ′ , 2ˆ
iiσ ′  is the estimated variance of the difference ( )i iy y ′− , calculated 

for LS-means according to equation (6), whilst the variance 2
εσ  is substi-

tuted by its estimate given by equation (11). 
The critical area for the T-K test is defined by the inequality 
 

( );

2
ii

q k
t

α ν
′ ≥                                          (14) 

 
where ( );q kα ν  is a critical value for the significance level α , which is 

commonly tabulated and depends on k  — the number of compared factor 
categories and ν  — the degrees of freedom for SSE. 
 
 
Results 
 

Data description, a verification of assumptions and the transformation of 

the target variable 

 
The presented analyses are based on a database provided by an unnamed 
insurance company for MTPL insurance for a period of approximately 4.5 
years, more precisely from 1 January 2016 to 15 June 2020. The database 
contained almost 176,000 insurance contracts relating to passenger cars for 
everyday use, of which, only those on which there were claims and had 
records of regressors, which we used in the general linear model, were en-
tered into the analysis. 7,776 insurance contracts were included in the anal-
ysis, which represented approximately 4.4% of the original set. 

The target variable in our analysis is claim severity (CS). Due to the fact 
that the durations of the insurance contracts were different, the number of 
insurance benefits for each insurance contract on which an insured event 
was recorded in the observed period was proportionally converted to a cal-
endar year (more precisely, 365 days). Thus, such a standardized explanato-
ry variable was included in all analyses. As we expected, the distribution of 
the CS was strongly skewed to the right. Residuals of the preliminary mod-
el for the target variable CS, therefore, showed a significant deviation from 
the normal distribution and, in addition, a high degree of heteroscedasticity. 
We solved this problem by the logarithmic transformation of the explained 
variable CS (Figure 1 and Figure 2). 
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From a regression analysis point of view, we will further analyze the 
logarithmic-linear model  

 

0 1 1 2 2ln k kCS x x xβ β β β ε= + + + + +L  

 
in which we considered variables related to the insured car as regressors 
(variables marked name_C), namely 4 quantitative variables: 
− Weight_C – car weight (in kg), 
− Volume_C – engine volume (in cm3), 
− Age_C – age of the car (in years), 
− Engine_C – engine power of the car (in kW) 
− and one categorical factor 
− Brand_C – the car brand. 

In addition, two explanatory variables characterizing the policyholder 
were included in the analysis, namely his or her age and the district in 
which the policyholder has permanent residence. 

Our analysis revealed that the engine volume alone had a significant ef-
fect ( 0.0047p = ) on the target variable, but its correlation with engine 

power ( 0.6657r = ; 0.0001p < ), led to the fact that the inclusion of the 

Volume_C variable was not confirmed ( 0.9822p = ) in the full model. In 

addition, engine volume has been shown to have contributed most signifi-
cantly to multicollinearity ( 3.0085Variance Inflation Factor = ). According 

to Kim (2019) multicollinearity is present when the VIF is higher than 5 to 
10 or the condition indices are higher than 10 to 30. After excluding the 
Volume_C factor from the model, the VIF did not exceed 2, and the condi-
tion number (maximum condition index) decreased from value 

23.873jη =  to the value 19.117jη = . Although the condition number was 

still above level 10, two or more variance decomposition proportions corre-
sponding to condition indices higher than 10 to 30 were not identified, 
which would exceed 80%, which would identify that multicollinearity is 
present between the explanatory variables corresponding to the exceeding 
variance decomposition proportions (Kim, 2019). This shows that after 
excluding the variable Volume_C, there is no evidence of collinearity 
among the variables.  

We will add a note to the question of engine volume vs. engine power. It 
is clear that the engine power compared to the engine volume includes 
more relevant information on the dynamic characteristics of the car, which 
have an impact on the claim amount. Today, car dynamics cannot be ade-
quately assessed by engine volume, e.g., also due to the so-called downsiz-
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ing (reducing engine volume while maintaining performance) or due to an 
increase in the penetration of electric cars and hybrids into the automotive 
market. 

 
Segmentation based on the analysis of marginal means 

 
Apart from marketing strategies, the segmentation of policyholders 

should be statistically demonstrable. Although modeling is common in this 
area, less attention is paid to the use of marginal means analysis, which is 
based on the relevant model, whereas this kind of analysis provides an ef-
fective and correct tool for segmentation. In our analysis, we used the SAS 
programming language and the LSMEANS and CONTRAST statements 
within the PROC GLM procedure (Dean et al., 2017; Kim & Timm, 2006; 
Littell et al., 2010; Schad et al., 2020). We divided the original continuous 
variable Age of the policyholder into six categories: up to 25 years (inclu-
sive), 25–35, 35–45, 45–55, 55–65, and more than 65 years old. Based on 
the tests for the difference between the marginal means of the target varia-
ble for all pairs of age categories (Table 1), we find that at the significance 
level of 0.05 there are no statistically significant differences between the 
age categories 55–65 and 65+ ( 0.5747p = ) and between individual pairs of 

3 age categories: 25–35, 35–45, and 45–55 ( 0.0613p = , 0.1944p = , 

0.4303p = ).  

This means that we do not have enough evidence to be able to assume 
a different claim severity in the age categories 55-65 and 65+, and therefore 
we will merge these two age categories. However, regarding the age groups 
25-35, 35-45, and 45-55, it is necessary to verify the hypothesis 

 

0 2 3 4:H µ µ µ= =  

 
We emphasize that the failure to reject the equality of individual pairs of 

means does not yet entitle us to assume the equality of the above 3 means. 
To verify the null hypothesis, we will use the simultaneous testing of 2 
hypotheses, e.g., these two hypotheses 

 

0 3 4:H µ µ=      ∧      ( )0 2 3 4

1
:

2
H µ µ µ= +  

 
which we will rewrite into linear combinations 
 

0 3 4: 0H µ µ− =      ∧      0 2 3 4: 0,5 0,5 0H µ µ µ− − =  
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The coefficients at means can be used directly in the CONTRAST 
statement. When testing multiple hypotheses simultaneously, linear combi-
nations are separated by a comma within a single CONTRAST statement. 
The statement to simultaneously test the above hypotheses then has the 
notation: 
 

CONTRAST 'Age 2=3=4' Age_cat  0  0  1  -1,  Age_cat  0  1  -0.5  -0.5; 
 
and its result is in Table 2. 

Since we do not reject the null hypothesis ( 0.1707p = ), we will contin-

ue to consider the age category 25–55 (merging categories 25–35, 35–45, 
and 45–55). Next, we will thus work with the Age_cat factor, which has 
three categories: A — up to 25 years (inclusive), B — from 25 to 55 years 
(inclusive), and C — over 55 years. 

We also applied the procedure of reducing factor categories to other 
multi-categorical factors for which a significant effect on CS was con-
firmed. There were two factors, namely the district and the car brand. From 
79 districts of the Slovak Republic, we created four categories of districts 
(A to D), and from the 45 brands of passenger cars, that were included in 
the database, we obtained four categories of vehicles (A to D). In the case 
of all the categorical factors, we arranged the new categories in descending 
order in terms of CS. Using the above procedure, we created categories for 
each of the considered factors (Age_cat, Brand_C, and District_cat), 
among which there were significant differences in terms of claim severity, 
while for marginal means the following relation applies  

 

A B Cµ µ µ> >      or alternatively     
A B C Dµ µ µ µ> > >  

 
which is confirmed by Figures 3–5.  
 
General linear model with interaction 

 
In our analysis, the interactions between the explanatory variables were 

also assessed, and we found that at a significance level of 0.05, the interac-
tion between the Age_cat and Brand_C factors is statistically significant. It 
means that for different categories of car brands, the pattern of age’s influ-
ence on CS may vary. However, in the model with interaction, the influ-
ence of the Age_cat factor itself has not been confirmed ( 0.7109p = ), and 

therefore the Age_cat factor is further incorporated in the considered model 
only through the interaction. The statistical significance of the influence of 
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individual regressors is verified in Table 3. Note that in Table 3, a Type IV 
SS is used to verify the significance of the effect of the particular factor 
because the table for sorting the set according to the considered categorical 
factors listed in Table 3 contained empty cells and in this case the use of the 
commonly used Type III SS would not be correct (Kuznetsova et al., 2017; 
LaMotte, 2020). 

The estimation of the parameters of the general linear model with re-
gressors (including interaction), which are given in Table 3, provides the 
output in Table 4. The parameters of the model were estimated by the gen-
eralized inverse method, therefore the estimates of regression coefficients 
for the categories of factors are not unique, which is indicated by the letter 
B at the relevant parameters. The parameters, of course, depend on the 
choice of the reference category of the factor, but when changing the refer-
ence categories, we obtain equivalent results, which lead to the same esti-
mates of the marginal means. 

To quantify the impact of individual factors on the claim severity, it is 

necessary to convert the estimate of the model 0 1 1
ˆ ˆ ˆˆln i i k iky x xβ β β= + + +K  

into the form ( ) ( ) ( )1 2
0 1 2

ˆ ˆ ˆ ˆˆ
i i

ik
k

x x x

iy e e e e
β β β β= ⋅ ⋅ ⋅ ⋅K . In the additive model, 

the influence of reference categories is at the level "0" (see Table 4), which 
is transformed into the value 0 1e =  in the multiplicative model. Based on 
the above transformation, using the parameter estimates from Table 4, we 
get 

 
��� = 133.7147 ⋅ �1.001785������� ⋅ 0.999895����ℎ� ⋅ 1.010698��� ⋅ 

       ⋅ 4.7829���� !� ⋅ 1.6220���� !� ⋅ 1.1918���� !" ⋅ 

       ⋅ 1.8451#�$���%�!� ⋅ 1.4712#�$���%�!� ⋅ 1.2787#�$���%�!" ⋅ 

       ⋅ 0.2943���_%��!�∧���� !� ⋅ 2.8938���_%��!�∧���� !"

⋅ 3.4337���_%��!�∧���� !# ⋅ 

       ⋅ 0.6343���_%��!�∧���� !� ⋅ 1.0323���_%��!�∧���� !�

⋅ 1.1933���_%��!�∧���� !" ⋅ 

       ⋅ 1.2667���_%��!�∧���� !# 
 
After the exponential transformation of the estimated intercept, we ob-

tain a value of € 133.71, which can be understood as the basic claim severi-
ty, which, however, has no logical interpretation because it applies to an 
insured vehicle with zero power, zero weight and zero for driver’s age, 
further, for a vehicle from the group of brands D, from the group of dis-
tricts D, and for a policyholder in the age category C (over 55 years old). 
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Subsequently, we will interpret the regression coefficients, more pre-

cisely 
ˆ

je
β

, under the ceteris paribus assumption, i.e., under the condition 
that the other factors considered in the model remain unchanged. If the 
engine power increases by 1 kW, the claim severity increases by 0.1785%, 
and an increase in engine power by 10 kW results in an average increase of 

1.80% [ ( )10
1.001785 1.0180= ]. With an increase in vehicle weight of 100 

kg, the claim severity will be reduced by 1.04% on average                                  

[ ( )100
0.999895 0.9896= ]. An increase in the car's age by one year will 

cause an average increase in claim severity of 1.07%. 
Let us now look at the influence of the District_cat factor, which is not 

in interaction with other factors. As we have already mentioned, the riskiest 
in terms of claim severity are districts in category A, followed by districts 
in categories B and C, and we have quantified the smallest claim severity in 
the category of districts D. Compared to the districts in category D, districts 
in category A, have on average, 84.51% higher claim severity, and districts 
B and C have, compared to the reference category (category D), claim se-
verity higher by 47.12%, and 27.87%, respectively. 

Since there is an interaction between the Age_cat and Brand_C factors, 
the influence of these factors can be calculated from the exponential bases 
for the Brand_C factor and for their interaction. In the 4.5-year period thus 
far, the insurance company has not had any insurance contract with a loss 
in group AA, and therefore this cell is empty. There was only one observa-
tion in group AB, so we also have insufficient information in this group. If 
we look away from these two groups, in Table 5 it is clear that we have 
estimated the highest claim severity for policyholders under the age of 25 
and for vehicles in group A. In the corresponding groups (AC, AD, BA, 
and CA), the claim severity is more than three times higher (3.034 times to 
4.783 times higher) than in the CD group, which includes insurance con-
tracts in which the policyholder is over 55 years old, and the insured car 
belongs to the category of brands D. The CD group is the least risky in 
terms of claim severity. However, when interpreting these results, the in-
surance company must be careful and take into account the size of the sam-
ple. 

Since the up to 25 years old age category and the brands of cars belong-
ing to category A, where luxury brands were included by the above proce-
dure, have a low count (only 0.5% of the whole set; Table 6), it is important 
to look at the relevance of the results for these categories. 
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The estimate of claim severity for groups determined by the Age_cat 

× Brand_C interaction 

 
Tests of pairwise comparisons of LS-means for individual pairs of 

groups, which have arisen based on the interaction Age_cat × Brand_C 
(Table 7), show that within age category B (25-55 years old, blue matrix of 
p-values) and within age category C (55+, green matrix of p-values) at 
a significance level of 0.05 there are significant differences between differ-
ent categories of car brands. However, for age category A (up to 25 years 
old; yellow matrix of p-values), differences in claim severity for the cars’ 
categories B, C and D ( 0.1027p = ; 0.1159p = ; 0.9937p = ) are not con-

firmed and group AA is even empty. 
Until the insurance company has a sufficient number of observations to 

show significant differences in LS-means of claim severity for different 
categories of car brands within the age group of policyholders under 25 
years old, it is reasonable to assume the same claim severity. We also con-
firmed the insignificant difference in LS-means of claim severity across the 
age category of policyholders up to 25 years old by a test of equality of 
marginal means in these three groups (AB, AC, AD; 0.2563p = ). In Table 

7, we see that the AC and AD groups, in particular, are very similar to the 
BA and CA groups, while there are no significant differences at signifi-
cance level of 0.05 between any pair formed from these four groups. This 
also applies to the AB group, however, it is not so convincing there. How-
ever, since there was only one observation in this group, we will also assess 
it together with the AC and AD groups, even on the basis of not rejecting 
the hypothesis 0 : AB AC ADH µ µ µ= = . To test the null hypothesis 

 

0 : AB AC AD BA CAH µ µ µ µ µ= = = =  

 
the simultaneous testing of four null hypotheses is required, e.g., these: 
 

0 : AB ADH µ µ=   ∧   ( )0 : ,
AB AD AC

H µ µ µ µ=   ∧  

∧   ( )0 : , ,
BA AB AC AD

H µ µ µ µ µ=   ∧   ( )0 : , , ,
CA AB AC AD BA

H µ µ µ µ µ µ=  

 
For each of the null hypotheses, it is necessary to determine the coeffi-

cients that will enter the CONTRAST statement. We proceed by rewriting 
the null hypotheses in the form of a linear combination. We will show this 
only for the example of the last (fourth) hypothesis: 
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( )0 : , , ,
CA AB AC AD BA

H µ µ µ µ µ µ=  

 

which we will rewrite as follows  ( )1
0

4CA AB AC AD BAµ µ µ µ µ− + + + = , and 

further adjust it to a linear combination 
 

0.25 0.25 0.25 0.25 0AB AC AD BA CAµ µ µ µ µ− ⋅ − ⋅ − ⋅ − ⋅ + =  

 
Here it is important to emphasize that into the CONTRAST statement 

we do not enter coefficients at means but coefficients at effects (Littell et 

al., 2010). While in the model without interaction, the coefficients at the 
effects and the coefficients at the means are identical, in the case of the 
model with the interaction, this does not apply, and the tested means should 
be overridden through the effects (using relation (1)). An easier way is to 
create a contingency table (Table 8). In its field, we write the coefficients 
from the above linear combination. However, we must realize that the AA 
cell is empty in our case. 

In the sum row we get the coefficients for the factor Brand_C, in the 
sum column, we calculate the coefficients for the factor Age_cat, and the 
sum of all the coefficients (the cell in the lower right corner) represents the 
coefficient for the intercept. Because the Age_cat factor itself is not includ-
ed in our model, the corresponding coefficients (in the sum column) will 
not be used in the CONTRAST statement. In Table 8 are determined the 
coefficients for the fourth partial hypothesis, and similarly, we would de-
termine the coefficients for the first three hypotheses ( 0 : AB ADH µ µ= ; 

( )0 : ,
AB AD AC

H µ µ µ µ= ; ( )0 : , ,
BA AB AC AD

H µ µ µ µ µ= ) 

The resulting statement has the following syntax: 
 
CONTRAST 'AB=AC=AD=BA=CA' 

Brand_C  0  1  0  -1  Age_cat*Brand_C  1  0  -1, 
Brand_C  0  0.5  -1  0.5  Age_cat*Brand_C  0.5  -1  0.5, 
Brand_C  1 -0.333  -0.333  -0.333  Age_cat*Brand_C  -0.333  -0.333  
-0.333  1, 
Brand_C  1  -0.25  -0.25  -0.25  Age_cat*Brand_C  -0.25  -0.25  -0.25  
-0.25  0  0  0  1; 

 
Statements for partial hypotheses are separated by a comma. Figure 6 is 

the output from the SAS JMP software, which shows a matrix L  for veri-
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fying the general linear hypothesis (7), the result of the partial t-tests, and 
the overall F-test (9). 

Based on the stated p-values ( 0.1159p = ; 0.1600p = ; 0.2908p = ; 

0.1214p = ) at a significance level of 0.05, we do not reject the above-

mentioned partial null hypotheses. However, the overall result is a p-value 
of 0.4661, which leads us to conclude that we cannot reject the equality of 
the means 

AB AC AD BA CAµ µ µ µ µ= = = =  at any commonly used level of 

significance. 
Let us assume that the current representation of groups AB, AC, AD, 

BA, and CA, which can be expressed by the ratio 2:31:12:40:15, will not 
change in the future. Then, to estimate the LS-mean of claim severity for 
the cluster of groups AB, AC, AD, BA, and CA, we use the ESTIMATE 
statement (Dean et al., 2017; Littell et al., 2010; SAS Institute Inc., 2018), 
in which we consider the above weights. These weights are the coefficients 
for the Age_cat × Brand_C interaction and are listed in Table 9. 

As with the CONTRAST statement, the sum row and the sum column 
also now contain the coefficients for the Brand_C and Age_cat factors, 
respectively. However, unlike the CONTRAST statement, the weight for 
the intercept is non-zero and has a value of 100. Since the intercept (grand 
mean) only needs to be counted in once and other effects need to be count-
ed in proportionally, the ESTIMATE statement uses the Divisor option 
with a constant of 100. 

 
ESTIMATE 'mean_w(AB, AC, AD, BA, CA)' 

intercept  100  Brand_C  55  2  31  12 
Age_cat*Brand_C  2  31  12  40  0  0  0  15/divisor=100; 

 
This statement generates the output in Table 10. After taking into ac-

count the above weights, the point estimate of the claim severity mean for 
the cluster of groups AB, AC, AD, BA, and CA has the value 

 
6.4025 603.35e =  € 

 
We can also calculate an interval estimate using the standard error from 

the Table 10. 95% confidence interval is  
 

( )6.4025 1.96 0.19825 6.4025 1.96 0.19825;e e
− ⋅ + ⋅  

( )409.08; 889.89  
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To interpret this result correctly, let us look at an estimable function. In 
the general form of an estimable function, the coefficients for a reference 
category of a categorical factor are a linear combination of the coefficient 
at the intercept and the coefficients at the other categories of the factor. 
Since the Age_cat factor has a reference category of C, all categories that 
include the C category of the Age_cat factor are referenced for the Age_cat 

× Brand_C interaction. We can see this fact in Table 4, where there are 
zero regression coefficients for categories CA, CB, CC, and CD. Thus, for 
the Age_cat × Brand_C interaction, not 12 coefficients (3 categories of the 
Age_cat factor × 4 categories of the Brand_C factor) are determined for the 
estimable function, but only 7, because the AA category was empty and the 
coefficients for the 4 categories (CA, CB, CC, and CD) are a linear combi-
nation of other coefficients. In Table 4, there is a model with 23 parame-
ters, but 6 (category D of Brand_C factor, category D of District_cat factor, 
and 4 mentioned categories of Age_cat × Brand_C interaction) are zero 
because they are a linear combination of other parameters. These linear 
combinations are written in the general form of an estimable function (see 
Table 11): 

 

( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )

1 2 3 4

5 6 7 1 5 6 7

9 10 11 1 9 10 11

13 14 15

16 17 18 19

9 16 10 13 17 11 14 18

A B C D

A B C D

AB AC AD

BA BB BC BD

CA CB CC

L L Engine L Weight L Age

L L L L L L L

L L L L L L L

L L L

L L L L

L L L L L L L L

L

µ
α α α α
γ γ γ γ

βγ βγ βγ

βγ βγ βγ βγ

βγ βγ βγ

= + + + +
+ + + + − − − +

+ + + + − − − +

+ + + +

+ + + + +

+ − + − − + − − +

+

Lbo

( )( )1 9 10 11 15 19 CD
L L L L L βγ− − − − −

 

 
whereas we used the symbols 

iα , j
β  a 

lγ  for the District_cat, Age_cat 

a Brand_C factors to shorten the notation. Using the CONTRAST and ES-
TIMATE statements, we can test or estimate any linear combination that 
satisfies the above relation, where the values of the 17 coefficients can be 
any real numbers. In the case of the ESTIMATE statement, which we used 
to estimate the weighted marginal mean ( ), , , ,

AB AC AD BA CA
µ µ µ µ µ µ , the 

estimable function has the form: 
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( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 0 0 0

0.25 0.25 0.25 0.25

0.55 0.02 0.31 0.12

0.02 0.31 0.12

0.4 0 0 0

0.15 0 0 0

A B C D

A B C D

AB AC AD

BA BB BC BD

CA CB CC CD

Engine Weight Ageµ
α α α α
γ γ γ γ
βγ βγ βγ

βγ βγ βγ βγ

βγ βγ βγ βγ

= ⋅ + ⋅ + ⋅ + ⋅ +
+ ⋅ + ⋅ + ⋅ + ⋅ +
+ ⋅ + ⋅ + ⋅ + ⋅ +
+ ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ + ⋅

Lbo

 

 
The coefficients of this function are generated using option E within the 

ESTIMATE statement. While in the ESTIMATE statement, we used inte-
ger coefficients, and we divided them by the value 100 using the option 
DIVISOR = 100, the coefficients of the estimable function are already in 
the form of decimal numbers (after dividing by the value 100). Let us note 
that the coefficients for the continuous variables Engine, Weight, and Age 
are zero, and the coefficients for factor variations 

iα  (District_cat) are all 

the same (with a value of 0.25), thereby eliminating the influence of this 
factor and considering the average value across all the categories of the 
District_cat factor. This is important for the correct understanding of the 
point and interval estimate we obtained above. These are, therefore, esti-
mates of the claim severity, adjusted for the effect of other continuous nu-
merical variables and averaged across all the categories of categorical fac-
tors included in the GLM. Estimates of claim severity for all groups deter-
mined by the Age_cat × Brand_C interaction (adjusted for the effect of the 
continuous variables Engine, Weight, and Age and averaged across all cate-
gories of the District_cat factor) are given in Table 12. The youngest poli-
cyholders have the largest CS mean (category A of Age_cat factor; up to 25 
years (inclusive)) and luxury car brands (category A of Brand_C factor). At 
the same time, these categories have the largest standard error of the esti-
mate, which was reflected in the widest interval estimate. (409.1-889.1; see 
Table 12). On the contrary, we found the smallest CS mean and the small-
est standard error of estimate in the CD group of Age_cat × Brand_C inter-
action, which includes insurance contracts in which the policyholder is over 
55 years old, and the insured car belongs to the category of brands D. 

Let us note that the ESTIMATE statement can also be used to estimate 
the claim severity for any contract, the profile of which is characterized by 
specific values of relevant factors contained in the model, estimated in Ta-
ble 4. 
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Discussion  
 
A recent topic in non-life insurance is being investigated on improving the 
original tariffs based on GLMs. Several researchers and actuaries are reach-
ing for machine learning methods such as neural networks (Burka et al., 
2021; Staudt & Wagner, 2021), tree-based methods (Burka et al., 2021; 
Staudt & Wagner, 2021; Henckaerts et al., 2021) and gradient boosting 
machines (Henckaerts & Antonio, 2022; Henckaerts et al., 2021). Burka et 

al. (2021) found in their empirical research that all the separate models 
(GLM, GAM, Random forest, Neural network) showed good figures; how-
ever, the best model was a mixture of them. Staudt and Wagner (2021) 
came to a similar conclusion when in their analysis, no model (GLM, 
GAM, Random forest) was outperforming the other ones throughout all the 
criteria. Henckaerts et al. (2021) state that the gradient boosting machine 
can be used to discover the important variables and interactions between 
those variables, which can then be included in a GLM for deployment. 
Although machine learning methods achieve good results, several research-
ers recommend these methods to improve GLM. Thus, GLM continues to 
have an irreplaceable position in non-life insurance, especially in motor 
insurance. The article shows that GLM provides much more information 
than is presented in scientific works in the actuarial field. This valuable 
information can be obtained by contrast analysis and subsequently used for 
segmentation and prediction.  

The current article points out the possibilities of using contrast analysis 
in the segmentation of policyholders and the estimation of claim severity 
based on actual data from 7,776 insurance contracts from MTPL insurance 
of passenger cars for common use. In addition, it is about the insurance 
contracts with a loss within the entire portfolio of approximately 176,000 
insurance contracts. An unnamed insurance company provided these data 
for a period of approximately 4.5 years. The presented results are based on 
our application of a GLM with fixed effects with a crossed classification 
structure. We must emphasize that indicator coding of multi-categorical 
factors was used, which we considered when interpreting the results. The 
specifics of other coding methods and corresponding interpretations are 
provided by Darlington and Hayes (2016). 

The GLM parameters were estimated by the least-squares method. Sev-
eral multi-categorical factors entered the model as the regressors, so the 
matrix TX X  had a non-full rank, and we had to use the generalized inverse 
method. Since the distribution of residuals was significantly skewed to the 
right, and the variance of residuals was heteroscedastic, we used a loga-
rithmic transformation of the target variable. Note that in the insurance 
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claim severity modeling, the log-normal distribution is traditionally applied 
in GLM (Frees et al. (Eds.), 2014). We obtained a model in which homo-
scedasticity was not violated, and the deviation of the empirical residuals 
from the normal distribution was minimal. Since the sample was relatively 
large, we could rely on a central limit theorem, which means least squares 
estimates have an asymptotically normal distribution (Wooldridge, 2013). 

Another practical problem we had to deal with was a large number of 
categories of some of the considered factors. We verified between which 
categories of the particular factor there are no significant differences based 
on the LS-means (marginal means) using the Tukey-Kramer test. The anal-
yses presented in the article are based mainly on contrast analysis.  

Let us look at the main findings based on our statistical analyses. We 
found that claim severity is significantly affected by engine power, weight, 
age, the brand of the car, the policyholder's age, and the district in which 
the policyholder resides. Besides these regressors, we also considered the 
engine volume, which was correlated with the engine power and signifi-
cantly contributed to the multicollinearity. Therefore, it was excluded from 
the model. Of these factors, it had the most significant impact on the car’s 
age and brand, the policyholder's age, and the district. The influence of 
these factors on the claim of severity was also confirmed by Fung et al. 
(2021). Henckaerts and Antonio (2022), like we, found that a car's brand 
and geographical location are among the factors that largely determine CS. 
At the same time, however, they found that the most fundamental influence 
is the vehicle's weight. This factor turned out to be significant, but less sub-
stantial, in our analysis, which may be due to the fact that we only consid-
ered passenger cars, while Henckaerts and Antonio (2022) analyzed all 
vehicle categories. 

 We used the analysis of marginal means and simultaneous testing to re-
duce the number of categories of categorical factors. Based on these anal-
yses, the Age_cat factor (the age category of the policyholder) was created 
with three categories, while the significantly highest claim severity (under 
the ceteris paribus assumption) was quantified in the youngest age category 
(up to 25 years old) and the lowest in the oldest policyholders’ category 
(over 55 years old). The higher claim severity in the young policyholders’ 
segment was also detected Fung et al. (2021) and Staudt and Wagner 
(2021). Our finding is consistent Henckaerts et al. (2018) findings, who, 
based on the MTPL insurance portfolio from a Belgian insurer in 1997, 
concluded that very young drivers are involved in more severe car acci-
dents. At the same time, they found that the average claim cost starts to 
increase for policyholders older than sixty rapidly. Which explained the 
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assumption that older policyholders drive more expensive cars and repair-
ing costs increase.  

In contrast to Henckaerts et al. (2018), we had data on car brands and 
confirmed that luxury cars have significantly higher average claim costs 
than common cars. Henckaerts and Antonio (2022) came to a similar con-
clusion, arguing that some more expensive brands lead to higher severities. 
The Brand_C factor included 45 car brands, and their analysis led us to 
create four statistically significantly different (in terms of claim severity) 
categories. The riskiest category includes luxury car brands. From the 79 
districts of the Slovak Republic, we created 4 clusters of districts using the 
above analyses. In the case of the Age_cat factor and the Brand_C factor, 
the little numerous riskiest group was created, which in both cases included 
only 0.5% of insurance contracts with a loss. Our analysis showed that even 
though the insurance company has a large insurance portfolio (in our case, 
there were approximately 176,000 insurance contracts, of which 7,776 had 
a loss), some tariff classes may have a low count. This risk increases with 
the number of categories of tariff factors. Despite reducing the categories of 
the above three multi-categorical factors, we did not avoid this problem 
either.  

In the analysis, we also assessed the interactions between the explanato-
ry variables. We revealed that the influence of the car brand on claim sever-
ity is different in different age categories of policyholders. Among other 
factors, no significant interaction was confirmed. Thus, in addition to the 
regressors mentioned above, the final model also includes the interaction 
between the Age_cat and Brand_C factors. After the backward transfor-
mation of the logarithmic-linear model, we obtained an estimate of the 
model in exponential form: 

 
��� = 133.7147 ⋅ �1.001785������� ⋅ 0.999895����ℎ� ⋅ 1.010698��� ⋅ 

       ⋅ 4.7829���� !� ⋅ 1.6220���� !� ⋅ 1.1918���� !" ⋅ 

       ⋅ 1.8451#�$���%�!� ⋅ 1.4712#�$���%�!� ⋅ 1.2787#�$���%�!" ⋅ 

       ⋅ 0.2943���_%��!�∧���� !� ⋅ 2.8938���_%��!�∧���� !"

⋅ 3.4337���_%��!�∧���� !# ⋅ 

       ⋅ 0.6343���_%��!�∧���� !� ⋅ 1.0323���_%��!�∧���� !�

⋅ 1.1933���_%��!�∧���� !" ⋅ 

       ⋅ 1.2667���_%��!�∧���� !# 
 

In the riskiest group of the policyholders in terms of policyholder's age 
and the vehicle's brand, i.e. in the group of policyholders up to 25 years old 
with a car from category A (group -25A), we did not have any information, 
so we abstracted from this group. With simultaneous testing, we found out 
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that the insurance company did not have enough evidence to be able to 
assume a different claim severity among groups -25B, -25C, -25D, 25-55A, 
and 55+ A, i.e., that in the riskiest age category — up to 25 years old 
(across categories of car brands B, C, and D) as well as in the riskiest cate-
gory of car brands — the category of brands A (across age categories 25-55 
years old and 55+), we can assume the same claim severity. 

We revealed this for five groups (-25B, -25C, -25D, 25-55A, and 55+ A) 
using the ESTIMATE statement at a level of 603.35 Euros, while using 
weights based on the proportional representation of individual groups in the 
empirical set, that is, assuming that this ratio replicates the ratio in the hy-
pothetical population. The coefficients of the estimable function showed 
that it is the claim severity adjusted for the impact of the continuous varia-
bles Engine, Weight, and Age and averaged across all the categories of the 
District factor. We must emphasize that an actuary with additional infor-
mation may approach a contrast analysis differently. There were significant 
differences between the other groups as determined by the Age_cat × 
Brand_C interaction. We quantified the point estimates and 95% confi-
dence intervals of the adjusted means of claim severities for these groups, 
which are shown in Table 12.  

The smallest mean of claim severities is in group 55+ D, i.e., for policy-
holders aged 55+ with a vehicle from the least risky category of brands 
(category D). Based on point estimates, we can say that for drivers under 
the age of 25 and for the riskiest vehicles (category A including luxury 
brands), the mean of claim severities is approximately 231% higher. Oppo-
site the group 55+ D, in the age category of policyholders from 25–55 years 
old, in individual categories of vehicle brands B, C, and D, the means of 
claim severities are higher by 67.4%, 42.2%, and 26.7%, respectively. Fi-
nally, in groups 55+ B and 55+ C, the means of claim severities are 62.2% 
and 19.2% higher than in group 55+ D. 

The article shows that the analysis of marginal means and contrast anal-
ysis, which we performed using the LSMEANS, CONTRAST, and ESTI-
MATE statements in the SAS EG and SAS JMP, are effective tools for 
reducing factor categories and assessing differences in the means of the 
target variable for different factor categories and for different groups creat-
ed by the interaction of factors, but also for the prediction of the target vari-
able. Haans (2018) states that contrast analysis is an efficient and effective 
means for conducting post-hoc analyses but is used relatively little because 
the method is not implemented, at least not in a convenient point-and-click 
manner, in most statistical software packages. In the article, however, we 
have shown that the application of contrast analysis in statistical software 
requires intervention in the programming code, but it is relatively simple, 



Equilibrium. Quarterly Journal of Economics and Economic Policy, 17(3), 803–842 

 

827 

and we agree with Haans (2018) that contrast analysis is even understanda-
ble to researchers with a minimal background in statistics. We also agree 
with the statement by Schad et al. (2020), who say that contrast coding 
makes it possible to implement comparisons in a very flexible and general 
way. 

Since contrast analysis is one of the modern quantitative procedures 
used in modeling, e.g., in GLM and GzLM models with fixed as well as 
random effects or in modeling categorical data, the procedures presented in 
the article are universal. Contrast analysis is not only universal in terms of 
the form of modeling, but also in terms of software support. By using con-
trast analysis of the marginal means of the target variable (whether claim 
severity, claim frequency or loss cost), the actuary can perform an in-depth 
analysis of the portfolio and make full use of the GLM’s and GzLM’s po-
tential. 
 
 
Conclusions 
 
The article focuses on applying contrast analysis associated with the gen-
eral linear model (GLM) to analyze claim severity in motor third-party 
liability insurance. Contrast analysis makes it relatively easy to test and 
estimate different linear combinations of general linear model parameters, 
thus answering most research or practical questions that have led research-
ers and analysts to use GLM. The article points out that the analysis of 
marginal means and contrast analysis is mainly used in natural sciences, 
medicine, and psychology. However, it has not been given adequate atten-
tion in actuarial or economics research. 

Analyzes presented in the paper confirmed that contrast analysis could 
be a useful tool for the segmentation and estimation of claim severity in 
actuarial, especially in motor vehicle insurance, for the reasons listed be-
low. With the help of contrast analysis, it is possible to pre-define the rele-
vant categorical factor in such a way as to ensure a statistically correct 
segmentation of the policyholders (RQ1). Segmentation based on partial 
factors, suitable for the case of main effects, does not guarantee adequate-
ness in the case of interaction of these factors (RQ2). However, this prob-
lem can be solved through contrast analysis. The article presents the con-
trast analysis approach and the procedure for point and interval estimates of 
the claim severity for segments created based on contrast analysis (RQ3). 

The advantage of segmentation is provability, which can be well com-
municated to all stakeholders (e.g., managers and clients), the key require-
ment for implementing the segmentation into practice. The practical use of 
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contrast analysis also lies in the fact that it can be applied within a wide 
range of models that fall into the GLM or GzLM category, through profes-
sional analysis software such as SAS, presented in the article, or through 
open-source systems, e.g., R. 

We want to emphasize that the article provides an empirical analysis 
based on the portfolio of one insurance company operating in Slovakia. 
Although we believe that many conclusions apply to a portfolio of other 
insurance companies that also operate in other countries, at least in the CEE 
countries, it needs to be verified by further research. The analysis results 
have their limitations, which relate to the factors that were used in GLM. In 
our analysis, telematic factors such as distances driven during a given peri-
od and the drivers' habits and behavior were not used. The insurance com-
pany did not provide these factors, and we did not have information about 
the driving experience of policyholders. However, it should be noted that 
although several scientific studies have shown that driving experience sig-
nificantly reduces the claim (see Ayuso et al., 2019; Ordaz et al., 2011), 
this may not apply in the case of claim severity (Alemany et al., 2020). 

Obtained empirical results also have a time limit, which is especially 
true nowadays, at the time of the COVID-19 pandemic, the energy crisis, 
and high inflation. Spilbergs et al. (2022) showed that the COVID-19 peri-
od also significantly impacted MTPL claims due to the change in traffic 
intensity. However, macroeconomic indicators also have a demonstrable 
influence on MTPL claims, as confirmed by Spilbergs et al. (2021). There-
fore, the war in Ukraine and the energy crisis associated with inflation will 
impact claims in MTPL. For this reason, risk factors and classification 
models need to be regularly validated based on the most up-to-date infor-
mation available. 

Since the latest research has confirmed that machine learning methods 
also achieve good results. We will examine how contrast analysis linked to 
GLM or GzLM combined with machine learning methods can improve 
actuarial modeling, setting an adequate tariff structure and pricing in motor 
insurance or, more generally, in non-life insurance. It is a challenge for 
further research to improve the mentioned processes from the actuary's and 
the stakeholder's points of view when introducing them into insurance prac-
tice. 
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Annex 
 
 
Table 1. Tests for differences between LS-means for the Age_cat factor with 6 
categories (the matrix of p-values)  
 

Least Squares Means for effect Age_cat 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

Dependent Variable: lnCS 
i/j -25 25-35 35-45 45-55 55-65 65+ 

-25  <.0001 <.0001 <.0001 <.0001 <.0001 

25-35 <.0001  0.0613 0.1944 0.0001 0.0001 

35-45 <.0001 0.0613  0.4303 0.0049 0.0046 

45-55 <.0001 0.1944 0.4303  0.0006 0.0008 

55-65 <.0001 0.0001 0.0049 0.0006  0.5747 

65+ <.0001 0.0001 0.0046 0.0008 0.5747  

 
Source: own processing in the SAS EG based on data provided by an unnamed insurance 
company. 
 
 
Table 2. The simultaneous hypothesis test 0 3 4:H µ µ=  and ( )0 2 3 4: ,H µ µ µ µ=  

for the Age_cat factor in GLM for ln CS  
 

Contrast DF Contrast SS Mean Square F Value Pr > F 

Age 2=3=4 2 5.6764 2.8382 1.77 0.1707 

 
Source: own processing in the SAS EG based on data provided by an unnamed insurance 
company. 
 
 
Table 3. Verification of the statistical significance of the influence of regressors 
(including the Age_cat × Brand_C interaction) to the target variable ln CS  
in GLM 
 

Source DF Type IV SS Mean Square F Value Pr > F 

Engine_C 1 7.7743 7.7743 5.71 0.0169 

Weight_C 1 9.2094 9.2094 6.76 0.0093 

Age_C 1 21.5204 21.5204 15.79 <.0001 

Brand_C 3 14.1900 4.7300 3.47 0.0154 

District_cat 3 167.1081 55.7027 40.88 <.0001 

Age_cat *Brand_C 7 71.8179 10.2597 7.53 <.0001 

 
Source: own processing in the SAS EG based on data provided by an unnamed insurance 
company. 
 
 



Table 4. The basic analysis of the general linear model for ln CS  
 

Parameter Estimate  
Standard 

Error 
t Value Pr > |t| 

Intercept 4.89571 B 0.10632 46.05 <.0001 

Engine_C 0.00178  0.00075 2.39 0.0169 

Weight_C -0.00010  0.00004 -2.60 0.0093 

Age_C 0.01064  0.00268 3.97 <.0001 

Brand_C         A 1.56505 B 0.44574 3.51 0.0004 

Brand_C         B 0.48366 B 0.10042 4.82 <.0001 

Brand_C         C 0.17546 B 0.05962 2.94 0.0033 

Brand_C         D 0.00000 B . . . 

District_cat        A 0.61252 B 0.06010 10.19 <.0001 

District_cat        B 0.38609 B 0.04894 7.89 <.0001 

District_cat        C 0.24586 B 0.05179 4.75 <.0001 

District_cat        D 0.00000 B . . . 

Age_cat*Brand_C   A B -1.22319 B 1.17120 -1.04 0.2963 

Age_cat*Brand_C   A C 1.06257 B 0.32452 3.27 0.0011 

Age_cat*Brand_C   A D 1.23363 B 0.46112 2.68 0.0075 

Age_cat*Brand_C   B A -0.45525 B 0.51108 -0.89 0.3731 

Age_cat*Brand_C   B B 0.03179 B 0.10441 0.30 0.7608 

Age_cat*Brand_C   B C 0.17673 B 0.03866 4.57 <.0001 

Age_cat*Brand_C   B D 0.23641 B 0.05850 4.04 <.0001 

Age_cat*Brand_C   C A 0.00000 B . . . 

Age_cat*Brand_C   C B 0.00000 B . . . 

Age_cat*Brand_C   C C 0.00000 B . . . 

Age_cat*Brand_C   C D 0.00000 B . . . 

 
Source: own processing in the SAS EG based on data provided by an unnamed insurance 
company. 
 
 
Table 5. Estimation of multipliers for insurance contracts broken down by the 
Age_cat and Brand_C factors  
 

Age_cat 
Brand_C   

A B C D 

A (-25) • 0.477 3.449 3.434 

B (25-55) 3.034 1.674 1.422 1.267 

C (55+) 4.783 1.622 1.192 1 

 
Source: own processing based on data provided by an unnamed insurance company. 
 
 
 
 



Table 6. The representation of individual categories of factors in a set of insurance 
contracts with a loss 
 

Category Factor Age_cat Factor District_cat Factor Brand_C 

A 0.5% 12% 0.5% 

B 71.5% 50% 8.0% 

C 28.0% 28% 64.0% 

D − 10% 27.5% 

Sum 100% 100% 100% 

 
Source: own processing based on data provided by an unnamed insurance company. 
 
 
Table 7. Tests for differences between LS-means for the Age_cat × Brand_C 
interaction (the matrix of p-values)  
 

Least Squares Means for effect Age_cat*Brand_C 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: lnCS 

i/j AB AC AD BA BB BC BD CA CB CC CD 

AB  0.1027 0.1159 0.1223 0.2832 0.3500 0.4035 0.0651 0.2963 0.4336 0.5270 

AC 0.1027  0.9937 0.7565 0.0275 0.0062 0.0020 0.5499 0.0239 0.0011 0.0002 

AD 0.1159 0.9937  0.8143 0.1206 0.0549 0.0300 0.6032 0.1082 0.0214 0.0075 

BA 0.1223 0.7565 0.8143  0.0250 0.0036 0.0009 0.3731 0.0218 0.0004 <.0001 

BB 0.2832 0.0275 0.1206 0.0250  0.0090 <.0001 0.0185 0.7608 <.0001 <.0001 

BC 0.3500 0.0062 0.0549 0.0036 0.0090  0.0021 0.0062 0.1399 <.0001 <.0001 

BD 0.4035 0.0020 0.0300 0.0009 <.0001 0.0021  0.0028 0.0076 0.1796 <.0001 

CA 0.0651 0.5499 0.6032 0.3731 0.0185 0.0062 0.0028  0.0164 0.0017 0.0004 

CB 0.2963 0.0239 0.1082 0.0218 0.7608 0.1399 0.0076 0.0164  0.0009 <.0001 

CC 0.4336 0.0011 0.0214 0.0004 <.0001 <.0001 0.1796 0.0017 0.0009  0.0033 

CD 0.5270 0.0002 0.0075 <.0001 <.0001 <.0001 <.0001 0.0004 <.0001 0.0033  

 
Source: own processing in the SAS EG based on data provided by an unnamed insurance 
company. 
 
 
Table 8. Coefficients for the CONTRAST statement to test the null hypothesis

( )0 : , , ,CA AB AC AD BAH µ µ µ µ µ µ=  for the Age_cat × Brand_C interaction 

 

Age_cat 
Brand_C   

Sum 
A B C D 

A • -0.25 -0.25 -0.25 -0.75 

B -0.25 0 0 0 -0.25 

C 1 0 0 0 1 

Sum 0.75 -0.25 -0.25 -0.25 0 



Table 9. Coefficients for the ESTIMATE statement to estimate the weighted 
marginal mean ( ), , , ,AB AC AD BA CAµ µ µ µ µ µ  for the Age_cat × Brand_C interaction 

 

         Age_cat 
Brand_C   

Sum 
A B C D 

A • 2 31 12 45 

B 40 0 0 0 40 

C 15 0 0 0 15 

Sum 55 2 31 12 100 

 
 
Table 10. The estimate of the weighted marginal mean 

( ), , , ,AB AC AD BA CAµ µ µ µ µ µ  for the Age_cat × Brand_C interaction 

 

Parameter Estimate 
Standard 

Error 
t Value Pr > |t| 

Mean_w(AB, AC, AD, BA, CA)  6.4025 0.19825 32.29 <.0001 

 
Source: own processing in the SAS programming language based on data provided by an 
unnamed insurance company. 
 
 
Table 11. General form of estimable function for GLM estimated in Table 4  
 

General Form of Estimable Functions 

Effect Coefficients 

Intercept L1 
  
Engine_C L2 
  
Weight_C L3 
  
Age_C L4 
  
District_cat        A L5 

District_cat        B L6 

District_cat        C L7 

District_cat        D L1-L5-L6-L7 
  
Brand_C         A L9 

Brand_C         B L10 

Brand_C         C L11 

Brand_C         D L1-L9-L10-L11 

  
 
 
 



Table 11. Continued 
 

General Form of Estimable Functions 

Effect Coefficients 

Age_cat*Brand_C   A B L13 

Age_cat*Brand_C   A C L14 

Age_cat*Brand_C   A D L15 

Age_cat*Brand_C   B A L16 

Age_cat*Brand_C   B B L17 

Age_cat*Brand_C   B C L18 

Age_cat*Brand_C   B D L19 

Age_cat*Brand_C   C A L9-L16 

Age_cat*Brand_C   C B L10-L13-L17 

Age_cat*Brand_C   C C L11-L14-L18 

Age_cat*Brand_C   C D L1-L9-L10-L11-L15-L19 

 
Source: own processing in the SAS programming language based on data provided by an 
unnamed insurance company. 
 
 
Table 12. The point and 95% interval estimates of the adjusted means of claim 
severities (in Euros) for groups determined by the Age_cat × Brand_C interaction 
 

  Age_cat 
Brand_C   

A B C D 

A • 
603.4 

(409.1-889.9) 

B 
603.4 

(409.1-889.9) 

305.6 
(244.9-381.3) 

259.6 
(217.3-310.0) 

231.2 
(193.9-275.7) 

C 
296.0 

(230.2-380.8) 
217.5 

(181.2-261.2) 
182.5 

(150.9-220.8) 
 
Source: own processing based on data provided by an unnamed insurance company. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 1. Distribution of residuals for the model of logarithmic transformation of 
claim severity  
 

 
Source: own processing in the SAS EG based on data provided by an unnamed insurance 
company. 
 
 
Figure 2. Residuals for the model of logarithmic transformation of claim severity 
 

 
Source: own processing in the SAS EG based on data provided by an unnamed insurance 
company.  



Figure 3. Diffogram for pairwise comparisons (and associated 95% Tukey-
Kramer-adjusted confidence intervals) of LS-means of ln CS for the Age_cat factor 
  

 
 
Source: own processing in the SAS EG based on data provided by an unnamed insurance 
company. 
 
 
Figure 4. Diffogram for pairwise comparisons (and associated 95% Tukey-
Kramer-adjusted confidence intervals) of LS-means of ln CS  for the Brand_C 
factor 

 
 
Source: own processing in the SAS EG based on data provided by an unnamed insurance 
company 



Figure 5. Diffogram for pairwise comparisons (and associated 95% Tukey-
Kramer-adjusted confidence intervals) of LS-means of ln CS  for the District_cat 
factor 
 

 
 
Source: own processing in the SAS EG based on data provided by an unnamed insurance 
company. 
 
 
Figure 6. Verifying the null hypothesis ( )0 : , , ,CA AB AC AD BAH µ µ µ µ µ µ=  for the 

Age_cat × Brand_C interaction 
 

 
 
Source: own processing in the SAS JMP based on data provided by an unnamed insurance 
company. 




